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Abstract: In computer-aided diagnosis (CAD) systems, the automatic classification of the different
types of the human epithelial type 2 (HEp-2) cells represents one of the critical steps in the diagnosis
procedure of autoimmune diseases. Most of the methods prefer to tackle this task using the supervised
learning paradigm. However, the necessity of having thousands of manually annotated examples
constitutes a serious concern for the state-of-the-art HEp-2 cells classification methods. We present
in this work a method that uses active learning in order to minimize the necessity of annotating
the majority of the examples in the dataset. For this purpose, we use cross-modal transfer learning
coupled with parallel deep residual networks. First, the parallel networks, which take simultaneously
different wavelet coefficients as inputs, are trained in a fully supervised way by using a very small
and already annotated dataset. Then, the trained networks are utilized on the targeted dataset, which
is quite larger compared to the first one, using active learning techniques in order to only select the
images that really need to be annotated among all the examples. The obtained results show that
active learning, when mixed with an efficient transfer learning technique, can allow one to achieve
a quite pleasant discrimination performance with only a few annotated examples in hands. This
will help in building CAD systems by simplifying the burdensome task of labeling images while
maintaining a similar performance with the state-of-the-art methods.

Keywords: HEp-2 cell images classification; computer-aided diagnosis; deep learning; active learning;
transfer learning; pattern recognition

1. Introduction

The classification of the different types of the human epithelial type 2 (HEp-2) cells
is one of the most important steps in the diagnosis procedure of autoimmune disease [1].
Performing this classification manually represents an arduous task and can cost a lot
of time during the diagnosis process. Moreover, the manual analysis of the HEp-2 cell
patterns poses a certain problem in terms of consistency of the diagnosis results, since the
complexity of the images complicates the task for the pathologists [2]. This is the reason
why the automatic discrimination of the different types of the HEp-2 cell images is more
than necessary in order to help pathologists during the diagnosis procedure. Which makes
the classification of these cells to be one of the important parts of the computer-aided
diagnosis systems.

Different methods have been presented for this task in the literature. As a pattern
recognition problem, the classification of the HEp-2 cells is usually tackled with a feature
extraction part followed by a discrimination process. Feature extraction consists of ex-
tracting or selecting the information that is supposed to help differentiating the different
cellular types. The second part of the process consists of utilizing the extracted features
as the inputs of a discriminator (a classifier). Different hand-crafted features have been
proposed for this purpose and many of them can be seen in the review by Foggia et al. [3].
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Various descriptors like the discrete cosine transform [4,5], the scale-invariant feature trans-
form [5,6], the local binary patterns [7–9] or many other different statistical features have
been highlighted in the literature [10–15]. A multiclass support vector machine (SVM) is
mostly used as the discriminator for these methods.

The automatic feature learning process afforded by deep learning has largely sup-
planted the use of these handcrafted features. In addition to the fact that the subjective
choice of the features was a disadvantage for these methods in terms of consistency, their
limitations in terms of the discrimination results explain why they have fallen out of use
and been supplanted by the deep learning-based methods. In fact, currently, the quasi
majority of the works in the literature utilize these methods in order to demonstrate their
superiority over the conventional handcrafted features.

One of the pioneers works to adopt the convolutional neural network (CNN) for the
HEp-2 cell classification was the method proposed by Foggia et al. [2] at the International
Conference on Pattern Recognition (ICPR) HEp-2 cells classification contest in 2012. Since
then, multiple works have proposed the use of CNN models in many different ways [16–21].
Among the most noticeable, Li et al. [22] have presented a customized CNN model, called
the deep residual inception network (DRI-Net), which associates the residual connection
from the ResNet [23] and the “Inception modules” utilized in the GoogleNet [24]. Addi-
tionally, among the most noticeable, Shen et al. [25] have used the ResNet approach but
with a much deeper residual module with several cross connections between the layers.
Their model was named the deep-cross residual network (DCR-Net) and they have tested
a huge data augmentation process in order to boost the classification accuracy.

Interestingly, Majtner et al. [26] have proposed the use of generative adversarial
networks [27], the deep convolutional generative adversarial networks (DCGAN) [28]
specifically, in order to generate realistic artificial HEp-2 images. The goal was to augment
the existing datasets with the artificial images generated by the DCGAN. Li et al. [29] have
extended the idea presented in [23] by enlarging the convolutional kernels’ size and adding
more convolution operations with different dilations within the DRI modules. The short-cut
connection is made outside the DRI module, i.e., the residual connection is made between
the input and the final output of the module, while in the previous version [23], different
residual connections were made between the layers inside the DRI module. It is necessary
to mention that the researchers in this field, both for the handcrafted features-based and
deep learning-based methods, as described above, prefer to adopt, quasi unanimously, the
supervised learning paradigm in order to tackle the HEp-2 images classification.

Supervised learning necessitates the presence of labeled images. Consequently, even
though the discrimination performance that we can obtain by using this methodology
remains remarkable, the necessity of constructing labeled datasets that contain a consider-
able number of images represents a serious concern. In fact, deep learning-based methods
require the presence of thousands of images and the process of labeling by hands these
images can eventually represent a quite onerous task in the future, when we will have to
create more expanded datasets, which can be a drawback for this methodology. In our
previous works [30,31], we have explored the possibilities afforded by the unsupervised
learning approach for this topic. In the present work, we adopt the supervised learning
methodology but in a quite different manner compared to what is actually done in the
HEp-2 cell images classification literature. The principal contribution of this work is the
use of the techniques afforded by active learning in order to drastically minimize the need
of the labeled images (in proportion of the total number of images) while maintaining a
comparable performance with the actual state-of-the-art methods.

For this purpose, we propose to use active learning coupled with transfer learning.
Transfer learning consists of using an already trained network for a new task. Fine-tuning
the trained network consists of updating its parameters using the new dataset. This tech-
nique was used for the HEp-2 cells classification by Phan et al. [32], who utilized a model,
the VGG-16 network [33], that was previously trained on the ImageNet dataset. Some
others methods utilize a pretrained network only as a feature extractor. The high-level fea-
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tures extracted from the pretrained CNN model are then used in order to train a multiclass
SVM. In the HEp-2 cell classification literature, this technique (transfer learning without
fine-tuning) has been adopted in different ways by the works discussed next. Lu et al. [34]
have used a pretrained VGG-16 network as a feature extractor while Nguyen et al. [35]
proposed the use of an ensemble of networks. Another work using this idea was presented
by Cascio et al. [36] with the use of the AlexNet [37] as the feature extractor. For all of them,
the discrimination was performed by a SVM, or by both a SVM and a k-nearest neighbor
classifier, as done in [36].

An interesting transfer learning approach, named cross-modal transfer learning, was
proposed by Lei et al. [38]. Cross-modal transfer learning consists of updating the param-
eters of the pretrained network (fine-tuning) in two steps: first, by using a quite small
dataset, then, second, by performing the update on the targeted dataset, which is supposed
to be much larger and more complex than the first one. With the particularity that the
two datasets have to be similar, i.e., they have to share the same feature domain. In fact,
most of the pretrained CNN models were trained on the ImageNet dataset, which contains
images that are far different with the HEp-2 cell images. The idea of cross-modal transfer
learning is like performing a prefine-tuning (on the small dataset) before a final fine-tuning
(on the targeted dataset) in order to smooth the parameters’ updating process during
the training. The authors in [38] have used ResNet-50 as the network to be fine-tuned.
The small dataset utilized was the ICPR2012 dataset [2], and the targeted dataset was the
ICPR2016 dataset [39], also known as the 13A dataset. Our method uses this cross-modal
idea with a slight difference: we used the small dataset not in order to fine-tune an existing
pretrained model, but in order to train our fully designed parallel deep networks.

Active learning regroups an ensemble of techniques whose aim is to minimize the
data labeling burden while keeping the discrimination’s efficiency unchanged. The idea
is to use the network in a set of iterations in order to select, among the totality of the
data, only the samples that really need to be annotated and used it for training the final
model. Different methods can help to select these data, methods based on uncertainty
sampling [40] or query-by-committee [41]. Some other works have used active learning
with deep learning [42–45] and some others have proposed different techniques, such
as neural-like structures based on geometrical transformation model [46], in order to
ensure the possibility of obtaining satisfactory results even with a small number of training
examples. We aim to demonstrate in this work that active learning techniques can also
be applied in the HEp-2 cell images classification and allow one to minimize the need
of labeled data while maintaining a comparable discrimination performance with the
state-of-the-art deep learning-based methods that utilize the totality of the labeled images.

The contributions of the present work can be summarized as follows. First, we
propose a dynamic learning method that uses two deep residual networks with the same
structure in parallel in order to specifically tackle the intraclass variations and interclass
similarities present in most of the HEp-2 cell images datasets. Two-dimensional (2D)
discrete wavelet transform (DWT) is performed over the input images. The first network
takes the approximation coefficients as inputs and the second network takes the sum of all
the details coefficients as inputs. The learning of the two networks is done in parallel and
their high-level features are fused at the end of the networks in order to mix the different
information extracted from the two inputs.

Second, we use the idea of cross-modal transfer learning in order to boost the efficiency
of the active learning. The two parallel deep residual networks are first trained with a small
HEp-2 dataset, the SNPHEp-2 [5], which contains only around 2000 images, in order to
build our pretrained model. The third and principal contribution is to apply this pretrained
model on our targeted large-scale HEp-2 dataset, which will be presented in details in
Section 3, and utilize the uncertainty sampling from active learning in order to only select,
in that dataset, the most informative data.

Finally, we systemically investigate the effectiveness of the proposed method and
our experimental results demonstrate that: first, the proposed parallel residual networks
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are effective for the discrimination of the HEp-2 cells; second, by using an efficient trans-
fer learning methodology (similar to cross-modal transfer learning), active learning can
effectively help to minimize the burden of labeling images by hands during the dataset
creation by allowing us to select only a few number of informative data that really need to
be annotated while maintaining a quite fair performance on a very large-scale dataset.

The remaining content of the paper is organized as follows. The next section
(Section 2) presents in details each step of the proposed methodology. Section 3 presents
the dataset, discusses the obtained results, and addresses a comparative study with the
other supervised learning methods in the literature.

2. Proposed Method

The first step of our method is to create the parallel networks that we will use for
the transfer and active learning. HEp-2 cell datasets have the particularity of denoting a
significant heterogeneity. This is caused by the existence of mainly two different levels
of fluorescence illumination (also denoted as intensity levels). Images shown in Figure 1
illustrate the disparities caused by the inhomogeneous fluorescence illumination. These
disparities are the intraclass variations and the interclass similarities. Intraclass variations
denote the variations within the same cellular type. Figure 1a shows a randomly selected
positive intensity nucleolar cell image, while Figure 1b shows a randomly selected negative
intensity nucleolar image. We can remark the strong disparities in terms of intensity
between the two images even though they belong to the same class (intraclass variations).
The same dissimilarities can be noticed between the two images depicted in Figure 1c,d, in
case of the nuclear membrane cell type.
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Figure 1. HEp-2 cellular images from the 13A dataset. (a) A positive intensity nucleolar cell; (b) a
negative intensity nucleolar cell; (c) a positive intensity nuclear membrane cell and (d) a negative
intensity nuclear membrane cell.

Interclass similarities, on the other hand, denote the similarities that exist between the
different classes. In fact, the images shown in Figure 1b,d exhibit strong similarities in terms
of intensity even though they belong to two different cellular types. This heterogeneity-
related problem really adds complexity in the HEp-2 cell classification task. As a matter of
fact, different methods have been proposed in order to specifically classify the different
fluorescence intensity [47,48]. Furtherly, Nigam et al. [49] have proposed to perform an
intensity-based classification prior to the cell classification itself in order to alleviate the
heterogeneity during the cell type classification. Our proposed parallel deep residual
networks try to tackle this heterogeneity-related problem in one step (unlike in [49]) and
by performing cell type classification (unlike in [47,48]).

2.1. Parallel Deep Residual Networks

We propose to use the different wavelet coefficients from the 2D-DWT decomposition
as the inputs of different networks in parallel. This idea was fully discussed and its
effectiveness demonstrated in [50]. We upgraded the idea by alleviating the learning
(training) process by reducing the total number of needed networks and, consequently,
the total number of the parameters to handle. The 2D-DWT in the first level produces
4 different matrices of coefficients. The approximation coefficients, which represent the
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low-frequency information of the inputs, and the three different details coefficients, which
represent the high frequency components of the input signal. The three details coefficients
are the horizontal, vertical and diagonal details. Unlike in [50], where four different
networks were utilized in parallel for all the four coefficients, we sum up all the details
coefficients in order to incorporate all the high frequency components in one single channel.
Thus, as illustrated in Figure 2, two networks are trained in parallel: the first network takes
the approximation coefficients as the inputs, and the second network takes the sum of all
the three details coefficients as inputs.
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Figure 2. The approximation (A) and the sum of details, represented by D, are given to two networks.
A feature fusion is performed in the late layers. Note that n here is 3 and represents the three
details components.

The approximation coefficients will bring a certain homogenization in terms of the
intensity. This will drastically reduce the intraclass variations by forcing both the positive
and negative intensity images to share a similar level of gray intensity. Images shown in
Figure 3 illustrate the intensity-based homogenization produced by the approximation
coefficients. Figure 3a shows a randomly selected positive intensity fine speckled cell
image from the SNPHEp-2 dataset. Figure 3b shows its corresponding approximation
coefficients (extracted from the first level of the 2D-DWT decomposition). Figure 3c shows
a randomly selected negative intensity fine speckled cell image and Figure 3d shows its
corresponding approximation coefficients. We can clearly remark the homogenization
that occurred between the images in terms of the intensity of the gray level by comparing
their approximation coefficients. This homogenization will drastically reduce the intraclass
variations of the dataset.
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Figure 3. HEp-2 cellular images from the SNPHEp-2 dataset. (a) A positive intensity fine speckled cell;
(b) its approximation coefficients; (c) a negative intensity fine speckled cell and (d) its approximation
coefficients. Note the effective homogenization in terms of gray level intensity between the positive
(b) and negative (d) images.

Secondly, the details coefficients will bring homogenization in terms of the geometrical
shape of the cells. In fact, the details coefficients capture the high frequency components of
the image, which means that all the gray variations inside the image can be highlighted.
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These small changes in intensity indicate the shape and the boundaries of the cells. Images
depicted in Figure 4 illustrate how the high-frequency components can help to expose the
cellular shape and boundaries from the positive and negative intensity images.
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Figure 4. HEp-2 cellular images from the SNPHEp-2 dataset. (a) A positive intensity homogeneous cell and (b–e) its
horizontal, vertical, diagonal details and their sum, respectively. (f) A negative intensity homogeneous cell and (g–j) its
horizontal, vertical, diagonal details and their sum, respectively. The original images in (a,f) have a size of 112 × 112.
Their respective detail coefficients in (b–e) and (g–j) are all downsized by half (56 × 56). All the images in the figure were
identically resized for the purpose of visualization.

In Figure 4a, we show a positive intensity homogeneous cell. Images shown in
Figure 4b–d represent its different details coefficients, the horizontal, vertical and diagonal
details, respectively. The image shown in Figure 4e is the result of summing all the
details. We can remark that the sum incorporates all the information from the three details
coefficients. Similarly, in Figure 4f, we show a negative intensity homogeneous cell image.
In Figure 4g–i, we show the three details coefficients and Figure 4j represents their sum.
Note how the two sums (Figure 4e,j) highlight the homogeneous cell’s shape, boundaries
and internal gray variations. Since these three elements differ from a cellular type to
another, we can expect two main contributions from the sum of details. First, they will
bring a certain heterogeneity between the classes by forcing all the negative intensity
images to exhibit typical characteristics of their cellular type (shape, boundaries and gray
variations). This will contribute to the reduction of the interclass similarities.

Consequently, as the second contribution, they will bring a certain intraclass homoge-
nization by forcing the positive and negative intensity images from the same class to exhibit
similar patterns (shape, boundaries and gray variations), as demonstrated by Figure 4e,j.
This will contribute to the reduction of the intraclass dissimilarities, reduction also achieved
by the approximation coefficients, as previously discussed. The approximation and the
sum of details will be used to feed the two residual networks in parallel.

Figure 5 shows the architecture of the residual networks. Network 1 takes the approxi-
mation coefficients while Network 2 takes the sum of the details, as explained above. There
are five residual blocks in total. Each network has two residual blocks and another is used
after the feature fusion from the two networks. Every residual block has two convolutional
layers, two rectified linear unit (ReLU) layers and two batch normalization layers [51].
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Figure 5. Architecture of the residual networks. The residual blocks are shown in green. Here,
“Conv”, “BN”, “ReLU”, “GAP” and “FC” denote, respectively, the convolutional layer, the batch
normalization layer, the rectified linear unit (ReLU) layer, the global average pooling layer and the
fully connected layer. “Pooling” denotes the maximum pooling layer and “Concatenation” denotes
the layer that performs feature concatenation from the two networks.

Two main observations need to be made about the architecture in Figure 5. First,
all the convolutional layers preserve the spatial dimensions of the input volume and
only the pooling layers perform the spatial downsampling. Second, the feature fusion is
performed by the 1 × 1 convolutional operation that directly follows the concatenation.
After concatenating the layers from the two networks, we obtained a volume of size
14 × 14 × 128, which is then passed through the 1 × 1 convolutional layer whose purpose
is precisely to mix (fusion) the information from the two networks. The output volume of
the final residual block has the dimensions of 14 × 14 × 128. This volume is given to the
global average pooling (GAP) layer in order to obtain the final one-dimensional feature
vector of size 1 × 1 × 128.

The feature vector will be given to a softmax classifier [52] that uses the function
defined as follows:

σ(z)j =
ezj

∑N
i=1 ezi

, for j = 1, . . . , N, (1)

where N is the number of the classes and the values z are the inputs of the softmax function.
The values σ(z)j are the outputs of the function and represent the probabilities of every class.
The parallel networks learn by back-propagating the error [53] and using the cross-entropy
error function [52] defined by

E = −
N

∑
j=1

yj log
[
σ(z)j

]
, (2)
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where the values yj denote the actual labels of the N classes for a given data and the values
σ(z)j are the ones computed using Equation (1).

These parallel networks will be first trained with a small dataset, which contains only
around one thousand training instances. After this initial training process, the networks
will be utilized as the pretrained model in order to perform transfer learning coupled with
active learning on the targeted dataset, which contains more than sixty thousand instances.
As previously discussed in Section 1, instead of using networks that were pretrained on
ImageNet, as done by most of the works that utilize transfer learning [32,34–36], we propose
to use our own networks, which are pretrained purposely by using the HEp-2 images.

The advantage is that using a network that has previously seen similar images during
transfer learning alleviates the parameters’ update. Since the two datasets share the similar
image domains, we expect them to share many general characteristics. The early layers
from the networks, which learn low-level and non-specific features, can be fixed during the
fine-tuning and only the late layers, which learn domain-specific features, can be updated
(see Figure 6 for the illustration). This will smooth and ease the first step of our active
learning scheme consisting of fine-tuning the pretrained model on a very small number of
selected data.
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2.2. Active Learning Using the Pretrained Parallel Residual Networks

Active learning aims to alleviate the labeling process by allowing one to select only
the data that should be given to the learning model. The goal is to find which are the data
that carry the most informative details that can help us to build the classifier. This selection
can be done by finding the data for which the model is the most uncertain. This is referred
as uncertainty sampling [40]. The idea is to find an uncertainty measure that can help to
evaluate the confidence of the model and then use that measure in order to select only the
data for which the model is the most uncertain. Select in order to annotate them. Instead
of annotating (labeling by hands) all the available data, we can just annotate the ones for
which our model is the most uncertain about.

Different uncertainty measures have been utilized in the literature. Among the most
used, we have the entropy [54], which can measure the certainty level of a classifier by
using the probabilities (scores) that are attributed to each class. For a given instance x, the
entropy can be evaluated by the following equation:

entropy(x) =
N

∑
j=1

p(yj|x) log p(yj|x), (3)

where the values p(yj|x) represent the classes’ probabilities (or classes’ scores) as outputted
by the classifier for the data x and N is the number of classes. When the entropy is very
high for a given data, it means that the classifier evaluates equally the different classes
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for that data. In other words, the classifier is uncertain about which class to assign to the
data x.

Another way to measure the uncertainty of a model is to compute its amount of
confidence for a given instance. This method is referred as least confidence-based sam-
pling [40,55]. For a given data x, the confidence C is given by

C = argmax
j

p(yj|x), (4)

where the values p(yj
∣∣x) represent also the classes’ probabilities. We know that for every

single instance, the classifier outputs a vector containing the probabilities associated to
each class, represented here by p(yj

∣∣x) . The confidence denoted in Equation (4) finds the
maximum score, i.e., it finds the class for which the model assigns the maximum probability
value. Which gives us the amount of confidence of the model for every single data. The
idea is to select the data for which the model is the least confident, i.e., the data for which
the values C are the lowest. In practice, we can sort the data according to their confidence
C from the smaller to the larger, and then prioritize the annotation in that manner. Note
that entropy also can be thought as the amount of confidence: when the entropy is high,
the confidence is low, and vice versa.

Another method, called the margin sampling [56], consists of computing the difference
between the highest and the second highest scores in the vector of probabilities. In this
case, the confidence C is given by

C = p1
(
yj
∣∣x)− p2

(
yj
∣∣x), (5)

where p1
(
yj
∣∣x), and p2

(
yj
∣∣x) are the highest and the second highest probabilities, respec-

tively. Similar with the previous case, the data with the lower C values are prioritized for
the labeling. The difference computed in Equation (5) enquires us about the confidence of
the model. If its value is high, it means that one of the class has a much bigger probability
compared to the other and, on the contrary, when its value is small, it means that the model
evaluates equally the two classes, which means that the model is uncertain.

The least confidence and margin sampling methods work similarly and, unlike the
entropy, are both less suitable for the multiclass classification. In fact, in Equation (5), only
two classes are taken into account, while the entropy utilizes all the classes’ probabilities.
In our case, we will adopt the entropy in order to evaluate the uncertainty of the deep
parallel residual networks. Other uncertainty sampling methods can be found in [57–59].
For clarity, we summarize the different steps of the proposed active learning scheme in
Table 1. Figure 7 illustrates these different steps.

This process is repeated as much as possible and stopped until we reach our limitations
in terms of labeling. Note that this iterative process can be continued until the totality of
the data are labeled. However, in our work, we imposed to ourselves a limit in terms of
the possibility of labeling. In fact, the goal of this work was to demonstrate that active
learning-based labeling could really help to limit the need of labeled data while maintaining
a fair performance. In our experiments, we explored different hypotheses concerning the
limitations that we had in terms of labeling. For example, if we suppose that we can only
label 10% of the 64,000 available data, we stop the process when we reach 6400 annotated
data and evaluate the networks over the testing data. All the details concerning the
parameters of the networks, the values k and m, and the datasets are discussed in the
next section.
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Table 1. The different steps of our active learning scheme.

Step No. Actions Comments

1 We train our networks using the small dataset. The small dataset used here is the SNPHEp-2 dataset, which
contains around 1000 images for training.

2

Using the targeted dataset, we select randomly and
label k samples. We fine-tune the networks by using
these k samples as the training data. As described in

Section 2.1, the early layers remain fixed and we
only update the late layers.

Note that by choosing the number k, we select randomly (as
opposed to select by using active learning) the data to label. In
fact, we want this number k to be as small as possible, in order
to not complicate the labeling process. This is made possible

by the pretraining made in step 1 using the small dataset.

3

We use the fine-tuned networks over all the
remaining data in order to get their probability

scores. We compute the confidence (entropy) using
Equation (3) for each data.

Equations (4) and (5) can also be used to estimate
the confidence.

4 We rank the data according to their confidence, from
the lowest to the highest.

Note that in Figure 7, we show the data with the lowest
confidence (highest entropy) in the bottom for the

illustration purpose.

5
We select the first m data in the ranking in step 4 and

annotate them. These are the data for which the
networks are the most uncertain about.

The number m is chosen according to the limitations that we
have in terms of manual labeling.

6
The newly annotated data in step 5 are mixed with
the k data that were previously labeled in step 2 in

order to create the newly annotated set.
The newly annotated dataset contains now k + m data.

7 We fine-tune again the networks using this newly
annotated dataset

After this step, we get back to step 3 (use the newly fine-tuned
networks to compute the scores and the confidence).

Sensors 2021, 21, x FOR PEER REVIEW 10 of 24 
 

 

4 
We rank the data according to their confidence, 

from the lowest to the highest. 

Note that in Figure 7, we show the data with the lowest 
confidence (highest entropy) in the bottom for the illus-

tration purpose.  

5 

We select the first m data in the ranking in step 
4 and annotate them. These are the data for 
which the networks are the most uncertain 

about. 

The number m is chosen according to the limitations 
that we have in terms of manual labeling. 

6 

The newly annotated data in step 5 are mixed 
with the k data that were previously labeled in 
step 2 in order to create the newly annotated 

set.  

The newly annotated dataset contains now 𝑘  𝑚 data. 

7 We fine-tune again the networks using this 
newly annotated dataset 

After this step, we get back to step 3 (use the newly 
fine-tuned networks to compute the scores and the con-

fidence). 

This process is repeated as much as possible and stopped until we reach our limita-
tions in terms of labeling. Note that this iterative process can be continued until the totality 
of the data are labeled. However, in our work, we imposed to ourselves a limit in terms 
of the possibility of labeling. In fact, the goal of this work was to demonstrate that active 
learning-based labeling could really help to limit the need of labeled data while maintain-
ing a fair performance. In our experiments, we explored different hypotheses concerning 
the limitations that we had in terms of labeling. For example, if we suppose that we can 
only label 10% of the 64,000 available data, we stop the process when we reach 6400 an-
notated data and evaluate the networks over the testing data. All the details concerning 
the parameters of the networks, the values k and m, and the datasets are discussed in the 
next section.  

 

Sensors 2021, 21, x FOR PEER REVIEW 11 of 24 
 

 

 
Figure 7. Illustration of the different steps of the proposed active learning scheme. LSHEp-2 stands for the large-scale 
HEp-2 dataset. 

3. Results 
3.1. Datasets, Experimental Setup and Initial Learning Results 

The deep residual networks were first trained using a relatively small dataset, as 
mentioned before. We adopted the SNPHEp-2 dataset here for this initial learning process. 
This dataset was presented by Wiliem et al. [5] and comprises five classes, which explains 
why the classification layer of the networks shown in Figure 5 had five neurons. The five 
classes (cell types) are the homogeneous, the coarse speckled, the fine speckled, the nucle-
olar and the centromere cells. The dataset contains 1884 data, divided into two sets: 905 
images for training and 979 others for testing. Figure 8a–e shows one sample per class 
from this dataset.  

     
(a) (b) (c) (d) (e) 

Figure 8. Example images from the SNPHEp-2 dataset. (a) The homogeneous, (b) the coarse speckled, (c) the fine speckled, 
(d) the nucleolar and (e) the centromere cells. The original size of the images is 112 × 112. 

Instead of using the ICPR2012 for the initial learning as done in [38], the choice of 
using the SNPHEp-2 dataset was justified by the similarities between this dataset and our 
targeted dataset. The targeted dataset is the large-scale HEp-2 (LSHEp-2) dataset, intro-
duced by Qi et al. [60]. This dataset contains far more images (63,445) than the 13A dataset 
(13,596 images). The reason why we adopted the LSHEp-2 dataset is that we aimed to test 
the effectiveness of the proposed active learning scheme on a really big dataset for which 
labeling can really be burdensome. Furthermore, this dataset is more complex in terms of 
intraclass variations and heterogeneity compared to the others. The description of the 
LSHEp-2 dataset can be found in details in [60] and it can be downloaded at 
http://qixianbiao.github.io/HEp2Cell/. Similar to the 13A dataset, it contains six classes: 
homogeneous, speckled, nucleolar, centromere, nuclear membrane and Golgi cells. Some 
examples of this dataset are shown in Figure 9. 

Figure 7. Illustration of the different steps of the proposed active learning scheme. LSHEp-2 stands for the large-scale
HEp-2 dataset.



Sensors 2021, 21, 1469 11 of 23

3. Results
3.1. Datasets, Experimental Setup and Initial Learning Results

The deep residual networks were first trained using a relatively small dataset, as
mentioned before. We adopted the SNPHEp-2 dataset here for this initial learning process.
This dataset was presented by Wiliem et al. [5] and comprises five classes, which explains
why the classification layer of the networks shown in Figure 5 had five neurons. The
five classes (cell types) are the homogeneous, the coarse speckled, the fine speckled, the
nucleolar and the centromere cells. The dataset contains 1884 data, divided into two sets:
905 images for training and 979 others for testing. Figure 8a–e shows one sample per class
from this dataset.
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Instead of using the ICPR2012 for the initial learning as done in [38], the choice of
using the SNPHEp-2 dataset was justified by the similarities between this dataset and
our targeted dataset. The targeted dataset is the large-scale HEp-2 (LSHEp-2) dataset,
introduced by Qi et al. [60]. This dataset contains far more images (63,445) than the 13A
dataset (13,596 images). The reason why we adopted the LSHEp-2 dataset is that we
aimed to test the effectiveness of the proposed active learning scheme on a really big
dataset for which labeling can really be burdensome. Furthermore, this dataset is more
complex in terms of intraclass variations and heterogeneity compared to the others. The
description of the LSHEp-2 dataset can be found in details in [60] and it can be downloaded
at http://qixianbiao.github.io/HEp2Cell/ (accessed on 16 January 2021). Similar to the
13A dataset, it contains six classes: homogeneous, speckled, nucleolar, centromere, nuclear
membrane and Golgi cells. Some examples of this dataset are shown in Figure 9.
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Figure 9. Example images from the large-scale HEp-2 dataset. (a) The homogeneous, (b) the speckled, (c) the nucleolar,
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By comparing the images in Figures 8 and 9, we can remark that the two datasets share
many similarities. We can expect that our networks will learn the general features shared
by these two sets of images, which will allow us to only update the task-specific layers
located at the end of the networks. In fact, two big changes can be remarked between the
SNPHEp-2 and the LSHEp-2 datasets: firstly, the two speckled (fine and coarse) cells from
the first were mixed to form only one cell type, the speckled cells, in the second. Secondly,
the Golgi cells are absent from the SNPHEp-2. During the transfer learning process, we

http://qixianbiao.github.io/HEp2Cell/
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will remove the last layer containing five neurons and replace it by another one containing
six. All the experiments were performed using TensorFlow on a computer with a Core i7
3.40 GHz processor, 8 GB of RAM and a NVIDIA GeForce GTX 1080 Ti GPU.

For the initial learning process, the hyperparameters were selected via cross-validation
using the five different validation folds of the SNPHEp-2 dataset. The original images had
different sizes (average around 90 × 90) and were all upsized using bicubic interpolation
to 112 × 112 in order to fit into our designed architecture. Note that after the DWT
decomposition, the coefficients at the first level have all the size of 56 × 56. In order to
maximize the learning capacity of the networks, data augmentation was applied over the
SNPHEp-2 dataset. It consists of cell rotation, with a step of 18◦ in a quadrant of 360◦, as
proposed in [16,25]. This rotation increases the original training set by a factor of 20.

The learning rate is set to be 0.001 and training is terminated when the validation loss
did not surpass the reached minimum 5 times in a row. For the initial learning (with data
augmentation), 32 epochs were necessary to terminate the training process (see Figure 10a).
The classification results of this initial learning are shown in the confusion matrix depicted
in Figure 10b. The accuracy over the validation set, as we can see in Figure 10, was
about 94%. We recall here that the purpose of this initial learning is just to generate a
pretrained model that will be used later for the transfer learning. For further details about
the effectiveness of the dynamic learning afforded by the wavelet coefficients, readers are
invited to check our previous work [50] where we have presented a detailed discussion
about it.
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After we had our pretrained model in hands, we could utilize it for the active learning
over the LSHEp-2 dataset. For all the fine-tuning procedures, we had fixed all the layers
before the second residual block, which means from the first convolutional layer to the
second pooling layer (see Figure 5 for the architecture). The second residual block is set to
be trainable because we want the networks to extract features that are specific to our main
dataset before the feature fusion (layer concatenation). The final layer was changed to have
six neurons, according the six classes of the LSHEp-2 dataset. The same learning approach
was used for all the fine-tuning processes: a learning rate of 0.001 was utilized, training is
stopped when the loss does not decrease five times in a row.

As said before, the LSHEp-2 dataset contains 63,445 images. A 80–20% splitting was
performed, which gives 50,758 images for training, and 12,687 for testing. The labeling
limitations that we imposed to ourselves only concern the training set (the testing set was
just used for validation, not for fine-tuning). We principally tested our method with the
limitation of being able to annotate only 20% of the training set, which gives a total of
10,152 images. The value k was set to be 1500, i.e., 1500 images (around 15% of the 10,152)
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were first selected randomly in order to perform the first fine-tuning. Additionally, then,
the value m was set to be 1000, which means that we selected the first 1000 data in the
ranking performed in step 4 (see Table 1) in every labeling iteration. We stop the labeling
process after we annotated the totality of the 10,152 images. Note that the same kind of
process was repeated for any level of limitation (the number k being 15% of the limitation
and m being 10%).

The results are shown in two categories: the results without cross-modal transfer
learning and the ones with cross-modal transfer learning. The first category designates the
case where we did not use the initial learning for building the pretrained model. We just
trained the networks by using directly the first k images from the main dataset. The second
category designates the proposed scheme, where initial learning with a small dataset was
used before fine-tuning with the main dataset. In every category, we show two cases for
the results: using random sampling and using active learning-based sampling. In other
words, and with the case of 20% of the limitation, random sampling designates the fact of
selecting randomly 20% of the training images in order to train the networks while active
learning-based sampling designates the fact of using active learning techniques for the
selection of 20% of the training images.

Note that for all the cases where active learning was involved, we did not show the
loss and accuracy progression since several different learning procedures were conducted
in every labeling iteration (many fine-tunings). In this case, showing the loss and accuracy
evolution was meaningless. On the other hand, these evolutions are shown for the cases that
did not involve active learning, where only one single training procedure was performed.
For simplicity, the different cases were designated by their short names shown in Table 2.

Table 2. The different cases used during the experiments.

Case Name Comments

RS (random sampling) No initial learning, and selection using random sampling.

AL (active learning) No initial learning, and selection using active learning.

IN-RS (random sampling with cross-modal transfer learning) Initial learning involved, and selection using random sampling.

IN-AL (active learning with cross-modal transfer learning) Initial learning involved, and selection using active learning.

For other limitations (5%, 10%, 30%, 40% or even 100% of the training set), the results
were summarized and discussed later. The case of 100% means that we could utilize the
totality of the training data without any limitation. Note that the datasets (SNPHEp-2, 13A
and LSHEp-2) all exist in a labeled form. The labeling limitations suggested in this work
are indicative of the potential afforded by active learning and were used here in order to
demonstrate its effectiveness.

3.2. Results without Cross-Modal Transfer Learning

As said before, all of the following results concern the case of 20% of the limitation.
Figure 11 shows the detailed results of the “RS” case. This case just consists of selecting
randomly 20% of the images and uses them to train the deep networks. Figure 11a shows
the accuracy evolution over the training and validation sets (21 epochs). Figure 11b shows
the loss evolution for the two sets. Figure 11c shows the visualization of the high-level
features learned by the deep networks. All the visualizations here are obtained using the t-
distributed stochastic neighbor embedding (t-SNE). Finally, Figure 11d shows the confusion
matrix of the classification over the validation set. In all the confusion matrices shown here,
“Homo”, “Speck”, “Nucl”, “Centro”, “NucMe” and “Golgi” refer to the homogeneous,
speckled, nucleolar, centromere, nuclear membrane and Golgi cells, respectively.
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By analyzing the results, we could see that selecting randomly the data did not help
for the generalization over the validation set. Two main observations can be highlighted
from these results. First, there was a clear difference between the mean class accuracy
(MCA) and the average classification accuracy (ACA). The MCA was 66.59% and the ACA
was 81.13%. The ACA, which computes the overall accuracy by dividing the number of
correctly classified data by the total number of data, appeared to take advantage of some
of the classes that were very well discriminated. In particular, the nucleolar (90.38%) and
the centromere (98.00%) contributed highly to establish the ACA in a very pleasant level.

On the other hand, the MCA, which computes the mean of all the classes’ accuracies,
was hugely impacted by the poor classification accuracy of the Golgi and nuclear membrane
cells. As part of the second main observation, as we can also remark in Figure 11c by
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analyzing the visualization of the features, there was an extreme confusion between the
two cells’ clusters (Golgi in magenta and nuclear membrane in cyan). In fact, only 1.6%
of the Golgi were well classified, while 81.87% of them were misclassified as the nuclear
membrane, as we can see in the confusion matrix depicted in Figure 11d. Also, only 46.68%
of the nuclear membrane were well classified. The two cellular types were certainly the
most complicated to discriminate. The first reason is that both types are always under-
represented among the available data in all the existing datasets. There were only 375 Golgi
and 814 nuclear membrane instances in the training set, while all the others cell types
contained each at least 2100 images. The second reason is the complexity of their shape.
Having the possibility of using only 20% of the training set, which diminishes again their
number among the selected data for training, contributes to making the discrimination
harder for the two cells. This pointed fact represents the principal observation of the
present work. While having a limited number of labeled data in hands, the classification of
these two cell types (Golgi and nuclear membrane) becomes really complex.

Figure 12 shows the results for the second case (“AL”). As for the first one, this case
consists of not using the initial learning but, on the contrary, selects 20% of the data with
active learning. The MCA for this case was 90.35% and the ACA was 91.51%. As we
can notice in the confusion matrix in Figure 12b, most of the cells maintained a quite fair
classification result. Furthermore, and even more importantly, the huge confusion between
the Golgi (87.47% of accuracy) and nuclear membrane (85.50%) had clearly diminished.
The visualization in Figure 12a shows a noticeable separation of the two clusters compared
with Figure 11c. We could notice, in these results, the improvement afforded by the active
learning-based selection. By selecting, precisely for annotation, the data for which the
networks were the most confused about, active learning decreased the discrimination’s
complexity of the most difficult cells. At the same time, it maintained a good accuracy for
the other cellular types.
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3.3. Results with Cross-Modal Transfer Learning

Here, we discuss the results obtained when an initial learning was performed in
order to build the pretrained model. The first case (“IN-RS”) consists of selecting the 20%
randomly in order to perform fine-tuning. In Figure 13a–d, we show, respectively, the
accuracy, loss, visualization of the features and confusion matrix.
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Here also, we could notice how the extreme confusion remained present even after
we applied cross-modal transfer learning. The MCA was 71.75%, which was better than
the “RS” case. However, the poor accuracy (1.33%) of the Golgi really pulled down the
MCA, even though the other cells accomplish excellent accuracies (50.86% for the nuclear
membrane). The ACA was 87.54% for this case. Note that the initial learning process
increased the overall accuracy (the ACA goes from 81.13% to 87.54% between “RS” and
“IN-RS”), but not for the two most difficult cellular types.

The second case, denoted as “IN-AL”, consists of selecting the 20% with active learning
in order to perform fine-tuning. In Figure 14a,b, we have, respectively, the visualization
of the features and the confusion matrix. As for the “AL” case discussed previously, we
can notice how active learning permitted to tackle the extreme confusion between the
Golgi and the nuclear membrane cells. This can be noticed in Figure 14a with the two
clusters being completely disjoint, and in Figure 14b, where we see that the two cells
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accomplish reasonable accuracy. For this case, the MCA was 91.76% and the ACA was
92.77%. The most important observation here was that active learning strongly minimized
the divergence between the two metrics by assuring a quite fair discrimination for all of
the cellular types. Note that all of these results were obtained by using only 20% of the
available training instances in the large HEp-2 dataset.
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In Figure 15, we show the classification accuracies of the three most difficult cells for
the four cases (“RS”, “AL”, “IN-RS” and “IN-AL”). We can notice how both cases that
use active learning, by allowing one to prioritize the annotation of the most difficult cells,
“correct” the classification accuracies of the cases without active learning (especially for the
Golgi and nuclear membrane).
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and the speckled).

In Figure 16, we show the summary of the results (ACA) for the others limitations.
We show for the 10%, 20% (discussed in details previously), 40%, 60%, 80% and 100%. As
explained before, the 100% case refers to the fact of using all the available training data.
There was no active learning process in this case since all the data were supposed to be
labeled. In this case, and only for this case, random sampling and active learning results
were the same, as we can notice in Figure 16. For all the other limitations, we can see how
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active learning can help to achieve satisfying results even though we do not have access to
the totality of the training data. In fact, for all the limitations, active learning-based labeling
provided accuracies that were superior to 90%. It is only for the case of 10% limitation
that active learning without cross-modal transfer learning (“AL”) achieved 86.68% (see
Figure 16). However, this result could be significantly improved by using cross-modal
transfer learning, as proposed in this work. In that case (“IN-AL”), the accuracy for the
10% limitation reached 90.23%. In other words, active learning coupled with cross-modal
transfer learning allows one to achieve satisfying discrimination results even with a few
number of labeled data in hands.
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shown for the 4 different cases discussed above.

In order to show the contribution of cross-modal transfer learning, we show in parallel
the classification accuracy when there was no limitation (100% of training data available)
for the case where no initial learning was performed and for the case where we used the
small dataset in order to build the pretrained model and perform cross-modal transfer
learning. Figure 17 shows the comparison. We can remark how using the initial learning
really improved the overall accuracy of the networks.
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Figure 17. Accuracy improvement with the initial learning in the case of 100% of the training
data available.

In Table 3, we show the results of some different approaches. Note that most of the
approaches were proposed for either the ICPR2012 or 13A datasets. In this comparative
study, we tried to see how these approaches reacted on the bigger and more complex
LSHEp-2 dataset. Note also that none of these approaches utilized active learning. The
comparisons were done with the use of the totality of the training data and the aim of
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the comparative study was more to demonstrate the effectiveness of our deep parallel
networks and the contribution of the cross-modal transfer learning process.

Table 3. Comparative study using the LSHEp-2 dataset.

Methods Accuracy (ACA)

Handcrafted features-based approach [60] 86.61%

LeNet-5-like CNN without transfer learning [16] 88.75%

VGG-16-like network without transfer learning [21] 90.23%

Transfer learning using the pretrained VGG-19 91.57%

Transfer learning using the pretrained AlexNet 92.41%

Transfer learning using the pretrained VGG-16 [32] 92.89%

DCR-Net [25] 94.15%

Transfer learning using the pretrained ResNet-50 94.36%

Our proposed deep parallel residual nets without cross-modal
transfer learning 94.79%

Cross-modal transfer learning using ResNet-50 [38] 95.94%

Our proposed deep parallel residual nets with cross-modal transfer learning 96.33%

Similar hyperparameters’ settings were used for the training procedures of the models
used here for comparison. The learning rate was set to 0.001 and training was terminated
after the loss plateaus for 10 consecutive epochs. We used a mini-batch of 128. Except in
the case of our method, for all the methods involving transfer learning, the parameters
were updated for all the layers, since all of the pretrained models were previously trained
on ImageNet. Data augmentation, using the same technique as previously explained, was
applied for the two methods that did not involve transfer learning, since the models were
trained from the scratch.

As we can see in Table 3, most of the approaches using the models that were pretrained
on ImageNet performed less than the ones that used cross-modal transfer learning. The
state-of-the-art method in [38] utilize ResNet-50 but with an initial learning performed
by using the ICPR2012 dataset, while their targeted dataset is the 13A. Our proposed
method uses the deep parallel networks and the SNPHEp-2 dataset was utilized for the
initial learning. Another state-of-the-art method is the DRC-Net [25], which achieves
94.15% on the LSHEP-2 dataset. We can notice that the accuracies shown in Figure 16 are
similar with these state-of-the-art performances. Active learning coupled with cross-modal
transfer learning allows one to achieve pleasant performance even with limitations in terms
of labeling.

Note that models like VGG-16, VGG-19 and AlexNet require a substantial memory
because of the enormous number of parameters generated by the fully connected layers at
the end of the network. The residual networks (our parallel networks and the ResNet-50)
also require a lot of memory but the computational complexity is far less compared to the
other networks. This is explained by the global averaging pooling layer, which efficiently
minimizes the computational complexity by diminishing the total number of parameters
of the networks. Another important point to note is that all the methods used in the
comparative study in Table 3 necessitate only one single training procedure. On the other
hand, every case that involves active learning in our method necessitates several training
procedures because of the iterative labeling process. This fact can be considered as the
principal limitation of our method, as the cascade of training procedures elongate the
time needed to build the final model. However, as previously discussed, our aim was to
demonstrate that we could achieve quite pleasant performance with only a limited number
of labeled data in hands.
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4. Conclusions

The automatic classification of the HEp-2 cell images represents an essential step
in the production of the computer-aided diagnosis systems. The quasi-totality of the
approaches in the HEp-2 cell classification literature prefer to address this problem by
adopting the supervised learning approaches. Deep learning-based supervised learning
necessitates the availability of thousands of images labeled by hands by the biological
experts. This labeling process, especially in the case of big datasets, can represent a time
consuming and burdensome task. Our work aimed to present a supervised learning
approach that can minimize the need of the labeled data, thus, minimize the cost related to
the labeling process.

In this purpose, we proposed a methodology that utilizes active learning coupled
with transfer learning. We first proposed deep parallel networks that tackle the inter-class
variations of the HEp-2 datasets. We then proposed an initial learning process using these
networks over a quite small and labeled dataset in order to have a pretrained model. This
pretrained model was then used with active learning on the targeted dataset, which was
much bigger and more complex than most of the popular HEp-2 datasets, in order to select
only the data that really need to be labeled.

The proposed methodology alleviated the labeling process by allowing the networks
to achieve quite satisfying discrimination results even with a limited number of labeled
data. In fact, by using only 20% of the available training examples, our parallel networks
achieved a mean class accuracy (MCA) of 91.76% while the average classification accuracy
(ACA) reached 92.77%. These results were similar with the performance reached by the
actual state-of-the-art methods, which, on the other hand, utilize the totally of the available
training data. We demonstrated that this was made possible by the fact that active learning
allows to prioritize the labeling of the most difficult cells and, thus, allowed the networks
to maintain a good discrimination performance for each one of the cellular types. We
demonstrated that the proposed methodology allowed us to minimize the divergence
between the MCA and ACA by assuring a better discrimination for the Golgi and nuclear
membrane cells. Since the need of data increased exponentially with the deep learning-
based applications, we believed that the present work could be useful in the future in order
to somehow ease the manual labeling task. The next step of our work consists of exploring
different selection scenarios that do not necessitate training the model several times in
order to reduce the computational complexity.
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