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Cardiac diastolic dysfunction is prevalent and is a diagnostic criterion for heart failure with

preserved ejection fraction—a burgeoning global health issue. As gold-standard invasive

haemodynamic assessment of diastolic function is not routinely performed, clinical

guidelines advise using echocardiography measures to determine the grade of diastolic

function. However, the current process has suboptimal accuracy, regular indeterminate

classifications and is susceptible to confounding from comorbidities. Advances in artificial

intelligence in recent years have created revolutionary ways to evaluate and integrate

large quantities of cardiology data. Imaging is an area of particular strength for the

sub-field of machine-learning, with evidence that trained algorithms can accurately

discern cardiac structures, reliably estimate chamber volumes, and output systolic

function metrics from echocardiographic images. In this review, we present the emerging

field of machine-learning based echocardiographic diastolic function assessment. We

summarise how machine-learning has made use of diastolic parameters to accurately

differentiate pathology, to identify novel phenotypes within diastolic disease, and to grade

diastolic function. Perspectives are given about how these innovations could be used to

augment clinical practice, whilst areas for future investigation are identified.

Keywords: artificial inteligence, echocardiogaphy, diastolic dysfunction, machine learning, heart failure preserved

ejection fraction

INTRODUCTION—DIASTOLIC ASSESSMENT IN CLINICAL
PRACTICE

Left-sided cardiac diastolic dysfunction can lead to patients developing debilitating symptoms
such as dyspnoea and fatigue, as well as conferring worse survival and increased morbidity (1–
3). Prevalence estimates of diastolic dysfunction vary widely depending upon the population
studied and the definition used, but a recent review of community studies suggests it is in the
range of 20-30% in the general population (4). In studies of thousands of patients in clinical
settings, prevalences of 5.0% (5) to 9.2% (3) have been reported when accompanied by a normal
left ventricular (LV) ejection fraction (EF) > 50%. Diastolic dysfunction is a criterion for the
diagnosis of heart failure (HF) with preserved EF (HFpEF) (6), which represents about a third of
all hospitalised heart failure in the United Kingdom (7) and about half of community heart failure
in North America (8).

The gold standard for assessing diastolic function is invasive pressure-volume loop analysis,
which directly measures ventricular compliance and relaxation, but is seldomly performed
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clinically as the process and analyses are technically challenging.
The next best assessment technique is direct measurement of
cardiac pressures with catheterisation, because diastolic pressures
rise with advanced dysfunction. Cardiac catherisation can either
be performed via left heart catheterisation (LHC), where an
end diastolic pressure (LV-EDP) or pre-A wave pressure are the
common benchmarks, or by right heart catheterisation (RHC),
where a pulmonary capillary wedge pressure (PCWP) is recorded
which approximates the LA pressure from across the pulmonary
capillary bed. These invasive procedures are also not routinely
performed in most patient cohorts as they are resource intensive
whilst exposing the patient to radiation and possible discomfort.
Therefore, echocardiography is often preferred for diastolic
function assessment.

Echocardiography is the primary imaging tool used for
assessing diastology and HFpEF in routine clinical practice
because it is non-invasive and widely available. There are
over 20 different variables of diastolic relevance that can be
measured using routine transthoracic echocardiography (9), as
well as variables emerging from the research domain such as
speckle-tracking strain parameters (10). Unfortunately, no single
echocardiographic parameter adequately captures the complexity
of diastolic function, given the different structural and functional
changes which can manifest at different time points during the
cardiac cycle. Routine variables, commonly derived from pulse-
wave Doppler and tissue Doppler techniques, at best modestly
correlate with invasively measured diastolic pressures (11–13).

Diastolic function is therefore classified echocardiographically
by combining multiple parameters. The most widely adopted
method for this comes from the American Society of
Echocardiography and European Association of Cardiovascular
Imaging (ASE/EACVI) guideline (9). The method uses a series
of decision steps in the form of two algorithms, one screening
for the presence of diastolic dysfunction and the other to grade
diastolic dysfunction if it is found to exist (or is assumed to
exist based upon defined clinical and structural observations),
however there are a number of caveats which complicate matters.
Classification outcomes are either that the guideline cannot
be applied due to insufficient requisite information, that the
diastolic function is indeterminate or normal, or that diastolic
function is graded as mild, moderate, or severely impaired.
Filling-pressure, which refers to left atrial (LA) and/or LV
diastolic pressures, is often dichotomously described as “normal”
or “raised.” Moderate and severe ASE/EACVI guideline graded
diastolic dysfunction correspond to raised filling-pressures (9).

LIMITATIONS OF ROUTINE DIASTOLIC
ASSESSMENT

There are a number of barriers to widespread and robust diastolic
evaluation with echocardiography, particularly with following
guideline suggestions, which include: accuracy uncertainties,
unclassifiable and indeterminate situations, and confounding
from comorbidities. These introduce clinical uncertainty, which
can lead to inappropriate treatment decisions, and are explored
in more detail below.

Clinical Guideline Accuracy
Dual echocardiographic and invasive-catheterisation validation
studies show suboptimal accuracy of the current ASE/EACVI
guideline method to identify patients with raised filling-
pressures. Sato et al. demonstrated that guideline classified
moderate or severe diastolic dysfunction predicted raised
invasively measured filling-pressures with an accuracy of 66%
in an all-comers clinical population receiving echocardiography
and LHC within 24 h (1). Lancellotti et al. found an accuracy
of 56% of the guideline for predicting raised filling-pressures
in patients receiving LHC for known or suspected coronary
artery disease (14). Balaney et al. reported an accuracy of 68%
in patients attending for LHC for a variety of clinical indications
(15). Andersen et al. demonstrated accuracy of 87% in patients
having either LHC or RHC for any valid clinical reason in a
multi-institutional study (16).

It is worth noting that all of these studies excluded
patients with confounding factors before recruitment or analysis,
so they may not represent “real-world” accuracies in all-
comer populations. Unfortunately, varying methodologies of
researchers also limits our ability to compare these results.
For the invasive validation studies above, different definitions
of raised filling-pressures were used [LV-EDP > 14 mmHg
(14), LV-EDP > 15 mmHg (17), LV-EDP > 16 mmHg (1),
pre-A pressure > 12 mmHg (15, 16), PCWP > 12 mmHg
(16), and PCWP > 15 mmHg (17)]. Furthermore, whilst the
ASE/EACVI guideline recommends using an average of medial
and lateral mitral annular e

′

values to calculate an average E/e
′

ratio in the majority of pathologies (9), some institutions have
historically only acquired one or the other, or only report one
in publications, again limiting clinical applicability of results
(18, 19).

Unclassifiable and Indeterminate Diastolic
Grading
Unclassifiable diastolic function can arise from key parameters,
needed to follow the guideline decision steps, being missing. A
frequent cause of this is a suboptimal acoustic window which
precludes measurements. One author reported unclassifiable
diastolic function in 8% of consecutive echocardiograms due
to poor image quality and missing data (20), whilst another
study found this in 22% of scans (3), showing that this situation
occurs regularly.

Indeterminate diastolic grading also creates uncertainty
and may result in additional resource intensive or higher
risk investigations, like exercise echocardiography or
cardiac catheterisation. In the guideline approach, it occurs
because parameters required in the decision-steps are
contradictory/inconclusive. This too is frequent—a report
from the National Echocardiography Database of Australian (3)
found 27% of 344,646 scans were labelled as indeterminate, whilst
a study of consecutive Canadian tertiary centre echocardiograms
found 36% indeterminate (5).

Further real-world clinical data from Europe (1,000
individuals), Britain (189 individuals), Asia (57,630 individuals),
America (866 individuals), and Canada (71,727 individuals),
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show that even after excluding patients with diastology-
confounding factors, between 11 and 22% of scans are labelled
indeterminate (5, 18, 19, 21, 22). A pertinent limitation of the
literature base collectively is that a breakdown of reasons for
indeterminate grading is often not presented.

For data acquired under stricter research study protocols
or during dual invasive validation studies, the indeterminate
proportion is not too dissimilar at 7-24% (1, 14–16, 23, 24).
However, in the setting of pulmonary hypertension,
indeterminate classification may be as high as 53% (17)
suggesting that confounding factors may magnify the
indeterminate issue.

Factors Confounding Diastolic Assessment
Pulmonary hypertension (PH), arrhythmias, tachycardia,
and valvular pathologies can all complicate the assessment
of diastolic function by confounding associations between
individual diastolic parameters and filling-pressures, thus
reducing diagnostic accuracy and sometimes even precluding
the measurement of parameters altogether. Such situations
are common and were found to occur in 52% of consecutive
echocardiograms (20).

Atrial fibrillation not only causes technical problems
concerning parameter measurement, due to variability in cardiac
cycle length and potentially misleading LA dilation, but it also
prevents any meaningful late-diastolic atrial pumping of blood
into the LV. This removes key diastolic parameters like the E/A
ratio. Between 48 and 57% of HFpEF patients have confounding
atrial fibrillation (25, 26), highlighting the pressing need to
overcome this obstacle. The routine diastolic parameter E/e’
has suboptimal association with invasively measured filling-
pressures in patients with atrial fibrillation (27), whilst a range
of common diastolic parameters are known to be altered in
atrial fibrillation when compared in the same patients to sinus
rhythm (28), showing how difficult assessment is in the presence
of arrhythmias.

Pre-capillary PH, that is PH not of a left-sided aetiology,
results in left heart preload reduction, which creates a disconnect
between the intrinsic left-sided diastolic state, its filling pressures
and hence its echocardiographic parameters. It is not always clear
at the time of echocardiography whether the PH aetiology is pre-
capillary, post-capillary, or mixed, and hence diastolic assessment
is often confounded. This situation may arise regularly given
that PH occurs in 50-80% of HFpEF patients (29, 30). Leung
et al. investigated patients referred for suspected PH with
echocardiography and both LHC/RHC (17). The ASE/EACVI
algorithm accuracy for identifying raised or normal filling-
pressures was only 29 and 23%, respectively, although it must
be noted that the guideline recommends emphasis of different
parameters in situations such as PH, which are not applied in the
same algorithmic way.

Left sided valvular disease is also known to confound
traditional diastolic assessment due to variable influences upon
individual parameters. Mitral stenosis and mitral annular
calcification both reduce the e’ velocity and uncouple themeasure
(and therefore E/e’) from the underlying diastolic state and
filling-pressure (31, 32). Significant mitral regurgitation raises

the e’ velocity, again uncoupling it from the intrinsic state and
rendering it unreliable (31). Analysis of 161,468 echocardiograms
excluded from diastolic classification due to confounding factors
showed that mild or more mitral stenosis was present in 1.6% of
these scans, moderate or greater mitral annular calcification in
1.2% and more than moderate mitral regurgitation in 3.3% (33).
Given the huge quantity of echocardiograms performed annually
globally, this represents confounding of a significant number
of scans.

Confounding factors tend to be become more prevalent as
diastolic function deteriorates and often coexist with HFpEF.
For example, atrial fibrillation may develop within 4 years in a
third of HFpEF patients who originally present in sinus rhythm
(34). Echocardiographers are hence in need of techniques to
better assess diastolic function in the presence of confounding
factors, and more robust tools which reduce indeterminate and
unclassifiable situations.

MACHINE LEARNING APPLICATION TO
DIASTOLIC ASSESSMENT

Machine-Learning in Echocardiography
Machine-learning (ML), a domain of artificial intelligence
born from advanced computer science, mathematical and
statistical techniques, holds huge potential for improving
echocardiographic analysis in terms of streamlining workflow,
automating feature quantification and accurately identifying
pathology (35). The term “supervised ML” refers to algorithms
that are trained using data labelled with an important feature,
outcome, or diagnosis. Supervised ML aims to perform a
task which could be of a regression type, such as predicting
an exact value of left atrial pressure, but in cardiology is
often a classification type, for example to state whether a
particular disease is present or not. Support vector machines,
random forests, and artificial neural networks (deep-learning) are
examples of supervised ML, where heart-failure hospitalisation
or invasively measured left heart pressures could be suitable
training labels.

Unsupervised ML refers to analyses which learn from
unlabelled input data to perform the required task. Cluster
analysis is such an algorithm, which for example can group
patients with similar echocardiographic variable values to create
novel stages of a disease process or can unearth homogeneous
subgroups within a larger heterogeneous cohort. Another
class of unsupervised ML is dimensionality reduction, where
the input data is projected onto a lesser number of new
variables, thus reducing complexity, increasing interpretability
and visualisation, and making the dataset better primed for other
ML techniques. Principle component analysis is an example of
this, where original variables are mapped to a smaller number of
new “principal component” variables, which retain as much of
the original data variance as possible.

ML is thus a powerful tool able to process large high-
dimensional datasets, such as those obtained with genomics,
metabolomics, and imaging. It can learn not only from the
acquired variables presented to it, but also by discerning novel
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FIGURE 1 | Machine learning augmented diastolic function assessment with echocardiography.

features and latent data relationships (35, 36). Echocardiographic
data, with its many parameters of diastolic function, combined
with detailed clinical and demographic features is therefore
well-suited as training material for ML models which could
augment traditional diastolic assessment techniques (Figure 1).
ML is particularly well-suited to detect and describe non-linear
relationships (37), which is pertinent to diastolic assessment
where, for example, the E/A ratio has a U-shaped relationship
with dysfunction.

Much of the application of ML to echocardiography thus
far has concerned automation and accuracy improvement of
tasks such as image structure segmentation, left-sided chamber
size calculation and estimation of systolic function metrics like
ejection fraction (38–40). Prediction of the development of
relevant pathology from images, such as clinically significant
coronary artery disease, is also a focus of efforts given the
prognostic implications (41). Attention is now increasingly
being afforded to diastolic function, given the aforementioned
challenges of contemporary assessment methodology, diastolic
dysfunction prevalence, and suitability of echocardiographic data
for training ML models.

ML Integration of Diastolic Parameters
There are various applications of ML to echocardiographic
diastolic function assessment—the key illustrative studies
of which are summarised in Table 1. The first concerns the
integration of diastolic parameters, whether collectively or
alongside non-diastolic and/or non-echocardiographic variables,
with ML to assist with disease diagnosis. Hubert et al. (42)

report a new method for assessing diastolic function using
strain-volume loops (SVL) derived from speckle-tracking
strain imaging. SVL area differentiated between amyloidosis
and HFpEF with an area under the receiver operator curve
(AUC) of 0.76. However, when supervised linear discriminant
analysis ML was applied to integrate the SVL with routine
diastolic related echocardiographic parameters, the AUC
increased to 0.91, showing the added value of individual
diastolic variables.

ML’s ability to effectively combine diastolic information to
improve disease identification is also demonstrated by Sengupta
et al. (43) who used an associative memory classifier–based ML
algorithm to differentiate constrictive pericarditis from restrictive
cardiomyopathy. The AUC of 0.89 for speckle-tracking strain
variables increased to 0.96 when just four routine diastolic
pertinent variables were included in theirmodel (septal thickness,
posterior wall thickness, e’ and E/e’).

Further evidence comes from Choi et al. (44) who tested
a range of different ML algorithms for their ability to
diagnose both HFpEF and systolic HF with a range of clinical,
blood, electrocardiographic and echocardiographic variables.
The diastolic pertinent variables combined included EF, indexed
mass, septal E/e’ and tricuspid regurgitation maximum velocity
(TR-Vmax). When compared to physician diagnosis, ML
diagnosed HFpEF with 99.6% concordance.

Novel parameters of diastolic dysfunction, relevant to
breathless patients, hypertensives and those with HFpEF, have
been elucidated through ML. Sanchez-Martinez et al. (36)
obtained tissue Doppler data during exercise echocardiography,
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TABLE 1 | Summary of key publications demonstrating application of machine-learning to the echocardiographic assessment of diastolic function.

References Application category ML technique(s) Training data types Key finding(s)

Choi et al., (44) Integration of diastolic

parameters

Five techniques: “classification

and regression tree”

performed best.

1. Echocardiographic

routine variables

2. Electrocardiogram variables

3. Clinical/haematological variables

When compared to physician

diagnosis, ML diagnosed HFpEF with

99.6% concordance

Sanchez-Martinez et al., (36) Novel diastolic variable

discovery

Unsupervised agglomerative

hierarchical clustering

1. Exercise echocardiography

tissue-doppler variables

Premature fusion of early and late

diastolic waves, increased variability in

the onset of atrial contraction (a
′

wave)

and a blunted response in atrial

velocities during exercise were novel

diastolic variables for assessing HFpEF

with ML.

Segar et al., (49) Phenotyping,

prognostication

Unsupervised penalized finite

mixture model-based

clustering

1. Echocardiographic

routine variables

2. Electrocardiogram variables

3. Clinical/Haematological variables

ML derived three phenogroups of

HFpEF which varied in diastolic

dysfunction, hospitalisation, and

mortality.

Omar et al., (56) Diastolic function grading Random forest, artificial neural

network, and support vector

machine

1. Echocardiographic strain

variables

ML predicted invasively measured

PCWP ≥ 18 mmHg with AUC = 0.88.

ML correctly identified 80% of patients

with raised PCWP, with no

indeterminate classifications.

Lancaster et al., (19) Diastolic function

grading, prognostication

Unsupervised hierarchical

clustering

1. Echocardiographic routine

variables

ML found two distinct clusters in those

who would normally be ‘screened’ for

diastolic dysfunction with the guideline

(9); one cluster was mostly (72%)

guideline-normal whilst the other cluster

was mostly (also 72%)

guideline-defined dysfunction or

indeterminate grading.

Tokodi et al., (57) Diastolic function

grading, prognostication

Unsupervised topological data

analysis and clustering

1. Echocardiographic

routine variables

2. Major adverse cardiac event

hospitalisation records

Continuous ‘patient similarity networks’,

derived with ML and later split into

segments, vary in diastolic function,

mortality, and morbidity, with no

indeterminate classifications.

Cho et al., (59) Diastolic function

grading, phenotyping

Unsupervised topological data

analysis, supervised decision

tree, ensemble and deep

neural network

1. Echocardiographic routine

diastolic variables

2. Echocardiographic

strain variables

3. Vector flow mapping variables

ML produced a patient similarity

network with four regions and no

indeterminate classifications—regions

linearly progressed in terms of diastolic

variables, heart failure stages A-D and

New York Heart Association functional

classes.

Pandey et al., (60) Diastolic function

grading, phenotyping,

prognostication

Unsupervised topological data

analysis, agglomerative

hierarchical clustering and

supervised deep neural

network

1. Echocardiographic routine

diastolic variables

ML was superior to ASE 2016 diastolic

guideline grades for predicting

invasively-measured elevated left

ventricular filling pressure (AUC = 0.88

vs. 0.67). Two clusters of patients were

found—the high-risk phenogroup

showed higher rates of heart failure

hospitalization and/or death than the

low-risk phenogroup in multiple external

validation cohorts.

ML, machine-learning; HFpEF, heart failure with preserved ejection fraction; AUC, area under the receiver operator curve; PCWP, pulmonary capillary wedge pressure.

and via unsupervised agglomerative hierarchical clustering ML
identified premature fusion of early and late diastolic waves,
increased variability in the onset of atrial contraction (a

′

wave)
and a blunted response in atrial velocities (a

′

wave peak) during
exercise as novel diastolic variables for assessing those with, or at
risk of, HFpEF. The importance of these in other populations and
their potential clinical utility remains unknown.

ML for Diastolic Phenotyping and
Prognostication
Over the last 5 years or so a rapidly growing body of evidence
has accumulated where ML has been applied to phenotype
patient’s diastology based upon clinical and echocardiographic
data. Most often for this purpose, unsupervised ML cluster
analysis has been used, which groups patients in a potentially
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novel way based upon input data similarities. Commonly
the disease of interest has been HF, with different authors
finding two (45, 46), three (47–49), four (50) and even six
(51) phenogroups of HFpEF when applying ML clustering to
echocardiographic variables.

For example, Nouraei et al. (51) found six clusters of
HFpEF which varied in diastolic dysfunction, endpoints
and clinical features. Echocardiographic diastolic variables
they used included indexed LA volume, indexed mass,
E/A ratio, average E/e’, tricuspid regurgitation maximum
velocity and grade of diastolic dysfunction. Segar
et al. (49) found three phenogroups of HFpEF which
varied in diastolic dysfunction, BNP, comorbidities,
mortality and hospitalisations. E/A ratio and LA area
were among the optimal 20 variables for predicting
phenogroup membership.

Hedman et al. (45) found two HFpEF clusters based upon 32
echocardiographic variables, which was possible despite>50% of
the patients being in atrial fibrillation at the time of the scan.
This supports the notion that ML does not necessarily need
individual parameters like E/A ratio all of the time to grade
diastolic function, hence offering a more flexible approach than
the current clinical methodology.

Among acute HF admissions Horiuchi et al. (52) undertook
cluster analysis which yielded three phenogroups that varied in
diastolic function, risk of death and subsequent hospitalisation.
This highlights the ability of ML to create novel groupings,
or classifications, that are not only diagnostically important,
but that are also prognostically important. ML can provide
clinically useful results in conditions other than HF as shown
by Mishra et al. (53), who performed cluster analysis of
clinical and echocardiographic data from stable coronary
artery disease patients with seven years mean follow-up. Four
phenogroups resulted, which varied in diastolic dysfunction and
hospitalisation risk.

Unique insights about non-cardiac chronic conditions are also
possible with ML of diastolic variables. The relationship between
diastolic function and renal function, in the setting of type 2
diabetes, was the subject of investigation by Pecková et al. (54).
Unsupervised ML clustering found two subgroups of those with
impaired renal function: when there was an early diastolic tissue
velocity e’ ≤ 7.1 cm/s there was a significant correlation between
the echocardiographic ratio E/e’ and renal function, whereas
when e’ > 7.1 cm/s then there was no significant correlation.
This highlights the aforementioned potential for ML to unearth
associations whichmay not be obvious to the human eye nor with
traditional statistics.

Grading Diastolic Function With ML
Another application of ML is for grading of diastolic function.
Evidence exists suggesting that ML can overcome some
of the confounding factor, indeterminate classification and
accuracy barriers surrounding the routine clinical guideline
grading of diastolic function with echocardiography. Omar
et al. (55) investigated whether ML of LV and LA speckle-
tracking strain (STS) variables could assess LV diastolic function
independently of routine Doppler parameters. They undertook

cluster analysis using nine STS variables from 130 patients with
heart failure symptoms. This produced three clusters which
varied concordantly in diastolic Doppler indices and LAmaximal
volume, with no indeterminate classifications. The clusters were
invasively validated in a further 44 patients, where PCWP
and LV-EDP increased concordantly across their three pre-
identified clusters.

These findings show that ML can identify discrete phenotypes
of diastolic function which vary in severity, much like the current
grading system, but which do not rely upon the acquisition of
standard diastolic variables. This could greatly assist healthcare
professionals in identifying those with diastolic dysfunctionwhen
technical limitations or missing Doppler variables may preclude
following the guideline grading algorithms. How these novel ML
results relate to clinical markers of diastolic dysfunction and heart
failure, like symptoms and b-type natriuretic peptides, is unclear.

In an extension of their work, Omar et al. published further
analysis from the same patient cohort (56). Using 14 STS
parameters they trained three separate ML algorithms (random
forest, artificial neural network, and support vector machine) in a
supervised fashion to diagnose raised filling-pressures, with E/e’
or PCWP as a label and a majority voting system to decide the
outcome. Taking the best 11 STS parameters, an AUC= 0.85 was
obtained for predicting E/e’ ≥ 13 in the derivation group, with
AUC = 0.88 for predicting PCWP ≥ 18 mmHg in the invasive
validation group. ML of the echocardiographic parameters
correctly identified 80% of patients with raised PCWP, with
no indeterminate classifications, exceeding the performance of
the guideline grading algorithm in most invasive studies of its
accuracy (as per section Clinical guideline accuracy). A limitation
of this work is that referral for heart failure symptoms created a
biased population in terms of diastolic function.

Lancaster et al. (19) analysed routine diastolic parameters in
a retrospective analysis of 866 consecutive patients referred for
myocardial function assessment. Scans were grouped according
to which ASE/EACVI guideline algorithm (9) would be applied
clinically: screening or grading. Unsupervised ML cluster
analysis in the screening group found two clusters with no
indeterminate classifications. The first larger cluster (n = 460,
82% of 559) contained mostly guideline classified “normal”
diastolic function (72%), whilst the second smaller cluster
(n = 99, 18%) contained mostly guideline classified diastolic
dysfunction or “indeterminate” (72% of 99). Agreement between
ML and guideline classification of diastolic dysfunction was poor
(kappa= 0.41).

In the grading group, ML again found two clusters: one
(n= 236, 61%) comprised mainly guideline graded “mild” (44%)
and “moderate” (50%), with little “severe” (6%). In contrast,
the second (n = 151, 39%) contained mostly “moderate” (78%)
with some “severe” (15%) and infrequently “mild” (7%). Using
binary classification of mild vs. moderate/severe, the agreement
between ML and guideline grading was better than for screening
(kappa= 0.62). Given the known guideline limitations, a modest
agreement metric should not discourage the notion of a more
effective ML grading system.

This evidence leads to some interesting questions. There
was a lot of overlap between their two clusters for those who
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the guideline grades as having moderate diastolic dysfunction.
Does the traditional “moderate” category perhaps contain
two phenotypes, one with normal filling-pressures and one
with raised? Furthermore, given the convention of associating
moderate/severe with raised filling-pressures, is binary grading
(normal/raised filling-pressures) clinically more useful than the
historic four grades (normal/mild/moderate/severe)?

Additionally, the authors found their ML clusters to
show improved prognostication compared to the ASE/EACVI
guideline. Their ML diastolic dysfunction screening algorithm
better predicted event-free survival and rehospitalisations whilst
their grading algorithm was better at predicting mortality but
was indifferent to the guideline for rehospitalisations. Again,
this hints that a dichotomous classification system may better
correspond to patient outcomes.

Placing patients onto a continuous spectrum from normality
to disease, rather than aggregated into categorical boxes,
represents an achievable aspiration for ML and would facilitate a
major leap towards personalised medicine for diastology. Tokodi
et al. (57) applied “Topological Data Analysis” and unsupervised
clustering ML to the same cohort of 866 patients used by
Lancaster et al. (19). The TDA technique is well-suited for
detecting subtle geometric patterns in high dimensional data
(57, 58). The authors studied nine echocardiographic parameters
used for diastolic classification (EF, indexed LV mass, E, A, E/A,
e’, E/e’, LA indexed volume and TR velocity). Their initial analyses
created a “patient similarity network” (57) which cluster analysis
divided into four regions. These varied in cardiac structure,
LV systolic/diastolic function, mortality, morbidity, and diastolic
dysfunction risk-factors, with no indeterminate classifications.

The authors also tested the prognostic ability of their loop in
n= 96 completely new patients with two serial echocardiograms
each. A supervised random-forest ML algorithmwas trained with
the derivation cohort data with loop region as a label. In the
unseen validation cohort, the ML loop region was associated
with major adverse cardiac event hospitalisation (MACE-h).
Upon comparing the first and second echocardiograms, an
improvement to (or remaining within) a lower risk region was
associated with lower MACE-h rates. These results support the
notion that ML can identify patients with different stages of
diastolic dysfunction in a personalised fashion, with fidelity for
linking diastolic changes to outcomes. How their loop-regions
correspond to guideline diastolic grades, and to invasive filling-
pressures, would be of interest.

Whilst the other pieces of evidence concerning ML
classification of diastolic dysfunction have used either STS
or routine Doppler diastolic parameters exclusively, added
benefit may be realised by simultaneously applying ML to novel
variables emerging from the research setting. Cho et al. (59)
prospectively recruited n = 247 consecutive patients and n =

50 healthy control participants. All routine parameters needed
to perform guideline classification of LV diastolic function were
obtained, apart from lateral e’. LV and LA deformation, plus
vector flow mapping (VFM) parameters were also measured.

Topological Data Analysis produced a patient similarity
network with four regions and no indeterminate classifications—
regions linearly progressed in terms of diastolic parameters,

heart failure stages A-D and New York Heart Association
functional classes I-IV. Three supervised ML techniques were
then individually trained with the label of network region. A
Deepnet neural network performed best at classifying scans into
regions when given all 42 variables (AUC between 0.83-0.99 for
the four regions). Of the 25 most important variables, 44% were
VFM, 40% routine and only 16% STS. A high dependency of the
model upon niche VFM variables, which most cardiologists and
echocardiographers are not skilled in measuring, perhaps limits
the potential for adoption of these findings into current clinical
practice. Interestingly and reassuringly in this study though, the
regions of the patient similarity network appeared to mimic the
four-grade system of the guidelines.

Pandey et al. (60) are the first to have applied deep learning
to the assessment of diastolic function from echocardiography
data. As in the work of Tokodi et al. (57) and Cho et al.
(59), a patient similarity network was firstly derived with
Topological Data Analysis of the routine parameters needed to
follow guideline diastolic assessment. Two network regions were
defined with the help of clustering; high-risk and low-risk for
heart-failure hospitalisation or cardiac death. Supervised deep
learning with a neural network model then classified phenogroup
membership before further evaluations were undertaken in
multiple independent datasets with invasive haemodynamic,
outcome, cardiac biomarker, and exercise performance metrics.

The model of Pandey et al. (60) showed better prediction
than the guideline diastolic grades for elevated LV filling-pressure
> 15 mmHg (AUC = 0.88 vs. 0.67; p < 0.01). Tellingly, most
of the outperformance was driven by guideline “indeterminate”
subjects, as when removed the AUC were similar between
the deep-learning model and guideline method. Furthermore,
the high-risk phenogroup showed higher rates of heart failure
hospitalisation and/or death than the low-risk group in multiple
HFpEF trial datasets. As such, these results further support a
clinically meaningful augmentation of diastolic assessment with
ML of echocardiographic variables.

Requisites for ML Translation to Clinical
Practice
Several important steps are required to effectively use ML for
echocardiographic diastolic function analysis, and subsequently
translate the results into clinical practice (Figure 2). Firstly, high
quality structured datasets, with sufficient granularity to describe
the system of interest, are required. These are traditionally
obtained through clinical trials, however, clinical archives are
now often mined due to the lower resource costs and need for
large quantities of training data that reflects real life practice (38).
Care must be taken to ensure that the raw data is still acquired
following high-quality protocols, is in a suitable format for ML
ingestion (e.g., normalised, standardised), and consideration of
missing data and outliers is paramount.

Secondly, a choice of suitable ML algorithm(s) to train should
be made by considering the research aims. For classification,
where labelled data is available and the so called “ground-
truth” is known, a supervised algorithm such as a support
vector machine or decision tree would be considered. If the
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FIGURE 2 | Key steps required for using machine-learning for

echocardiographic diastolic analysis.

aim is to derive novel groupings or phenotypes, and the data
is unlabelled, then unsupervised methods such as clustering
algorithms or principal component analysis are better suited.
Some aims may require several algorithms in combination, i.e.,
an ensemble.

Training of the ML model with the data, tuning of model
hyperparameters, and performance testing form the next stage
of the process. Validation with independent external datasets
is recommended to assess performance of the model, however
investigators often do not have access to such data and hence
frequently use cross-fold validation. This entails splitting data
into sections (known as folds), using some folds to train and
some folds to test the model, before rotating the folds around the
whole dataset (61). Traditional statistical analysis methodologies
are normally applied to the resulting outputs where, for example,
well-known metrics such as sensitivity, specificity, and accuracy,
allow appreciation of performance and a comparison of models
for a classification task. These hence permit identification of the
optimal model or ensemble.

Variations in equipment, protocols, staff, and patients between
datasets may influence the performance of a model. Validation
with independent external datasets hence allows appreciation of
the real-world applicability or generalisability of the findings,
which is especially important if the training dataset was from
a clinical trial. Overfitting, where the performance of the
model is high in the training dataset but lower in other
data, suggests that the model has leant the training data
well but lacks generalisability. Underfitting can be found
where the training data was too small and/or of too low a
dimensionality to allow the model to accurately perform the

TABLE 2 | Challenges and potential benefits of machine-learning augmented

echocardiography for diastolic analysis.

Machine-Learning Augmented Echocardiography for Diastolic Analysis

Potential benefits Challenges

• Improved diagnostic accuracy

• Enhanced prognostication

• Reduced indeterminate

classifications

• Assessment in presence of

confounding factors

• Personalised diastolic assessment

• Use all scan information collected

• Discover novel diastolic parameters

• Automated assessment

• Track serial changes

• Lack of echocardiographic data with

simultaneous invasive haemodynamics

• Quality of clinical datasets for training

• Quantity of records in training datasets

• To be robust to changes in pre-load /

after-load

• “Black-box” perception

• Regulatory approval

• How to best integrate into

clinical practice?

desired task. Validation thus helps to check for over/under-
fitting of the ML model, which is particularly relevant if the
data came from a specific cohort, demographic, or location
for example.

Once a ML algorithm has been trained, tested, and validated,
and there is confidence that the model can positively impact
clinical care, regulatory approval should be sought to enable
widespread adoption or commercialisation. Regulatory approval
by the Food and Drug Administration in America, or with
the Conformité Européene (CE) mark in Europe has been
increasingly sought in recent years for devices incorporating
ML (62). Given the potential impact upon patient care, ML
algorithms should be certified as a medical device to make
sure that they are safe and fit for purpose, and to provide
reassurance of quality to purchasers, users, and patients. The
risk category being assessed under by the regulatory body, and
transparency of the submitted information, are the subject of
debate (63).

The final step of introducing a produced ML tool into
clinical care then requires some more considerations. Regular
audit must be undertaken to ensure safety and effectiveness of
decisions made as a result of the tool introduction. The outcome
data produced by the ML tool, such as a predicted diagnosis,
should be regularly compared to a reference standard or clinical
diagnosis. The ML output(s) could then feedback into the entire
development cycle of another ML tool, because of this potential
alteration in patient care.

POTENTIAL BENEFITS, CHALLENGES,
AND FUTURE DIRECTIONS

With the applications of ML augmented echocardiography
now stepping out of the shadows for diastolic assessment,
a number of potential benefits and challenges can be
seen (Table 2). From the healthcare system perspective,
improved prognostication of cardiology patients with
ML may facilitate efficient resource allocation, meaning
that the right care is available to the right patient at the
right time.
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In the clinical echocardiographic laboratory, healthcare staff
may benefit from automated assessment tools which could save
them time, reduce inter- and intra-rater variability and allow for
subtle serial changes to be monitored. ML may be able to negate
the influence of confounding factors and reduce the impact of
a missing routine diastolic parameter, creating a more robust
and widely applicable technique. Use could also be made of all
the rich detail collected in an echocardiogram, which alongside
detection of latent data relationships and novel parameters could
vastly improve diagnostic accuracy for diastolic dysfunction. All
of these aspects are likely to be the focus of future research.

From the perspective of the physician, a personalised diastolic
assessment with ML would allow tailored investigations and
patient management. A reduction or complete elimination of
indeterminate diastolic grading would reduce clinical uncertainty
and lessen the need for additional complex or invasive
investigations, such as cardiac catheterisation. This would also
facilitate better decision making in high-risk groups where
diastolic status may alter risk-benefit balances of interventions.

Several challenges are apparent though for ML augmented
diastolic assessment. Firstly, the thirst of ML algorithms for
high-quality, large-volume, high-dimensionality training data is
a problem in a world where healthcare systems are still struggling
to digitalise and integrate electronic systems. Significant progress
has been achieved thus far with modest sample sizes, but a truly
“big-data” approach to diastolic assessment seems warranted
to validate existing findings, to unlock new insights, and to
increase the clinical applicability of results. Limitations of the
current evidence are that often patients with missing data, or
indeterminate guideline classification, are excluded from studies.
Where these patients fit on the spectrum of diastology would be
of great interest given their prevalence.

Secondly, a lack of direct invasively measured diastolic data,
to use as a “ground truth,” also limits ML research about diastolic
function in many populations, as patients simply do not receive
such a test routinely. Given ethical and resource considerations,
it is unlikely that this can be overcome. A third challenge is
that a ML diastolic assessment tool would require resilience
to changes in preload, afterload, and heart rate, etc. Given
oscillatory patterns of, for example, de-compensated heart failure

and subsequent treatment, the field should aim to not only
categorise diastolic dysfunction, but also to assign a personalised
“live” diastolic status, which could then be used to track temporal
changes in diastolic function. This would greatly advance the field
towards precise and personalised medicine.

Fourthly, a perception that ML represents a “black box”
technology, where healthcare professionals do not understand
how it is arriving at a decision, is also a problem for
ML augmented echocardiography. Input parameter feature
weightings, and heat maps of image areas being used by the
machine, offer ways for researchers to dispel this perception.
Finally, regulatory approval also acts as a potential obstacle for
ML innovators.

The field of echocardiography is moving towards a more
automated, data-driven, and analytical approach. Diastolic
function is not something that can be readily eyeballed—it needs
expert clinical insight to meet rigorous science to improve its
assessment. How to best integrate a ML diastolic assessment tool
into clinical practice should form the basis of future debate.

CONCLUSIONS

Evidence shows that ML can use diastolic parameters to
differentiate diseases, improve the accuracy of disease diagnoses,
and identify diastolic phenotypes within heterogeneous
conditions such as HFpEF. There is also evidence to suggest
that ML can improve identification of raised filling-pressures,
classify or grade diastolic function in novel ways, and improve
upon the prognostic ability of the current diastolic clinical
standard. Although there are numerous potential benefits,
many challenges stand in the way of progress for the field.
ML augmented echocardiography for diastolic assessment is
here, but real-world applicability and its relationship to clinical
decision making remains to be seen.
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