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United States

Atopic diseases, particularly atopic dermatitis (AD), asthma, and allergic rhinitis (AR)

share a common pathogenesis of inflammation and barrier dysfunction. Epithelial to

mesenchymal transition (EMT) is a process where epithelial cells take on a migratory

mesenchymal phenotype and is essential for normal tissue repair and signal through

multiple inflammatory pathways. However, while links between EMT and both asthma

and AR have been demonstrated, as we outline in this mini-review, the literature

investigating AD and EMT is far less well-elucidated. Furthermore, current studies on

EMT and atopy are mostly animal models or ex vivo studies on cell cultures or tissue

biopsies. The literature covered in this mini-review on EMT-related barrier dysfunction as

a contributor to AD as well as the related (perhaps resultant) atopic diseases indicates a

potential for therapeutic targeting and carry treatment implications for topical steroid use

and environmental exposure assessments. Further research, particularly in vivo studies,

may greatly advance the field and translate into benefit for patients and families.
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INTRODUCTION

Atopic dermatitis (AD) is the most common inflammatory skin condition in industrialized
societies. Symptoms present classically with xeroderma and pruritis. While 85% of cases diagnosed
before the age of 5 (1), AD may persist into adulthood (2). The current pediatric prevalence
is estimated to be between 11 and 15% in the U.S. (3, 4) and 5–25% globally (5) but, over
the recent decades, has been increasing (6). Despite its increasing commonality the etiology of
AD is still not fully understood, and standard treatments are not curative. Although most new
treatments target the inflammatory component of the disease (7), epidermal barrier dysfunction
is an important aspect of AD pathogenesis. Herein, we review the epidermal wound healing
mechanisms’ (specifically epithelial mesenchymal transition; EMT) established role in allergic
rhinitis (AR) and asthma to contrast with the knowledge gaps present in AD. In doing this,
we propose that the EMT pathway is a promising therapeutic target for AD and its associated
atopic conditions.

OVERVIEW OF EPITHELIAL-TO-MESENCHYMAL TRANSITION

Epithelial-to-mesenchymal transition is a process where epithelial cells take on a migratory
mesenchymal phenotype (8). Doctor Elizabeth Hay first described the process in the primitive
streak of chick embryos (9, 10). Subsequently three main types of EMT have been described which,
it should be noted, are defined by the context in which it occurs and not the molecular mediators.
Type I occurs during embryo formation and organ development; type II occurs during wound
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healing, tissue regeneration, fibrosis, and inflammation; type
III occurs when neoplastic cells that develop an invasive or
metastatic phenotype (11). The initiation event is similar in all
the types, with a transition from epithelial associated proteins
like E-cadherin, cytokeratin, ZO-1, and Laminin-1 to express
mesenchymal associated proteins such as N-cadherin, fibroblast-
specific-protein 1 (FSP-1), α-smooth muscle actin, and vimentin
(12, 13). The type of EMT relevant to atopic disease is type II
(11) given the impact of epithelial turnover and inflammation in
the lungs, nasal passages, gut, and skin. In vitro, epithelial cells
undergoing EMT take on a fibroblastic appearance under light
microscopy. The transitioned cells are referred to as fibroblasts
or myofibroblasts because of their morphologic and molecular
marker changes.

CHRONIC INFLAMMATION AND
EPIDERMAL BARRIER DYSFUNCTION IN
ATOPIC DERMATITIS

While there is no consensus on the etiology of AD, it is generally
agreed that it develops through a combination of inflammation
and epidermal barrier dysfunction (14). The inflammatory
component of disease progression has been stratified into an
acute phase (<2 weeks) and a chronic phase (>2 weeks) (15, 16).
The acute phase is understood to be primarily driven by TH2 cells
(17), which release the cytokines interleukin (IL-) IL-4 (18, 19),
IL-5, IL-13 (20), and IL-31 (21). During this phase TH1 cytokines
such as INF-γ, and IL-1β are low, as well as downstream effectors
like human β-defensin 2 and 3 and inducible NO synthetase
(22–24). The immune profiles of the chronic phase is associated
with disparate effects on TH2 cytokines such as an increase in
IL-5 (25), increased IFN-γ, IL-12 (26), and IL-17A (27), with a
decrease in IL-4 (25). An increase in IL-22 secreted by TH22 cells
progresses through the acute into the chronic phase (24).

Epidermal barrier dysfunction is a major component known
to play a role in AD initiation and progression. The epidermis
is a stratified squamous epithelium and keratinocytes are
the predominant cell type which form the barrier through
progressive differentiation. It is histologically divided into four
main layers based off of this differentiation pattern, beginning
with the stratum basale, moving to the stratum spinosum,
granulosum, and ending with the corneum (28). The stratum
corneum is made up of terminally differentiated keratinocytes,
also known as corneocytes, that have lost their nucleus and form
a watertight layer through the formation of an extensive intra
and extracellular protein-lipid matrix. Xeroderma is a hallmark
of atopic dermatitis, and increased transepidermal water loss
has been quantitatively recognized in lesional and non-lesional
skin of patients with AD for many decades (29). Given this
observation, it is not surprising that the first gene mutation
identified to be associated with AD was in the protein filaggrin,
an important component of the protein-lipid matrix in the
stratum corneum (30). It is a part of the S100-fused type protein
(SFTP) family and binds the intermediate filament keratin, which
enables its cross linking via transglutaminases and ultimately
corneum formation (31). The discovery that some mutations in

filaggrin are associated with AD bolstered the theory that barrier
dysfunction could be the precipitating event for the condition
and cause the inflammatory component through increased
antigen sensitization. Additionally, many other proteins and
lipids associated with keratinocyte differentiation and epidermal
integrity are aberrantly expressed in AD patients (32).

EPIDERMAL BARRIER DYSFUNCTION
AND THE ATOPIC MARCH

Despite the known role for epidermal dysfunction in AD, EMT
has not been directly studied in the disease. However, it has been
investigated in other atopic conditions like asthma and allergic
rhinitis (AR). Together with food allergy these four conditions
make up a progression known as the atopic march. The term
stems from the observation that these conditions co-occur with
some temporal overlap in many individuals (33). Classically, the
atopic march begins with AD in infancy and progresses to food
allergy, asthma, and AR. Like AD, these other conditions involve
a TH2 effector phase at some point in their progression and
have barrier dysfunction as a hallmark. Despite the evidence for
an epidermal component of AD pathogenesis, most of the new
therapies for AD target only the inflammatory component of the
disease (7, 14).

INFLAMMATION INDUCED EPIDERMAL
BARRIER DYSFUNCTION

Chronic inflammation may both result from, and contribute to,
barrier dysfunction (34). Microvascular permeability is essential
for allowing immune cells to traffic to the site of inflammation
but comes at the cost of reduced barrier function (35). Similarly,
immune cells must traffic to the site of tissue damage in order to
perform debridement functions (34). As inflammation persists,
uninterrupted signals from inflammatory cytokines may create
a positive feedback loop by inducting tissue destruction which
releases additional pro-inflammatory danger- and pathogen-
associated molecular patterns (36). Therefore, anti-inflammatory
treatments may indirectly improve barrier function, even while
directly inhibiting EMT. However, while these therapies in
combination with hydration are effective, their use can be limited
by side effects, lack of long term follow up, limited research in
pediatric populations, and high costs (37–41).

ASTHMA AND EMT

Asthma is one of the most common non-communicable
respiratory diseases in the world, affecting ∼7.5% of adults
(42, 43). While heterogeneous in its pathology, asthma is
characterized by intermittent cough, wheezing, and shortness
of breath due to lower airway inflammation and/or spasms
(42). Increased EMT in bronchial epithelial cells has been
hypothesized to contribute to asthma barrier dysfunction (44).
Hallmarks of asthma include airway hyperresponsiveness (to
triggers such as allergens or exercise) as well as airway
remodeling. The remodeling process involves an increase in
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fibroblasts present in the airway epithelium resulting in a type
of fibrosis that may ultimately lead to the obstructive phenotype
observed clinically (45). The question of where these fibroblasts
originate became an important one for those studying asthma,
and EMT served as a possible mechanism to explain this. The
growth factor TGF-β, the quintessential stimulant of EMT (46,
47), is increased in the bronchoalveolar fluid of asthmatic patients
(48), which suggests EMT could play a role in disease progression
(49, 50).

Despite the deluge of subsequent studies on EMT and asthma
(Table 1), the topic is not without controversy or limitations.
Most of the studies are from in vitro/ex vivo cell culture
models and therefore may not actually present in vivo (115,
116). Additionally, while there are a number of human studies
that investigated the relevance of EMT in asthma treatment,
vitamin D is the only therapy that has been studied by more
than one group (98, 102, 103). However, several animal models
have employed lineage tracing to bolster the EMT claim (56,
88). Furthermore, one of the central therapies for asthma,
corticosteroids, are potent inhibitors of EMT in additional to
being anti-inflammatory (94, 95).

ALLERGIC RHINITIS AND EMT

Allergic rhinitis is marked by nasal congestion, runny nose,
nasal itching, and sneezing (117). AR also has a high incidence,
impacting 10–20% of adults in industrialized nations (118). Due
to high incidence of co-morbid AR in asthmatics a relatively
new model views the two conditions as a one airway disease
(119). Despite this overlap between the two conditions, the
role that EMT plays in AR is less well studied in asthma, and
most of the studies that have been done primarily use chronic
rhinosinusitis (CRS) tissue from patients without specifying the
etiology (Table 1). This is important because the definition of
AR is inflammation of the sinuses specifically due to allergy,
whereas chronic rhinosinusitis is inflammation of the paranasal
sinuses lasting more than 12 weeks. Although AR can lead to
CRS, there are other causes like infection and granulomatous
diseases (120). The difference in etiology of CRS could be why the
condition can be subtyped into those that develop nasal polyps
(CRSwNP) and those that do not (CRSsNP). The inflammatory
response associated with nasal polyp development has classically
been thought to be driven by TH2 polarization verses a TH1
response in those without polyps (121). However, some studies
have found the picture to bemore complex with CRSsNP patients
showing TH2 polarization (122, 123).

Unfortunately, studies into the role of EMT in AR pathology
most often only classify whether EMT markers can be observed
in biopsies (59, 72, 91–93). Some studies have found that EMT
markers and TGF-β are increased in CRSwNP vs. CRSsNP (72–
74, 92), however others have found the opposite (93, 124).
Furthermore, like the EMT asthma research, the AR studies are
primarily in vitro and ex vivomodels, leaving the need for lineage
tracing experiments to determine whether the event is relevant
in vivo. In addition to TGF-β, Hypoxia Inducible Factor-1α
(HIF-1α) may play an important role in AR pathogenesis and

is an important inducer of EMT (76–78). Over-expression of
the histone acetylase SIRT1, an inhibitor of HIF-1α, may offer
possible therapeutic benefit for suppressing NP formation (77).
Another therapeutic avenue proposed is resveratrol (105, 112)
either in native form or conjugated to a multimeric leucine
and lysine rich peptide for enhanced permeability in the nasal
epithelium (112).

GAPS IN EMT AND ATOPIC DERMATITIS
RESEARCH

Despite reported links between EMT and the other atopic
diseases, few studies have been done on AD and EMT (Table 1).
The most direct study that has been done was by Taniguchi
et al. who used mouse keratinocytes in an organotypic model to
study a role for periostin, a protein whose increased levels in AD
correlate with disease severity (81). After finding that periostin
could induce EMT, the authors hypothesized a mechanism for
how AD epidermal differentiation becomes dysregulated and
results in acanthosis. Prior to 2020, only two other publications
had looked at the role of EMT in AD: one described triterpene
celastrol as a Rac1-medicated inhibitor of EMT (114); the other
described EMT markers in lens epithelial tissue from patients
with AD associated subcapsular cataracts (125). More broadly,
the underlying mechanism that could explain why asthma and
AR are associated with enhanced EMT activation whereas AD is
associated with reduced EMT activation remains to be elucidated.

KNOWLEDGE GAPS BEYOND THE ATOPIC
MARCH

Eosinophilic esophagitis (EoE) is an atopic disorder of the
esophageal lining believed to be caused by aero- and food-
allergen medicated inflammation (126, 127). Although often
triggered by similar allergens as the other atopic disorders, EoE
is not considered part of the atopic march. EoE is less common
than the other atopic disorders, with a prevalence of∼60–120 per
100,000 children (128). Symptoms may range from food aversion
and painful swallowing to food impaction and esophageal fibrosis
(126). In one study of esophageal biopsies of children, treatment
with topical steroids and elemental diets reversed the preexisting
significant upregulation of EMT markers including N-cadherin,
vimentin, and fibronectin (126). Similarly, biopsy levels of E-
cadherin and vimentin were reduced with anti-IL-13 treatment in
adults with EoE (127).While these studies add to the link between
EMT and atopic disease, direct assessment of EMT in EoE has not
been performed.

DISCUSSION

Atopic dermatitis and its associated diseases asthma and allergic
rhinitis represent a substantial burden to the world’s health care
systems. In this review we consolidated the studies that have
tried to identify the role of EMT in AD, asthma, EoE, and AR,
to highlight the growing, albeit incomplete, data suggesting a
connection between the pathogenesis of these atopic diseases
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TABLE 1 | Summary of publications directly assessing EMT and atopic diseases.

Asthma Rhinosinusitis Atopic Dermatitis

In vitro/ex vivo Animal models In vitro/ex vivo Animal models In vitro/ex vivo Animal models

Allergen triggers House dust mites (51, 52)

Dermatophagoides

pteronyssinus (53)

Nickel (54)

House dust mites (55)

Combustion generated

particulate matter (56)

Cat dander (57)

Mine tailings (58)

Dermatophagoides

pteronyssinus (53)

Fungal sinusitis (59)

Inflammatory and

growth factor

triggers

TGF-β (50)

SNAIL (60)

IL-1β (61)

IL-4 and IL-17 (62)

IL-22 (63)

TSLP (64)

Eosinophils (65)

Neutrophils (66)

TNF-α (67)

LIGHT (68, 69)

TWEAK (70, 71)

TGF-β (60) TGF-β (72–75)

HIF-1α (76–78)

IFN-γ (79)

TGF-β (80) Periostin (81)

Other triggers Compressive stress (82)

microRNAs (83)

FIZZ1 (84)

microRNAs (85, 86)

YKL-40 (87)

FGF-10 (88)

WNT3a (89)

AGE-RAGE-ERIK pathway

(90)

Nasal Polyps [associated

with EMT markers;

(59, 72, 91–93)]

Treatment

targeting EMT

Corticosteroids (94, 95)

Propolis (96)

Dehydroepiandrosterone

(95)

Montelukast (97)

Vitamin D (98)

Diosmetin (99)

Procaterol (100)

Kaempferol (101)

Vitamin D (98, 102, 103)

Ketamine (104)

Resveretrol (105)

BCG vaccine (106)

Azithromycin (107)

Aminophylline (108)

Anti-natriuretic peptide

(109)

Glucocorticoids (94)

Arachidonate

15-lipoxygenase inhibition

(110)

PPAR-gamma agonist (111)

Resveratrol (112) Roseomonas

mucosa (113)

Roseomonas

mucosa (113)

Celestrol (114)

Green text indicates the treatment or marker is associated with induction of EMT, blue text indicates inhibition of EMT. Eosinophilic esophagitis literature contained only assessment of

EMT markers on biopsies.

and EMT. They all involve chronic inflammation and epidermal
dysfunction, but the underlying cause that sets their progression
in motion is still unclear.

A recent publication from our group identified therapeutic
benefit of topical microbiome transplantation of Roseomonas
mucosa from healthy volunteers to the lesions of patients with
AD (129). Subsequent research found that lipid mediators from
R. mucosa stimulate EMT through potentiation of tumor necrosis
factor receptor 2 and nicotinic acetylcholine activation; an
additional role for flagella interactions with Toll-Like Receptor
5 was identified (113). This finding was consistent with our prior
results in autosomal-dominant hyper IgE syndrome, a primary
immune deficiency with an eczematous phenotype. In this report
we showed dysregulation in EMT (130) downstream of a loss-
of-function mutation in STAT3. Inhibiting TNF reversed this
phenotype, as did treatment with PPAR-γ agonists. Overall, our
work is consistent with the literature suggesting that both host
and commensal derived lipid-mediators with influence over the
ceramide-sphingolipid-arachidonic acid pathway play a role in
EMT-related tissue maintenance of the skin (131, 132). However,
our work also suggests that the pathologic increase in EMT
seen in asthma and AR may be inversed in AD; thus, viable

therapies may need to induce EMT in the skin but inhibit EMT
in the airways.

The distinction between over-vs. under-active EMT as
an underpinning of allergic disease may carry significant
consequences. Although originally suggested in 2006, the
possibility of “topical steroid addiction” or “topical steroid
withdrawal” remains unelucidated (133–135); a PubMed search
for (“topical steroid withdrawal” OR “topical steroid addiction”),
(“atopic dermatitis” OR eczema) at the time of this manuscript
yielded only nine total citations. The main feature of this
purported syndrome is that withdrawal of topical corticosteroids
leads to greater inflammation than was present prior to steroid
application. Although the flare associated with the steroid
withdrawal may be treated by resumption of topical steroids, the
continued need for treatment may be perceived by the patient
as “dependency” and thus “addiction.” While only speculative
at this time, the possibility that steroid treatment may alleviate
inflammation while worsening underlying defects in EMT is one
that warrants further investigation. Such studies must contrast
potential for steroid-induced barrier disruption stemming from
EMT inhibition against countervailing enhancement of barrier
function stemming from reduced inflammation. Furthermore,
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future work must look into other topical exposures (such as
soaps, preservatives, etc.) that may alter EMT functions either
directly or indirectly via impacts on commensal organisms.
In conclusion, although sparse, the literature on EMT-related
barrier dysfunction as a contributor to AD as well as the
related (perhaps resultant) atopic diseases indicates a potential
for therapeutic targeting. Further research, particularly in vivo
studies, may greatly advance the field and translate into benefit
for patients and families.
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