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Abstract: Early and accurate detection of keratoconus progression is particularly important for
the prudent, cost-effective use of corneal cross-linking and judicious timing of clinical follow-up
visits. The aim of this study was to verify whether a progression could be predicted based on two
prior tomography measurements and to verify the accuracy of the system when labelling the eye
as stable or suspect progressive. Data from 743 patients measured by Pentacam (Oculus, Wetzlar,
Germany) were available, and they were filtered and preprocessed to data quality needs. The time
delay neural network received six features as input, measured in two consecutive examinations,
predicted the future values, and determined the classification (stable or suspect progressive) based
on the significance of the change from the baseline. The system showed a sensitivity of 70.8% and a
specificity of 80.6%. On average, the positive and negative predictive values were 71.4% and 80.2%.
Including data of less quality (as defined by the software) did not significantly worsen the results.
This predictive system constitutes another step towards a personalized management of keratoconus.
While the results obtained were modest and perhaps insufficient to decide on a surgical procedure,
such as cross-linking, they may be useful to customize the timing for the patient’s next follow-up.

Keywords: keratoconus; corneal ectasia; keratoconus progression; Scheimpflug tomography; super-
vised machine learning; neural network; artificial intelligence; corneal imaging

1. Introduction

Keratoconus (KC) is a progressive, ectatic corneal disorder presenting with central
or paracentral stromal thinning associated, among others, with corneal protrusion, struc-
tural changes, and transparency loss [1–3]. The condition has a multifactorial etiology,
attributable to a genetic predisposition, eye rubbing, or biomechanical factors [4], and
a cascade of biomechanical decompensation triggered by a focal change in corneal elas-
ticity is thought to be responsible for KC progression [5]. Given this complex context,
it is hardly surprising that clinicians cannot form a consensus on a common definition
of clinical progression. Nevertheless, definitions for progression have been established
based on the repeatability of the clinical devices, which determines the minimum change
measurable at a pre-established significance level, keeping in mind that repeatability is
worse in keratoconic corneas [6]. This approach was recently introduced in the Pentacam
ABCD progression display [7].

To complicate matters further, progression in KC presents considerable interindividual
variability: from cases with significant progression in 3 months [8] to cases that remain
stable for more than a decade [9]. These clinical variations, as well as the effectiveness of
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corneal cross-linking (CXL) [10], have led to a renewed interest in assessing the risk factors
for a faster KC evolution [11]. Although stabilization via CXL may be performed based
on other factors (e.g., an unstable refraction that requires regular, costly updates of the
refractive correction), many national CXL protocols require proof of KC progression to
qualify for reimbursement [12]. Progression is typically established by inviting the patient
for a follow-up visit about 6 months later. If progression occurs, the patient receives CXL;
if not, another follow-up visit is planned. The obvious disadvantage with this approach is
that, typically, the patient loses visual quality before being treated. Thus, early detection of
KC progression is as useful clinically as establishing the diagnosis of KC itself. At present,
age and maximum keratometry are mainly used to schedule the next follow-up [11], but
additional features to stratify progression risk would be of added value.

The concept of a “suspect KC” has gained relevance in recent years [13], and a similar
concept could be put into practice for KC progression [14]. Identifying such “suspect
progressive KC” would be valuable to determine whether certain patients might benefit
from closer follow-up or a fast-track CXL [8,15], but this would require a forecast of KC
evolution. Such predictive tasks are well suited for machine learning, which has been
widely used in KC since the 1990s [16] to distinguish normal from KC corneas [17–20].
Forecasting systems based on neural networks have also been extensively used in other
fields with long-term time series of balanced data, such as speech or stock markets [21],
and occasionally in medicine [22], though this approach has not yet been used in KC.

This work presents a novel neural-network-based system to classify KC as “stable” or
“suspect progressive”. It uses longitudinal tomographical data series, which are generally
short, irregularly spaced, or with a variable number of follow-ups and, as previous ap-
proaches, considers that surpassing the noise threshold is the absolute minimum to define
a progressive trend [7].

2. Materials and Methods
2.1. Patients

The Retrospective Digital Computer Analysis of Keratoconus Evolution (REDCAKE)
is a retrospective multicenter observational study organized through the European Vi-
sion Institute Clinical Research Network (EVICR.net). A large longitudinal dataset of
keratoconic eyes with at least 2 corneal tomographies (separated at least 5 months) was
created; 906 KC patients were enrolled, 743 (1155 eyes) measured with Pentacam (Oculus
Optikgeräte GmbH, Wetzlar, Germany) and 163 with Galilei (Ziemer Ophthalmic Systems
AG, Port, Switzerland). Since Galilei data did not include information on measurement
quality, only patients measured with Pentacam were considered in this study.

The REDCAKE dataset includes patients across the spectrum of the disease, ranging
from forme fruste KC (contralateral eye without topographical or slit-lamp signs of an
eye diagnosed as KC [13,23]) to severe cases. The patients were recruited in tertiary
centers in Europe and Israel, and each underwent a comprehensive ophthalmological
examination, including tomography, by an experienced cornea specialist. These included
the earlier forms of KC identified using the Belin–Ambrósio Display Deviation (BADD), the
presence of risk factors such as genetic predisposition or eye rubbing, and clinical expertise.
Manifest KC was diagnosed according to well established criteria (corneal steepening,
stromal thinning, inferior–superior asymmetry, Vogt striae, etc.) [9]. Ocular surgeries or
comorbidities, contact lens change, fluorescein instillation, and systemic disease except
allergies were considered grounds for exclusion. The baseline findings for these patients
are described elsewhere [24].

REDCAKE was designed and carried out in compliance with the tenets of the Declara-
tion of Helsinki, and voluntary informed consent was obtained from all patients where
required by local legislation. Ethical approval was granted by the Institutional Review
Board of all the centers (ClinicalTrials.gov ID NCT03235856).
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2.2. Corneal Parameters Included

A previous study evaluated the monotonicity, repeatability, and consistency of more
than 250 Pentacam variables to establish which would be the most suitable parameters to
describe KC progression according to those criteria [25]. That analysis included the latest
available tomographic parameters of Pentacam, such as BADD, the ABCD classification
variables, and pachymetry profiles.

Based on the top 10 parameters from that list (see Table S1), 6 nonredundant, poten-
tially platform-independent parameters were selected: age, known to affect KC progres-
sion [11,26]; the average keratometry in a 3 mm area around the maximum keratometry
(KmaxZonalMean3mm) [27]; the steepest radius (RsF) and best fit sphere over an area of
8 mm (BFSF) of the front surface; and the average radius of the back surface (RmB) and
LOGIK [18], which is based on the elevation maps of both corneal surfaces and the mini-
mum pachymetry. None of the parameters included were based on a single corneal point.

2.3. Suspect Progressive KC Definition

The minimally detectable change is directly linked to the repeatability of the parame-
ters provided by Pentacam in KC, which was recently reported [6]. Repeatability is defined
as r = Sw × 1.96×

√
2, where Sw is the within-subject standard deviation, and the difference

between two measurements for the same subject is expected to be <2.77× Sw for 95% of the
pairs of observations [28]. Double-sided 95% confidence intervals (95 CI) were created as
[−r, +r]. This approach is similar to the one proposed in an ABCD progression display [7],
although this uses a two-sided 95 CI.

The same criterion for defining a suspect progressive KC was used for both the
measured and the predicted values of the 2nd follow-up. Only changes in the direction of
clinical progression were considered (e.g., a significant increase in KmaxZonalMean3mm
or LOGIK or a significant decrease in any of the radii or BFSFs). If any of the 5 variables
(excluding age) reached a level outside the 95 CI of their corresponding baseline value in
the clinical direction of progression, the triplet was labelled as suspect progressive. In any
other case, the triplet was labelled as stable.

2.4. Data Preprocessing

Data preprocessing was required to ensure the adequate training of the system. The
techniques are specified here to ensure reproducibility:

2.4.1. Data Maximization Design: Triplets

Since the method aims to forecast KC progression based on 2 prior measurements, it
is possible to maximize data availability by dividing the follow-up series of each eye into
triplets of 3 consecutive examinations (Figure 1). This increases the number of progression
patterns captured and, thus, the stability of the prediction system. A total of 1429 triplets
were created for a total of 629 eyes with 3 or more examinations (Figure 2).
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Figure 1. Triplets of consecutive measurements to maximize data availability. Data maximiza-
tion was performed, creating triplets of consecutive measurements for those eyes with more than
3 examinations. The triplets were classified as no errors whether all the measurements were marked
as OK by the Pentacam software. For triplets with error, only 1 measurement was allowed to be of
less quality (marked yellow by Pentacam).
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are highlighted in underlined italics.

The underlying theoretical concept is similar to data augmentation [29], where in this
case, the additional data (triplets) were generated by selecting 3 consecutive examinations
when additional follow-ups were available. These triplets may be considered a series of
real patients that make only 3 visits to the same ophthalmologist. In our analysis, these
data units will be referred to as “triplets”, rather than “eyes” or “patients”.

2.4.2. Data Quality and Robustness to Errors

Data quality is of great importance in machine learning applications [30]. To this end,
only triplets with the 3 exams marked “OK” by the Pentacam software were considered
observations. Severe cases often fail to get an “OK” by the software, so this choice led
to the most severe cases being excluded, while the remaining ones could act like outliers
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that could influence the training. Hence, any triplet classified as severe KC at the baseline
(LOGIK > 3.5, average maximum keratometry of 72.6 ± 12.4D) was also excluded. After
the quality check, n = 811 triplets remained.

To verify how the quality of the data may affect the performance of the system, the
predictive system was also trained and tested with a second dataset (n = 1236 triplets) in
which 1 of the 3 exams included in the triplet was allowed to be of lower quality (marked
in yellow by the Pentacam software).

Finally, to ascertain whether having a more time-balanced dataset would lead to a
more stable configuration, auxiliary smaller datasets were tried, formed by triplets whose
periods between examinations were restricted (e.g., between 6 and 9 months).

Under these restrictions, our data did not present missing values.

2.4.3. Noise Reduction and Normalization

Both noise reduction and normalization were used to facilitate training; different
techniques have been used previously for this purpose [31]. Since the purpose of the
system is a binary classification based on the 95 CI, the following nonlinear noise reduction
algorithm was applied: the baseline value is not modified, since it is considered the
reference; for the values of the 1st and 2nd follow-ups, 3 different strategies are applied
depending on the measured value. (1) For values inconsistent with the clinical direction
of progression, the difference with the baseline value is reduced by a factor of 5. (2)
For values inside the 95 CI with a trend consistent with clinical progression, the factor
selected is 2 since that trend might contain information about future progression. (3)
Values consistent with the clinical direction of progression and outside the 95 CI are not
scaled. This process does not affect the decision of the algorithm since the 95 CI is the
boundary (anything inside it is considered stable), and values consistent with progression
outside the 95 CI are not transformed. For example, imagine a triplet of real values for
KmaxZonalMean3mm (44; 43.5; 45)D. For that variable, 95 CI = 0.72D and the clinical
progression trend is increasing. The system calculates the differences to the baseline value
(44D): ∆ = (0; −0.5; 1)D. The 2nd delta (−0.5D) is opposite to the clinical progression
direction, so it is reduced by a factor of 5; the 3rd delta is higher than the 95 CI, so it is
not scaled ∆transformed = (0; −0.1; 1)D. The triplet is transformed to (44; 43.9; 45)D. This
triplet shows less variability than the original but, with the same classification, is suspect
progressive. Only 1 variable was shown for simplicity, but an equivalent procedure is
applied for each of the variables (excluding age).

Finally, data were normalized using the Euclidean norm and denormalized after
training to present the results.

2.5. Network Architecture

The multi-input, multi-output time delay neural network (TDNN) uses the baseline
variables (6, so multi-input) and the 1st follow-up (6) visit to predict the 2nd follow-up (6),
the desired output.

The network was configured with an input layer, a hidden layer, and an output
layer. Due to the complexity of the problem, the hidden layer was configured with
25 neurons. The optimal number of neurons was empirically selected after multiple trials.
The Levenberg–Marquardt optimization algorithm was used to train the network with a
sigmoid activation function. An open-loop TDNN provides a finite dynamic response to
time series, in this case a 1-step-ahead prediction based on 2 previous examinations. These
networks take the sequence of the exams into consideration (order matters), but the exact
timing between examinations is not considered. To create a timeframe for the prediction,
“age” was used as an input of the system, and the predicted value for that variable was
used as the location in time for the prediction. Subsequently, linear interpolation was used
to calculate the predicted values at the real date of the 2nd follow-up, thereby allowing
comparisons between the measured and the predicted status.
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2.6. Data Split: Training and Test Datasets

The available data were divided into training and validation sets as follows: 85% of
the data (Figure 3) were randomly selected for network training (internally subdivided
into 70% for training, 15% for testing, and 15% for internal validation during training),
and 15% of the triplets were used as an independent validation set for the trained model
(holdout validation).
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Triplets belonging to the same original eye have different baseline values, different
confidence intervals, and different desired outputs, and all of them are nonlinearly trans-
formed to reduce noise. Based on these facts, data split was performed at the level of
triplets and not at the level of patients or eyes. Performing it at another level would also
create different group sizes in each iteration since not all the eyes have the same number of
follow-ups.

2.7. Data Analysis

To verify the stability, the TDNN was retrained 10 times with random training and
test observations. The sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV) of the system were calculated using the independent holdout
validation dataset for each of the iterations.

Matlab R2020b (MathWorks Inc., Natick, MA, USA) was used to configure the neural
network, and JMP Pro 15 (SAS Institute Inc., Cary, NC, USA) was used for statistical
analysis; alpha 0.05 was considered the cut-off value for significance.

3. Results

The REDCAKE dataset includes longitudinal Scheimpflug series of 906 patients
(26% female, 74% male). After the filtering (Figure 2), 629 eyes from 421 patients measured
with Pentacam remained with a mean age of 26.8 (6.4) years. Average maximum keratome-
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try, minimum pachymetry, and BADD grouped by ABCD classification of these 629 eyes
can be found as Table S2.

Using the definition above, 423 of the 811 (52%) triplets were classified as stable. The
other 388 triplets were classified as suspect progressive, of which 156 triplets presented
changes exceeding the 95 CI in one parameter, 79 triplets in two parameters, 48 triplets in
three parameters, 62 triplets in four parameters, and 43 triplets in all five parameters.

To verify the behavior and reproducibility of the TDNN under various data quality
restrictions, the system was trained and tested with two different datasets. The first
was exclusively composed of good-quality triplets (n = 811), while in the second, one
measurement in the triplet was allowed to be of lower quality (n = 1236). Table 1 shows the
sensitivity, specificity, PPV, and NPV of 10 consecutive stable training/validation iterations.
The upper rows show the results of a TDNN trained and tested with high-quality triplets;
the lower rows show the results for the second dataset. On average, the TDNN proved a
sensitivity of 70.8% and a specificity of 80.6% when trained and tested with high-quality
triplets. No significant difference was found in sensitivity, specificity, PPV, and NPV when
training with triplets with or without error (Wilcoxon test, p > 0.05).

Table 1. Sensitivity, specificity, and positive and negative predictive values of 10 iterations considering
both options: training/test with and without error permitted.

OPTION 1: Triplets without Error (n = 811; 121 Used for External Validation)

1 2 3 4 5 6 7 8 9 10 AVG

SENS 66.0% 77.5% 70.4% 74.1% 69.6% 75.6% 66.0% 60.0% 82.6% 66.0% 70.8%
SPEC 84.5% 76.5% 80.6% 73.0% 85.3% 73.7% 83.1% 84.5% 80.0% 84.5% 80.6%
PPV 75.0% 62.0% 74.5% 71.7% 74.4% 63.0% 73.3% 73.2% 71.7% 75.0% 71.4%
NPV 77.9% 87.3% 77.1% 75.4% 82.1% 83.6% 77.6% 75.0% 88.2% 77.9% 80.2%

OPTION 2: Triplets with 1 Error Allowed (n = 1236, 169 Used for External Validation)

1 2 3 4 5 6 7 8 9 10 AVG

SENS 70.1% 69.6% 70.6% 66.7% 68.1% 75.0% 77.3% 71.6% 77.8% 73.4% 72.0%
SPEC 82.9% 83.3% 82.1% 84.9% 83.5% 75.2% 72.8% 74.7% 67.9% 72.2% 78.0%
PPV 81.3% 78.6% 80.0% 72.4% 75.4% 67.1% 64.6% 68.8% 59.0% 69.9% 71.7%
NPV 72.3% 75.8% 73.4% 81.1% 77.9% 81.7% 83.3% 77.2% 83.7% 75.6% 78.2%

SENS = sensitivity, SPEC = specificity, PPV = positive predictive value, NPV = negative predictive value,
AVG = mean.

When the triplets used were restricted to those whose periods between examina-
tions were restrained (to create a more time-balanced dataset), the training process was
less stable.

Using Bland–Altman plots, it was seen that most predicted values fell within the 95 CI
of the real value (repeatability), but there were also some outliers (Figure 4). These outliers
did not necessarily correspond with more severe cases at the baseline, but were present in
all stages (indicated by marker colors).
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Figures 5 and 6 present examples of a true-positive (TP), a false-negative (FN), a
false-positive (FP), and a true-negative (TN) case as detected by the TDNN, representing
KC cases of various stages at the baseline and different ages. Since follow-up times vary
considerably between patients, the TDNN forecasts the likely date of the patient’s return
(first panels in Figures 5 and 6), for which it will forecast the five corneal parameters. In
reality, however, the patient may show up earlier or later than this forecasted follow-up
date, so linear interpolation or extrapolation was used to allow comparing the forecasted
values with the real parameter values at the second follow-up. In the graphs, solid lines
represent the real measured trends, while dashed lines correspond with the forecasts. The
dashed line contains two representative points: the “∗” represents the estimated date, while
the “×” is the linearly interpolated value for the actual follow-up date. For example, the
longitudinal data of patient A in Figure 5 is used to predict the second follow-up. The
system predicts the value for the six variables; May 2011 is considered the timeframe
for the prediction, and all the “∗” are located on that date. To allow comparisons, the
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variables were calculated by linear interpolation on January 2011 (the date when the second
follow-up took place) and are represented as “×”.
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interval (95 CI) around the baseline value. Circles (o) represent the measured values in 3 consecutive examinations, and
the asterisk (∗) represents the output of the system. The cross (×) is calculated by linear interpolation and aligned to the
2nd follow-up date. Continuous lines represent the measured trend, and the dashed lines represent the predicted trend.
Measurements within the 95 CI are presented with the noise reduction applied. (A) TP, 38 years old. Significant change was
found in the average keratometry in a 3 mm area around the maximum curvature point (KmaxZonalMean3mm) and the
best fit sphere (BFS) in both the prediction and the real values. (B) FN, 27 years old. Although all 5 variables presented
significant change, the system classified the eye as stable (none of the predicted variables reached the 95 CI). BFSF: best fit
sphere of the front surface considering an 8 mm area, RmB: average radius of the back surface in mm, RsF: steepest radius
of the front surface in mm.
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represents the predicted output. The cross (×) is calculated by linear interpolation and aligned to the 2nd follow-up.
Continuous lines represent the measured trend, and the dashed lines represent the predicted trend. Measurements within
the 95 CI are presented with the noise reduction applied. (A) TN, 17 years old. The system predicted stability, so there was
no significant change, which coincided with the real measurements. (B) FP, 28 years old. The system predicted a significant
change in the average keratometry in a 3 mm area around the maximum curvature point (KmaxZonalMean3mm) and
LOGIK, but the measured values remained stable within the 95 CI. BFSF: best fit sphere of the front surface considering an
8 mm area, RmB: average radius of the back surface in mm, RsF: steepest radius of the front surface in mm.
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4. Discussion

From clinical and economic perspectives, two critical decisions must be made in KC:
when to schedule the next visit and whether a patient would benefit from CXL, which can
halt KC progression in 90%–95% of the treated cases [32,33] in a cost-effective way [34,35].
CXL, however, is not without risks [36], and national reimbursement protocols often require
proof of progression prior to treatment. The current methods for identifying the risk for KC
progression [37] are insufficient to truly stratify risk and personalize the follow-up visits,
which are mainly scheduled based on patient age. A reliable forecast of the evolution of
the ectasia would therefore be a valuable tool to plan follow-ups and interventions.

This study presented a predictive system that classifies KC as either stable or suspect
progressive based on two prior tomographies, which is, to the best of our knowledge, the
first system based on a TDNN developed for this purpose. On average, the sensitivity and
specificity of the system were modest and probably insufficient to decide on a fast-track
CXL. However, with an average PPV of 71.4% and NPV of 80.2%, the system may be useful
to personalize the follow-up visits, advancing the next visit for suspect progressive cases
and delaying the timing for those predicted as stable.

As expected, the percentage of triplets categorized as suspect progressive here (48%)
is higher than the rates of clinically meaningful progression in recent studies [38,39]. We
also note that had one-sided confidence intervals been used [7], 1.96 would have to be
replaced by 1.64 in the formula, narrowing the 95 CI and increasing the percentage of
suspect progressive cases. Since not overtreating patients and not creating unnecessarily
advanced appointments are crucial in the public health system, we opted for the most
conservative approach. A previous study also suggested that larger confidence intervals—
using 3SD—were more appropriate in KC progression to increase specificity [40].

Innumerable combinations of variables could have been considered. Our selection
comes from a previously published list of candidate parameters [25], reduced to keep the
minimum number of potentially platform-independent variables that included information
from both corneal surfaces. Additionally, this selection complies with the specifications
of the global consensus to define KC progression [41]. Well-known indices, such as A
and B (from the ABCD progression display) or BADD, while sensitive and specific for
KC progression [12,42], were not included as they are specific to Pentacam, and their
underlying calculations are not public. More than half of the KC showed progression by
an ABCD progression display earlier than by the standard criterion based on maximum
keratometry in a recent publication [12]. In this work, we wanted to go one step further
and verify not only whether progression occurred but also whether progression could
happen shortly.

The potential role of family history, concomitant allergies, eye rubbing, or biomechan-
ical parameters is interesting, but their repercussion on the system’s accuracy remains
unknown. Unfortunately, biomechanical devices are less widespread than corneal tomog-
raphers, and creating a high-quality longitudinal dataset of sufficient volume is unrealistic
at this time. The same limitation may be expected in a similar model implemented for
post-LASIK ectasia. Exploring how the current model behaves on these particular ectasias
may be explored in the near future.

In our study, being more permissive with the measurement quality did not signifi-
cantly affect the results, suggesting either robustness to errors or a limitation due to data
availability. The observation that a more time-balanced dataset did not improve stability
may support a data limitation; training with fewer triplets (around 400) led to less stable
training, even if they were better balanced in time.

Although using data from both eyes can be considered appropriate in asymmetric
diseases, such as keratoconus [43], this choice may require justification. TDNNs are special-
ized neural networks to work with longitudinal data, which are usually highly correlated,
and they have likewise proven their efficiency with highly correlated variables [44]. Hence,
as the present study does not involve regressions or correlations, as a nonlinear transfor-
mation was applied to the triplets for noise reduction, and as the 95 CIs used here derive
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from a previous study, it is possible to include both eyes from the same patient, provided
that they both meet the quality restrictions.

The limitations of our study also need to be addressed. First, two examinations are
required to predict the trend, while predictions based on a single examination would be
preferable. Second, robustness to errors needs further investigation since getting high-
quality measurements is not always possible in KC, especially in the advanced stages,
though these cases are often not candidates for CXL anyway due to more severe corneal
thinning. We also observed that the patients older than 35 years old tended to be overly
classified as suspect progressive, possibly due to their under-representation within the
sample. Finally, with the aim of not introducing further uncertainties, the prediction was
linearly interpolated to the date of the second follow-up visit (see Figures 5 and 6), while
aligning all the values to a fixed date (e.g., 6 months apart from the first follow-up) would
probably be more clinically relevant. This study did not include a healthy control group;
however, this should not be seen as a real limitation. Many systems have been specifically
developed for KC detection [19,20,23]. The system presented here is further in the clinical
path and requires a confirmed KC (or at least a suspicious case), and it is not to be used in
the normal population. The inclusion of a healthy group would only complicate the task
for which it was designed, unbalancing the dataset in favor of the stable cases.

5. Conclusions

Aiming for a more personalized approach to KC management is, in our opinion, the
way to go, and previous studies have been carried out with that objective in mind [33,45,46].
Here, we presented another step forward, a predictive system with the prospect of a
platform-independent generalization. The availability of sufficiently high-quality data is
a crucial limiting factor in accomplishing this objective. The inclusion of biomechanical
variables in the model as additional nonredundant parameters would undoubtedly be of
clinical interest; therefore, compiling enough longitudinal biomechanical data is a major
challenge for us to address in the near future. These facts emphasize the relevance of
collaborative research projects, such as REDCAKE, especially in pathologies with a low
prevalence, such as KC.
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