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Abstract

Background: Early COVID-19 diagnosis prior to laboratory testing results is crucial for 

infection control in hospitals. Models exist predicting COVID-19 diagnosis, but significant 

concerns exist regarding methodology and generalisability. 

Aim: To generate the first COVID-19 diagnosis risk score for use at the time of hospital 

admission using the TRIPOD (transparent reporting of a multivariable prediction model for 

individual prognosis or diagnosis) checklist.

Design: A multivariable diagnostic prediction model for COVID-19 using the TRIPOD 

checklist applied to a large single-centre retrospective observational study of patients with 

suspected COVID-19.

Methods: 581 individuals were admitted with suspected COVID-19; the majority had 

laboratory-confirmed COVID-19 (420/581, 72.2%). Retrospective collection was performed 

of electronic clinical records and pathology data. 

Results: The final multivariable model demonstrated AUC 0.8535 (95% confidence interval 

(0.8121 – 0.8950). The final model used 6 clinical variables that are routinely available in most 

low and high resource settings. Using a cut-off of 2, the derived risk score has a sensitivity of 

78.1% and specificity of 86.8%. At COVID-19 prevalence of 10% the model has a negative 

predictive value (NPV) of 96.5%. 

Conclusions: Our risk score is intended for diagnosis of COVID-19 in individuals admitted to 

hospital with suspected COVID-19. The score is the first developed for COVID-19 diagnosis 

using the TRIPOD checklist. It may be effective as a tool to rule out COVID-19 and function 

at different pandemic phases of variable COVID-19 prevalence. The simple score could be 

used by any healthcare worker to support hospital infection control prior to laboratory testing 

results.
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Introduction

Coronavirus disease 2019 (COVID-19) is a potentially life-threatening acute respiratory 

infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)(1). The 

virus, originally identified in Wuhan, China, is responsible for pandemic disease and 

unprecedented global pressures on acute hospital services(2). Pneumonia appears to be the 

most common presentation of COVID-19 although a range of non-respiratory symptoms are 

common(3,4). Hospitalisation rates for individuals with COVID-19 increase with age, up to 

approximately 18%(5). 

Prompt diagnosis of COVID-19 at admission is fundamental to acute management, infection 

control and prevention of nosocomial transmission (6). Worldwide, secondary care isolation 

facilities have been saturated meaning that patients admitted to hospital must frequently be 

cohorted in shared ward spaces(7). Inappropriate cohorting of patients with and without 

COVID-19 risks nosocomial transmission. The current gold standard for diagnosis of acute 

COVID-19 remains laboratory-based PCR testing of respiratory samples, most commonly 

swabs from the upper respiratory tract (URT)(8,9). Even in high-resource settings, the 

turnaround time from sampling to result is often more than 24 hours, and testing of URT 

samples has a recognised false-negative rate(10,11). COVID-19 management and infection 

control decisions at admission are therefore founded on routinely available investigations and 

clinical judgement. 

A number of diagnostic prediction models are available for COVID-19 however systematic 

review suggested that none are suitable for clinical use(12). In particular, no model has been 

derived from a real-world population of individuals with suspected COVID-19 who require 

admission to hospital. Our diagnostic prediction model is intended for use by acute hospital 
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staff to support clinical diagnosis of individuals with COVID-19 to guide infection control 

decisions within the first 24 hours of admission in the absence of laboratory testing for SARS-

CoV-2. We used TRIPOD (Transparent Reporting of a multivariable prediction model for 

Individual Prognosis Or Diagnosis) to develop and validate our model using routinely available 

data from a cohort of patients with suspected COVID-19 requiring hospital admission. 

Methods

Participants

Participants included in this study, which was conducted in an east London hospital, were 

identified from a pathology database of all respiratory specimens sent for laboratory SARS-

CoV-2 PCR testing between 16th March and 12th April 2020 (inclusive). The electronic records 

of all adults (aged >18 years) identified from this database were then interrogated to identify 

those individuals who were admitted to secondary care. Adults tested in maternity services 

were excluded as the department did not adhere to national COVID-19 testing guidelines at 

that time(13). Patients who received COVID-19 testing more than 72 hours after admission 

were also excluded given the small possibility positive tests results represented nosocomial 

infection. Admission to secondary care was defined as hospital inpatient stay exceeding 24 

hours. Therefore by definition all participants included in the analysis are patients with 

suspected COVID-19 consistent with national guidelines who received laboratory SARS-CoV-

2 testing at least once within 72 hours of admission (13). 

Source of data

Retrospective collection was undertaken of all routinely available clinical observations and 

blood test results at time of admission from Clinical Records Service Millennium electronic 

patient records. Nadir observations were selected as the least physiologically favourable 
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measurement at any time prior to time of patient arrival on an inpatient ward. Admission chest 

radiography reports by consultant radiologists were classified according to the British Institute 

of Radiology and British Society of Thoracic Imaging templates: normal, suggestive of 

COVID-19, indeterminate for COVID-19, suggestive of alternative diagnosis(14). Local 

guidelines actively discouraged use of CT imaging at this time and we did not collect these 

data. All results of laboratory SARS-CoV-2 PCR testing of respiratory samples for each 

individual were recorded. At the time of this study there was no local guidance regarding the 

number of samples that should be sent from individual patients after an initial negative result. 

Retrospective electronic notes audit was undertaken to establish history of fever, duration of 

symptoms and final clinical diagnosis at 30 days post admission. 

Outcome

Our outcome was defined as either respiratory sample positive for SARS-Cov2 (on either the 

admission sample or on a subsequent swab taken within 72 hours of admission) OR a clinical 

diagnosis of COVID-19.  A clinical diagnosis was defined by a senior clinician (a consultant) 

formally documenting a diagnosis of COVID-19 in electronic records in the absence of a 

positive SARS-CoV-2 laboratory test. A clinical diagnosis of COVID-19 was ascertained from 

a retrospective review of the electronic notes undertaken at discharge or death, or during the 

admission if still an inpatient at 30 days.

Predictors

As a group, authors prioritised a minimum number of predictors that the model should contain 

to enhance implementation in the clinical setting weighed against the effective sample size (see 

below). Decisions about which predictors to retain in the final model were therefore based 
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primarily on clinical reasoning and availability of predictor measurement at the time the model 

would be used (within 24 hours of admission).  

We included age as it is independently associated with severity of symptoms resulting from 

COVID-19 infection, and we reasoned that the likelihood of hospital admission with suspected 

COVID-19 increases with age. We created a composite variable for fever to encompass history 

of fever (subjective reporting at any time during acute illness) and any documented fever ≥37.8 

degrees Celsius. We reasoned that this composite would be more sensitive to capture fever as 

a feature of COVID-19, in particular in the presence of anti-pyretic therapy. Hypoxemic 

respiratory failure, in the absence of other clinical features, is increasingly recognised as a 

common presentation of COVID-19 pneumonia(15,16). We decided a priori to use either 

maximal FiO2 requirements within the first 24 hours of admission or lowest recorded 02 

saturations rather than any respiratory symptoms e.g. shortness of breath or cough. On 

examination of the data, Fi02 was used in preference to 02 saturations as there was a wider 

range of values with Fi02 (see supplementary data section). We also decided a priori that heart 

rate and respiratory rate will have limited discriminatory power with regards to diagnostic 

prediction model for acutely unwell adults. We also included chest radiograph findings which 

are commonly used by clinicians to investigate any respiratory or febrile illness. We reasoned 

that most clinicians are able to distinguish a normal chest x-ray from one that is non-specifically 

abnormal or indeterminate so created a binary category.

CRP rises in both viral and bacterial causes of acute respiratory illness with some literature 

suggesting that on average CRP level is higher in the bacterial causes of community-acquired 

pneumonia than viral causes. Conversely, the lack of a rise in neutrophil count has been shown 

to correlate well with viral causes(15,17). We therefore decided a priori that CRP and 

https://mc.manuscriptcentral.com/qjm



7

neutrophil count should both be included in the model.  On examination of the data distribution 

of the predictors, neutrophil count was also found to have a wider range (as compared to 

lymphocytes or neutrophil to lymphocyte ratio).  We did not include absolute lymphocyte 

counts as a variable owing to the narrow distribution of data which would be expected to have 

poor discriminatory function (see supplementary data). Predictors which had many missing 

values and were therefore excluded were Troponin T (49.5% missing); LDH (67.6% missing); 

ferritin (43.3%); D-dimer (50.7%). 

Our choice of predictors was therefore not based on potentially biased univariable selection of 

predictors. Predictors examined during modelling included: age, fever (history of fever OR any 

documented fever ≥37.8 degrees Celsius within 24h), CXR finding (normal or 

abnormal/indeterminate), maximal oxygen requirements during first 24 hours of admission, 

lowest recorded oxygen saturations, CRP, neutrophil count, neutrophils to lymphocyte ratio, 

and highest temperature recorded during first 24 hour. For the continuous predictors, e.g. age, 

CRP, neutrophil count, a linear relationship with the outcome was modelled after assessment 

of non-linearity. 

Sample size:

All available data were used to maximise the power and generalisability of the results. The 

sample size was determined by the availability of existing data at the time and not statistical 

considerations.  The well-known rule of thumb for sample size for prediction models is to have 

at least 10 events per variable (EPV) although this has been called into question recently(18). 

For binary outcomes, the number of events is the number of cases in the smallest of the two 

outcome levels so for this analysis, that equates to 90 events. We therefore a priori decided to 

restrict the number of variables in the final prediction model to ≤ 6 (15 EPV).

https://mc.manuscriptcentral.com/qjm
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Model development, calibration and internal validation

Multivariable logistic regression sequentially removing the variable with the largest Wald p-

value >0.05 (stepwise backward elimination) was undertaken to generate our final model. A 

complete-case analysis was conducted, excluding participants with missing information 

relating to any of the predictors. 

Calibration and discrimination

We assessed model calibration, the agreement between probability of COVID-19 predicted by 

the model and observed probability of COVID-19 within quantiles of predicted risk, 

graphically in a calibration plot and statistically using the Hosmer-Lemeshow goodness-of-fit 

test(19). We then assessed discrimination, the ability of our model to differentiate patients with 

COVID-19 from those without using the area under the receiver-operating characteristic curve 

(AUC).

Internal Model Validation

The bootstrap procedure was employed for internal validation(20). The predictor selection was 

applied to each bootstrap sample to obtain a final model, and the optimism was estimated by 

comparing the final model performance to the original data for each bootstrap sample (N=200). 

The bootstrap corrected area under the curve was computed by subtracting the optimism from 

the original area under the curve.

Transformation from regression model to risk score

We used the beta coefficients and intercept from the final regression model, generated from 

the complete dataset, to calculate the risk score for each participant. We then used the risk score 
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to create a cut-off threshold to identify ‘high risk COVID-19’ versus ‘low risk COVID-19’ 

patients and calculated sensitivity, specificity, negative and positive predictive values for each 

cut-off. The negative predictive value (NPV) and positive predictive value (PPV) were then 

calculated for each cut-off threshold for varying prevalence of COVID-19 in the study 

population.

All statistical analyses were performed using STATA/SE 16 (Stata Corporation, College 

Station, USA). 

Study approval

The study was reviewed by the Joint Research Management Office for Barts Health NHS Trust 

and Queen Mary University of London. The UK Government Coronavirus Act provides for 

hospitals to utilise anonymised routinely collected health data as part of the response to the 

COVID-19 pandemic and ethical approval was therefore not required. 

https://mc.manuscriptcentral.com/qjm
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Results

Patient characteristics

Between 16th March and 12th April, 985 individuals were tested for SARS CoV-2 at our 

hospital. 581 patients, who were admitted to hospital with suspected COVID-19, were included 

for analysis (Figure 1). Most participants were diagnosed with confirmed or probable COVID-

19 (491/581, 84.5%; Table 1); the majority had COVID-19 confirmed by laboratory testing 

(420/581, 72.2%) and most positive results were confirmed on the first respiratory specimen 

tested (381/420, 90.7%). The median age of the study population was 67 years (range 19,101) 

and 58.7% were male (Table 1). For individuals with data available, the median duration of 

symptoms prior to admission was 7 days (N=499; range 0,32). Observation variables and a full 

blood count were available for all patients at the time of admission. Chest radiographs were 

not performed at admission in 9 (1.6%) and CRP was missing for 12 patients (2.1%). 

Diagnostic model and performance measures 

The development of this model was primarily guided a priori by clinical reasoning as outlined 

in methods. Our final model comprised of age (continuous, linear), neutrophil count 

(continuous, linear), CRP (continuous, linear), maximal FiO2 requirements (continuous, 

linear), documented or reported fever ( yes= 1, no=0) and chest x-ray findings (normal=1, not 

normal (including indeterminate)=0). There was very little missing data for the predictors 

included in the final model. Only 21 (3.6%) patients were dropped from the complete case 

analysis. The final multivariate model is show in Table 2 (regression coefficients).

Internal validation

The final multivariable model demonstrated adequate calibration and discrimination with 

Hosmer-Lemeshow statistic p=0.41 and AUC 0.8535 (95% confidence interval (0.8121 – 
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0.8950). The AUC and calibration plots are shown in Figure 2 and E1 respectively. The 

optimism-corrected AUC was 0.8465 (95% CI 0.7814 – 0.9038). The model performed 

comparably well for patients aged less than 80 years (AUC 0.8736, 95% confidence interval 

0.8291 – 0.9181) and greater than 80 years (AUC 0.8364, 95% confidence interval 0.7492 – 

0.9236).

Risk scores

The risk scores were rounded to the nearest integer and Table 3 shows the proportion of patients 

diagnosed with COVID-19 at each value of the rounded risk score. A histogram of the risk 

scores is shown in Figure E2. Using a cut-off threshold of 2 for the risk score, the diagnostic 

prediction model has a sensitivity of 78.1% and specificity of 86.8%. At COVID-19 prevalence 

of 85%, the diagnostic prediction model has a positive predictive value (PPV) of 95.1% and 

negative predictive value (NPV) of 36.0% (Table E1). At COVID-19 prevalence of 10% the 

PPV falls to 28.1% and NPV rises to 96.5% (Table E1). 

https://mc.manuscriptcentral.com/qjm
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Discussion:

Our retrospective cross-sectional study is the first to derive a COVID-19 diagnostic prediction 

model intended to support infection control decision-making at the time of hospital admission 

in the absence of laboratory testing. To our knowledge, we have also derived and internally 

validated the first COVID-19 diagnostic prediction model that applies the TRIPOD checklist 

for prediction model development(21). Our model performs well in predicting COVID-19 

diagnosis at times of high COVID-19 prevalence, such as during the period of data collection 

for this study (AUC=0.8535). Crucially, extrapolated from our data, the model demonstrates a 

high NPV when applied to populations with lower COVID-19 prevalence which may speak to 

its utility as a rule-out tool for COVID-19 at other phases of the pandemic (NPV=93.7%). Our 

prediction tool may also help guide clinician decision making about whether repeat SARS-

CoV-2 testing is warranted following an initial negative test. We would have liked to attempt 

external validation of other published COVID-19 diagnostic prediction models purposed for 

COVID-19 infection control but found only one related article that has not been peer-reviewed 

and did not generate a prediction model(22). 

Strengths and limitations:

Multiple other diagnostic prediction models, derived from different populations and clinical 

scenarios, are published or in pre-print, however there is significant concern regarding the 

rigour of model development and their real-world utility(12). Our diagnostic prediction model 

is a cross-sectional study based on participants selected on the basis of symptoms or signs 

suggestive of the condition of interest (COVID-19) which should intrinsically minimise risk of 

bias. Selection of predictors is a point of controversy consistently raised in commentaries 

relating to prediction modelling(23). There is no formal consensus regarding the best method 

for selecting predictors for such models but suggested approaches include literature review, 

https://mc.manuscriptcentral.com/qjm
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clinical experience and statistical selection of variables, all of which informed our 

model(12,20,24,25). Given the risk of bias associated with univariate analyses to select 

predictors, we analysed data distribution to select predictors with high likelihood of 

discriminatory function (Figures E3-4; Table E2). We also prioritised clinical availability of 

measurements in our predictor selection. All of our model predictors should be routinely 

available in all healthcare settings, including those of low-resource. Further, the use of 

investigation results in the model has also been intentionally designed for simple use by a non-

specialist healthcare worker, including those unfamiliar with COVID-19. In particular, the 

predictor of chest radiography findings has been dichotomised to normal or abnormal for the 

final risk score which requires very little familiarity with COVID-19 imaging or indeed chest 

radiography generally. Specialist and non-routine investigations, such as lung ultrasound, used 

in other COVID-19 diagnosis prediction studies, were also purposefully not assessed in this 

study(26). An alternative diagnosis to COVID-19, as determined by the admitting team, was 

not assessed as a predictor given inherent complexity and subjectivity as a parameter, and given 

the retrospective design of the study. 

One important limitation of our study is that data collection was undertaken at approximately 

the time of peak prevalence of COVID-19 in the UK. The model is therefore likely to be over-

optimistic in predicting COVID-19 disease. However, our simple model can be easily tested in 

different settings. The small proportion of participants diagnosed with probable COVID-19, 

within the composite COVID-19 diagnosis outcome, might be expected to introduce bias given 

that the clinical diagnosis of probable COVID-19 would not have been blinded to the same 

predictors used in our model. However, the model performed comparably whether outcomes 

encompassed confirmed COVID-19 cases alone or a composite of confirmed and probable 

COVID-19 cases (data not shown). It is also important to note that prevalence of other 
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respiratory viruses (such as influenza) was low in this population at this time (3 respiratory 

specimens tested positive for non-SARS-CoV-2 pathogens out of 115 requested). Our 

predictors may not prove to be highly specific for COVID-19 as compared with infections 

caused by other respiratory viruses. However, the same principles of early identification and 

infection control apply to any viral respiratory illness. It will be instructive to validate the 

model during winter seasons when we might traditionally expect higher prevalence of other 

seasonal respiratory viruses compared to SARS-CoV-2(27). However, COVID-19-related 

changes to global travel and public health may significantly disrupt future global patterns of 

respiratory virus seasonality and prevalence.

The study was conducted at a single site but is expected to be representative of UK and western 

European acute hospital settings, and urban UK and western European patient populations. The 

study was designed to predict COVID-19 diagnosis in individuals presenting with syndromes 

consistent with suspected COVID-19. Our definition of suspected COVID-19 was derived 

from national guidelines which emphasise testing in patients presenting with acute respiratory 

or influenza-like illnesses(13). Our study was conducted prior to formal addition of anosmia 

or dysgeusia as symptoms that indicate COVID-19 laboratory testing. We would expect most 

patients requiring hospitalisation would have other symptoms besides these relatively minor 

complications. However, our study may have missed individuals with atypical presentations of 

COVID-19, such as delirium in elderly patients, which are not included in national COVID-19 

testing guidelines as clinical syndromes indicating SARS-CoV-2 laboratory testing(28). Our 

data suggest that diagnosis of COVID-19 in elderly populations, particularly those aged over 

80 years, with respiratory or influenza-like symptoms is comparable to younger populations. 

Diagnostic prediction models aimed at elderly populations and other sub-populations who 
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might be expected to present with atypical or pauci-respiratory syndromes of COVID-19, such 

as immunocompromised patients, warrant dedicated study. 

Implications:

Necessarily the wider utility of our model requires validation to define its role in clinical 

practice. External validation of the model is needed for similar populations requiring 

hospitalisation with suspected COVID-19 both inside and outside the UK. Temporal validation 

of our model will be crucial to explore its utility at different phases of the COVID-19 pandemic. 

While clinical acumen and appropriate laboratory testing should dictate management of 

COVID-19, if validation in a dataset where COVID-19 prevalence is low does confirm the 

high NPV of our model then it promises to be a useful tool to support decision-making for 

patients with suspected COVID-19 at the time of admission to hospital. The model may serve 

to rule out COVID-19 in these patients and extricate them from respiratory isolation, thus 

preserving infection control resources and patient safety. At times of high prevalence of 

COVID-19, such as might be expected during a second epidemic wave, our model will add 

little to the diagnosis of individuals presenting with suspected COVID-19 when the pre-test 

probability is high. But during dynamic phases of increasing and reducing incidence, the 

model, which is dependent on cheap and widely available investigations, may prove very useful 

in both high and low resource countries. 
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Tables:

Characteristics N (col %)

Age at admission (years): median (IQR) 67 (19 – 101)

Male 341 (58.7)

Time between symptom onset and admission (days): median (IQR) 

(N=499)

7 (3 – 10)

History of fever or documented fever in the first 24h from admission 420 (72.3)

Observations in the first 24 hours from admission: median (IQR)

Highest temperature 38.0 (37.3 – 38.6)

Lowest 02 saturations 93 (90 – 95)

Highest Fi02 0.36 (0.24 – 0.60)

Highest respiratory rate 27 (22 – 32)

Highest heart rate 104 (93 – 115)

Lowest systolic blood pressure 107 (99-117)

Chest x-ray at admission

Normal 122 (21.0)

Suggestive of COVID-19 303 (52.1)

Indeterminate 103 (17.7)

Alternative diagnosis 44 (7.6)

Not done 9 (1.6)

Blood tests on admission: median (IQR)

CRP, mg/L (N=569) 92 (46 - 167)

Neutrophils, x109 cells/L 6.4 (4.6 – 9.2)

Lymphocytes, x109 cells/L 1.0 (0.7 – 1.4)
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ALT, U/L (N=494) 30 (20 – 52)

Ferritin, ng/ml (N=366) 891 (430 – 1692)

LDH, U/L (N=222) 400 (280 – 502)

Troponin T, ng/L (N=335) 16 (7 – 42)

D-dimer, mcg/mL (N=319) 1.0 (0.59 – 2.3)

SARS-CoV-2 detected by RT-PCR 420 (72.3)

SARS-CoV-2 detected by RT-PCR on first sample (N=381) 381 (90.7)

Clinical diagnosis of COVID-19 only 71 (12.2)

Outcome: either laboratory-confirmed or clinical diagnosis 491 (84.5)

Table 1.  Patient characteristics.

N=number; IQR=interquartile range; FiO2=fraction of inspired oxygen; CRP=C-reactive 

protein; LDH=lactate dehydrogenase
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Coefficient
Standard 

error
z P>z 95% Confidence Interval

Age 0.0176018 0.0080696 2.18 0.029 0.0017857 0.0334179

Fever 1.547593 0.2931327 5.28 0.000 0.9730635 2.122122

Maximal 

FiO2
0.0223121 0.0075972 2.94 0.003 0.0074219 0.0372023

CRP 0.0045913 0.0016767 2.74 0.006 0.001305 0.0078776

Normal 

CXr
-1.113497 0.2879424 -3.87 0.000 -1.677854 -0.5491403

Neutrophils -0.1611107 0.0321778 -5.01 0.000 -0.2241779 -0.0980434

Intercept -0.0367507 0.6817362 -0.05 0.957 -1.372929 1.299428

Table 2. Regression co-efficients from the final prediction model.

FiO2= maximal fraction of inspired oxygen in the first 24h of admission; CXr = chest x-ray
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COVID-19 diagnosis

Score NO YES Total

N (%)

-3 1 (50) 1 (50) 2

-2 2 (66.7) 1 (33.3) 3

-1 13 (36.6) 10 (43.5) 23

0 24 (38.1) 39 (61.9) 63

1 31 (29.3) 75 (70.7) 106

2 10 (8.3) 111 (91.7) 121

3 4 (2.7) 145 (97.3) 149

4 1 (1.5) 64 (98.5) 65

5 0 (0) 26 (100) 26

6 0 (0) 1 (100) 1

17 0(0) 1 (100) 1

86 474 560

Table 3.  Risk scores organised by COVID-19 diagnosis.
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Supplementary tables:

Prevalence (%) PPV (%) NPV (%)

85 95.1 36.0

60 84.1 67.2

50 77.9 75.5

40 70.1 82.2

30 60.1 87.8

20 46.8 92.5

10 28.1 96.5

5 15.6 98.3

Table E1. Performance of the risk score using a cut-off score of 2 at different prevalence 

of COVID-19.

PPV=positive predictive value; NPV=negative predictive value

Variable Odds ratio p value 95% confidence interval

Gender 1.365 0.176 0.869-2.144

History of fever 6.054 <0.001 3.756-9.762

Duration of symptoms 1.045 0.128 0.987-1.106
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Observations at admission

First temperature 1.103 0.361 0.894-1.361

First RR 1.154 <0.001 1.095-1.216

First FiO2 1.028 <0.001 1.012-1.043

First SpO2 0.860 <0.001 0.793-0.932

First HR 0.989 0.078 0.978-1.001

First sBP 0.989 0.024 0.978-0.998

Observations within the first 24h of admission

Highest temperature 2.162 <0.001 1.616-2.893

Highest RR 1.149 <0.001 1.095-1.204

Highest FiO2 1.034 <0.001 1.020-1.049

Lowest SpO2 0.850 <0.001 0.777-0.930

Highest HR 0.988 0.050 0.976-1.000

Lowest sBP 0.996 0.027 0.982-1.011

Blood tests at admission

Lymphocytes 0.771 0.041 0.601-0.990

Low lymphocytes 

<1.0x109/L
1.115 0.637 0.709-1.755
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Very low lymphocytes 

<0.5 x109/L
0.712 0.386 0.330-1.534

Neutrophils 0.892 <0.001 0.851-0.935

Neutrophil:lymphocyte 

ratio
0.982 0.094 0.962-1.001

CRP 1.005 0.001 1.002-1.008

Ferritin 1.001 0.001 1.001-1.002

High ferritin 

>1000 ng/ml
4.732 0.002 1.779-12.586

Very high ferritin 

>2000 ng/ml
2.381 0.163 0.704-8.053

High LDH 

>250 U/L
8.873 <0.001 3.469-22.694

High D dimer 

>0.5 mcg/mL
0.302 0.110 0.069-1.311

High Troponin T

F >14ng/L

M >22 ng/L

0.388 0.012 0.186-0.809

High ALT

 >35 U/L
2.599 0.002 1.430-4.724

Chest x-ray at admission

Normal 0.225 <0.001 0.139-0.365
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Suggestive of COVID-19 7.017 <0.001 3.909-12.600

Indeterminate 1.297 0.420 0.689-2.441

Table E2. Univariate analyses for study variables for COVID-19 diagnosis.

RR=respiratory rate; FiO2= fraction of inspired oxygen; SpO2 = saturation of oxygen by pulse 

oximetry; HR=heart rate; sBP=systolic blood pressure; LDH = lactate dehydrogenase; 

F=female; M=male; ALT = alanine aminotransferase
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Acronyms:

COVID-19 (coronavirus infectious disease 2019)

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2)

TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis 
or diagnosis)

AUC (area under the receiver-operating characteristic curve)

PCR (polymerase chain reaction)

CRP (C-reactive protein)

LDH (lactate dehydrogenase)

PPV (positive predictive value)

NPV (negative predictive value)
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Figure 1. Participant flow. 
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Figure 2. AUC plot for final multivariate model. 
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Figure E1. Calibration plot of prediction model performance. 
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Figure E2. Histogram of the risk score generated by prediction model. 
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Figure E3. Scatterplot of CRP against neutrophil count organized by COVID and non-COVID diagnosis. 
CRP=C-reactive protein 
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Figure E4. Scatterplot of CRP against lymphocyte count organized by COVID and non-COVID diagnosis. 
CRP=C-reactive protein 
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