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Hepatitis C virus (HCV) infects an

estimated 3% of humanity [1] and is a

leading global cause of liver disease and

liver cancer [2]. Intervention is currently

limited by the lack of a vaccine and of

universally successful drug treatments.

Although several next-generation drugs

(e.g., direct-acting protease-inhibitors) are

already improving outcomes, a number of

factors will affect overall treatment success

[3]. Among these, viral genetic variation

and the emergence of drug resistance are

of major importance.

It is now recognized that effective pre-

vention and treatment of HCV infection

requires an appreciation of the virus’

evolutionary behaviour. HCV evolves very

rapidly during infection within a host,

resulting in a genetically diverse viral

population (often termed a ‘‘quasispecies’’)

whose composition is determined by a

combination of evolutionary processes that

include mutation, replication rate, natural

selection, and random genetic drift. As a

consequence, patterns of HCV genetic

diversity within infected patients (if correctly

analysed) should reveal information about

the evolutionary dynamics of infection and

could uncover links between viral evolution

and the progression of clinical disease.

Studies that have followed this logic are

too numerous to review here and vary

widely in the number and health status of

patients investigated, the timespan over

which viruses are sampled, and the quality

of viral genetic information obtained

(ranging from whole viral genomes to

heteroduplex mobility assay data). In most

studies, HCV genomic sequences are

obtained from peripheral blood and are

summarized using two measures: the

diversity of sequences sampled at any one

time and the divergence among sequences

sampled at different times. No clear-cut

patterns in these statistics among patients

with HCV have emerged. For example,

with respect to patient outcomes, high

diversity in the HCV envelope region is

associated with progression from acute to

chronic infection [4,5] yet also with milder

symptoms [6,7] and possibly with poorer

outcomes after drug treatment [8].

It is helpful to interpret these results in

the context of evolutionary theory. First, it

is well-established that much of the evolu-

tionary information inherent in sequence

data is lost when they are compressed into

summary statistics such as diversity or

divergence [9,10]. In retrospect, it is

perhaps optimistic to expect one or two

numerical values to capture much of the

complexity of host–viral interactions during

infection. Second, and more importantly,

theory tells us that an evolutionary model is

always required to infer the behaviour of a

viral population from sequences sampled

from it [11,12]. When previous HCV

studies have correlated diversity with pa-

tient outcomes, they have, by default,

implicitly applied a very simple evolution-

ary model—one that assumes a single, well-

mixed viral population whose members all

replicate and evolve identically.

However, phylogenetic analyses of with-

in-patient HCV sequences indicate that

this simple model is insufficient to explain

HCV evolutionary dynamics during infec-

tion. Specifically, phylogenies reconstruct-

ed from HCV genomes sampled from

multiple time points frequently reveal two

or more genetically distinct co-existing

viral lineages that are not detected at all

sampling times; this is seen in both acute

[13] and chronic (e.g., [14–17]) infection.

Figure 1a presents an illustrative within-

patient phylogeny, in which lineages 3 and

4 co-exist for more than 10 years.

Crucially, the composition of viruses

sampled from peripheral blood varies

greatly; at one time point only lineage 3

is detected, whilst at the next only lineage

4 might be seen; at yet other times both

lineages are observed. The phylogeny thus

explains why simple measures of sample

diversity oscillate wildly (Figure 1b). By

applying more sophisticated methods (see

figure legend and [11]), it becomes

possible to estimate the genetic diversity

of the whole viral population, which is

comparatively constant through time

(Figure 1c). We therefore suggest that the

diversity scores (Figure 1b) commonly used

in HCV studies do not fully represent the

dynamics of infection.

The behaviour illustrated in Figure 1

requires a more complex model than is

commonly assumed. We believe the most

important feature missing from current

descriptions of HCV dynamics is population

structure; without this, it is very difficult to

explain why viral lineages that remain

unobserved for several years do not go

extinct before later reappearing (Figure 1).

Consequently, we propose a new evolu-

tionary model for HCV, in which the

lineages that co-exist during chronic

infection represent genetically distinct

subpopulations of infected liver cells

(Figure 1d; extra-hepatic replication is

discussed below). Importantly, this model

can reconcile many aspects of HCV

within-host genetic data (i.e., the data in

Figure 1a–1c).

The observation that only a subset of

viral subpopulations is detected in serum

at any given time may be explained by one

of two modulating mechanisms. First, all

viral lineages present in the liver may be

shed at a roughly constant rate, but levels

of neutralizing antibodies targeting specific

epitopes may fluctuate over time, modify-

ing the relative frequency of those lineages
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in peripheral blood. Second, the viral

subpopulations may replicate or shed virus

at different rates. Factors that might

generate such variation include the effect

of host cell type on viral replication

dynamics, interaction with interferons, or

viral interference in the cell cycle [18].

The presence of replication rate variation

is supported by mathematical models of

HCV infection kinetics [19] and may help

explain why HCV quasispecies exhibit

strong heterogeneity in the rate of molec-

ular evolution [20].

The notion of HCV population struc-

ture is consistent with a wide variety of

experimental data, including evidence for

cell-to-cell viral transmission [21,22], the

observation of hepatic foci of infection

[23], and HCV genetic variation within

the liver [24]. Although our illustration

(Figure 1d) represents viral sub-popula-

tions existing in different liver locations,

the population structure we propose could

equally arise from non-hepatic replication,

as detected in monocytes/macrophages

[25], lymphocytes [26], and brain tissue

[27]. These cells often harbor viruses with

distinct genetic signatures [28,29].

The under-appreciated complexity of

chronic HCV evolution has several prac-

tical consequences. First, simple statistics

of viral genetic variation (sample diversity,

divergence) will be of limited utility; we

instead recommend that analyses begin

with a phylogenetic approach. Second,

our model suggests that viruses sampled

from peripheral blood give an incomplete

picture of HCV infection dynamics.

Where possible, future studies should

incorporate additional sites, including liver

biopsies, explant livers, and other cell

types. Third, population structure can

maintain high viral diversity within a

patient even when serum viraemia and

diversity are low, perhaps contributing to

the evolution of drug resistance and to

treatment failure. The emergence of new

anti-HCV drugs therefore makes the

understanding of HCV evolutionary dy-

namics a research priority.
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