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ABSTRACT: Tandem mass spectrometry (MS/MS) followed by database search is the method of choice for protein
identification in proteomic studies. Database searching methods employ spectral matching algorithms and statistical models to
identify and quantify proteins in a sample. In general, these methods do not utilize any information other than spectral data for
protein identification. However, considering the wealth of external data available for many biological systems, analysis methods
can incorporate such information to improve the sensitivity of protein identification. In this study, we present a method to utilize
Global Proteome Machine Database identification frequencies and RNA-seq transcript abundances to adjust the confidence
scores of protein identifications. The method described is particularly useful for samples with low-to-moderate proteome
coverage (i.e., <2000−3000 proteins), where we observe up to an 8% improvement in the number of proteins identified at a 1%
false discovery rate.
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■ INTRODUCTION

The first step in a typical computational pipeline for protein
identification through database searching is comparing MS/MS
spectra to peptide sequences to identify the best matching
peptide for each spectrum, referred to as peptide-to-spectrum
matches (PSMs). These PSMs are then processed by protein
inference algorithms1 to produce a minimal list of proteins that
would need to be present in the sample to explain the identified
PSMs. The proteins in this list are also assigned a confidence
score or protein probability calculated on the basis of several
factors, including the number of PSMs supporting the protein
and the match score of the PSMs. To determine the confident
identifications from the results of protein inference, false
discovery rates2 (FDR) are estimated. Only proteins identified
at or above a certain FDR threshold (typically 1 or 5%) are
chosen as high-confidence identifications for further analyses.
Although sophisticated algorithms for spectral matching and

analysis have been developed, protein identification can still be
hampered by issues such as low efficiency of peptide ionization,
low-quality or noisy spectra, dynamic range of protein
abundances, and the complexity of protein samples.3 To deal

with such issues, there have been continued attempts to
incorporate additional information about the MS/MS experi-
ment into analysis pipelines, such as peptide chromatographic
retention time,4 pI,5 or mass accuracy,6 some of which are now
a routine part of many proteomic analysis pipelines.4 Studies
have also investigated using matching MS2 and MS3

information,7 match scores from multiple search engines,8,9

and various other information sources to rescore or adjust
protein identification probability.
Another category of methods have investigated utilizing

external information (information from outside the MS/MS
experiment) such as microarray data,10 protein−protein
interaction networks,11 or gene functional networks12 to
improve protein identifications. A recent study by Wang et
al.13 described an approach to utilize RNA-seq abundance
information to limit the size of protein sequence databases and
thereby improve protein identification sensitivity.
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In this article, we describe an alternate method for
incorporating external information such as RNA-seq abundance
and GPMDB identification frequency into proteomic analysis
pipelines, through rescoring or adjustment of protein
identification probabilities. RNA-seq uses short read sequencing
technologies to sequence the RNA content (transcriptome
profile) of a sample.14 On the basis of the central dogma of
molecular biology, it is a reasonable assumption that proteins
corresponding to high-abundance transcripts are more likely to
be found in a sample. The Global Proteome Machine Database
(GPMDB)15 is a repository storing the results of proteomics
experiments. With the large volume of data aggregated in
GPMDB, the frequency of identification of a protein in
GPMDB can be used as a surrogate measure of a protein’s
propensity to be observed in a MS/MS experiment. In other
words, we can reasonably assume that proteins with a high
GPMDB identification frequency (GPMfreq) are more likely to
be identified in an MS/MS experiment. In this study, we
evaluate the utility of incorporating both of the above types of
information into proteomics analysis pipelines.

■ METHODS

Data Sets

Data from VCaP,16 a human prostate cancer cell line, and
HEK293,17 a cell line derived from human embryonic kidney

cells, were used in this study. The MS/MS and RNA-seq data
for the VCaP cell line were generated in parallel at the same lab.
This RNA-seq data was also used as the control sample in a
paper by Sam et al.18 and is available for download from the
NCBI short read archive, SRA (SRA accession nos. SRR090590
and SRR090591). For the HEK293 cell line, MS/MS data was
obtained from control samples in a publication by Fonslow et
al.,19 whereas the RNA-seq data was downloaded from data
generated by Sultan et al.20 (SRA accession nos. SRR023583
and SRR023584).
The GPMDB identification frequencies, which are not cell

line specific, were obtained by querying GPMDB for every
Ensembl protein ID using a perl script. This data was retrieved
on April 30th, 2012.

MS/MS Experimental Protocol for VCaP

The VCaP cell line was provided by Dr. Ken Pienta (University
of Michigan, Ann Arbor, MI). Collection of VCaP whole
cellular protein extract was done in RIPA complete buffer
supplemented with HALT Protease and Phosphatase Inhibitor
Cocktail (Peirce Biotechnology). Total protein extract was
quantified by bicinchoninic acid assay. Fifty milligram aliquots
of total cellullar proteins were first separated by 1D SDS-PAGE
(4−12% Bis-Tris Novex-Invitrogen, Carlsbad, CA). Forty
equal-sized gel bands were excised and subjected to in-gel
digestion as previously described.21 Extracted peptides were

Figure 1. Overview of the method. (A) External information is added to protein identifications from the analysis pipeline. Protein probabilities are
adjusted on the basis of transcript abundance (RPKM) or GPMDB identification frequency (GPMfreq). (B) Decoys sequences used to estimate
FDR thresholds do not have native RPKM (or GPMfreq) values; they are assigned values by sampling from a set of all forward sequences with
similar length (see Methods). (C) Protein identification probabilities are adjusted using Bayes’ theorem.
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reconstituted with mobile phase A prior to online reverse-phase
nanoLC−MS/MS (LTQ-Velos with Proxeon nanoHPLC,
ThermoFinnigan). Peptides were eluted online to the mass
spectrometer with a reverse-phase linear gradient from 97% A
(0.1% formic acid in water) to 45% B (0.1% formic acid in
acetonitrille). Peptides were detected and fragmented in the
mass spectrometer in a data-dependent manner, sending the
top 12 precursor ions, excluding singly charged ions, for
collisional induced dissociation. Raw spectra files were
converted into mzXML by an in-house version of ReAdW.22

Preparation of Data Sets

Both of the MS/MS experiments (VCaP and HEK293) used in
this study were seen to have very deep proteome coverage, with
about 4000−6000 protein identifications at 1% FDR. However,
most MS/MS experiments do not achieve this level of
proteome coverage. To investigate performance under
experimental conditions with varying depths of proteome
coverage, the MS/MS data was sampled at the level of
individual mzXML files to create various subsets of data of
varying sizes (fewer files would be included for a smaller subset,
and more files, to get a larger subset). The VCaP data had a
total of 40 mzXML files, whereas the HEK293 data consisted of
60 mzXML files. The number of protein identifications in these
subsets ranged between about 500 and 5000 protein
identifications at 1% FDR.

MS/MS Data Analysis Pipeline

The MS/MS data was searched using the X!Tandem
(CYCLONE; 2010.12.01.1)23 search engine with a K-score
plugin24,25 provided by the Trans-Proteomic Pipeline. The
search was performed against the Ensembl v.66 human
proteome with reversed protein sequences appended as decoys.
Trypsin was specified as the enzyme with no missed cleavages
allowed, and cysteine carbamidomethylation and methionine
oxidation were set as fixed and variable modifications,
respectively. VCaP data was searched using a precursor mass
error of −1 to +4 Da, whereas the HEK293 data (high mass
accuracy data) was searched with a precursor mass error of ±50
PPM. Fragment mass error was set to 0.8 Da for both searches.
Statistical validation of PSMs was performed using the Trans-

Proteomic Pipeline (TPP v4.6 OCCUPY rev 2) software suite.4

VCaP data was processed with +1 charge state ions set to be
ignored and using a semisupervised model26 for estimating
negative distributions. HEK293 data was processed using the

same settings as above along with additional parameters to use
accurate mass binning and the PPM scale for the mass models.
The output protXML files from TPP were processed using the
Abacus software tool27 to select a representative protein for
each protein group, according to heuristic filters built into the
tool.
RNA-Seq Processing Pipeline

RNA-seq data was aligned to the Ensembl v.66 human genome
(hg19 build 37) using the Tophat aligner (Tophat v.1.3.2).28

Parameters were set to allow up to one mismatch per
alignment, and a GTF file containing Ensembl v.66 gene
annotations was provided to Tophat, using the “−G” option, to
improve alignment accuracy. For aligning HEK293 reads, an
additional parameter was used to set the segment length to 13
bases.
Transcript abundance, in the form of reads per kilobase per

million mapped reads (RPKM)29 (read count normalized to
transcript length and total number of reads in the experiment),
was calculated for each transcript from the BAM file output
from Tophat. RPKM calculation was performed with a custom
R script utilizing functions from the Bioconductor30 packages
Rsamtools (v.1.6.3)31 and GenomicFeatures (v.1.6.9).32

■ RESULTS

Overview of the Approach

Our approach to incorporating RNA-seq or GPMDB frequency
information (Figure 1) is built upon a statistical adjustment7,8

of the protein probability. The probability adjustment increases
the identification confidence scores of proteins that have
significant supporting evidence from external data (high
transcript abundance in RNA-seq or high frequency of
identification in GPMDB), relative to other proteins without
such supporting evidence. Protein identifications that pre-
viously fell just below the FDR threshold based on MS/MS
evidence alone, in a “gray zone” of identification confidence,
can be promoted above the threshold when ranked by the
adjusted probability. Therefore, we are able to obtain more
protein identifications at the same FDR.
RPKM/GPMfreq Value Assignment for Decoys

FDR estimation for protein identifications is performed by the
target−decoy approach (Reversed decoy sequences are
appended to the forward protein sequence database before
performing database searching. The number of identifications

Figure 2. Density distributions of RPKM (A) and GPMfreq (B) values (log-scaled) for proteins identified at 1% FDR in the VCaP cell line and all
proteins in Ensembl are plotted. The difference between the two distributions allows us to sample the “all proteins” distribution to assign values to
decoys in an unbiased manner while still maintaining discrimination between true positive and decoy identifications.
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matched to decoy sequences is used to estimate the rate of
random matches in the identifications mapped to forward
sequences). Because decoy sequences do not have inherent
RPKM/GPMfreq values, their identification probabilities would
be selectively decreased during probability adjustment based on
the external information. To be able to estimate FDR after
probability adjustment in an unbiased manner, a rational
method for assigning RPKM/GPMfreq values to decoy
sequences is necessary.
The density distribution of RPKM/GPMfreq values for

proteins identified in the MS/MS experiment at 1% FDR
(confident true positive identifications) is seen to be
appreciably different from that of RPKM/GPMfreq for all
proteins (Figure 2). On the basis of this observation, sampling
from the “all proteins” distribution allows for the unbiased
assignment of RPKM/GPMfreq values to decoy sequences
while maintaining discrimination between decoy and forward
identifications. Weak correlations among the RPKM, GPMfreq
values, and protein length were also observed in the data (data
not shown). To preserve this structure in the data, our
sampling approach was designed to sample RPKM/GPMfreq
values together from forward sequences and assign them only
to decoys of similar length (see Supporting Information
methods for a more detailed description of the sampling
process). In further analysis, it was observed that the
improvement from probability could be slightly increased if
the sampling for decoy values was weighted to prefer values
from proteins not identified in the MS/MS experiment, instead
of using a completely random sampling (Supporting
Information Figure 5). However, only results from the more
statistically rigorous approach of completely random sampling
are reported here.

Probability Adjustment

When performing probability adjustment, pProt, a protein
probability score calculated on the basis of maximum peptide
probability, was used as the prior probability (see Supporting
Information methods for details of pProt calculation). pProt
was used instead of the native protein probability reported by
TPP because it has been observed that the maximum peptide
probability is a more reliable indicator of true protein
identifications than the protein probability value (Supporting
Information Figure 1), especially for large samples.
Using Bayes’ theorem, the probability adjustment estimates

the probability of a protein identification being a true positive
given its RPKM/GPMfreq value (eq 1).

+| = |+ +
|+ + + |− −

P V
P V P

P V P P V P
( )

( ). ( )
( ). ( ) ( ). ( ) (1)

where V can be either an RPKM or GPMfreq value.
The prior probability terms P(+) and P(−) were substituted

with pProt and 1 − pProt, respectively. To estimate the
conditional probabilities of decoy or forward identifications
having value V, P(V|−) and P(V|+), the density distribution of
log-scaled RPKM/GPMfreq values was placed into bins of
equal width (Supporting Information Figure 2). Conditional
probabilities for each bin were calculated as P(Vi|−) = nDi/nDt,
where Vi is any RPKM/GPMfreq value that falls within bin i,
nDi is the number of decoys having RPKM/GPMfreq values
within bin i, and nDt is the total number of decoys in the
sample. Values for P(Vi|+) were also estimated similarly, but
instead of number of decoys, the number of forward hits with
pProt > 0.5 (i.e., forward identifications that are more likely to
be true positive than false positive) were used.

Effect of the Probability Adjustment

Because the RPKM/GPMfreq values are assigned through
random sampling, the assignment and probability adjustment
(Figure 1A) are repeated multiple times to nullify any sampling
artifacts and to obtain stable mean adjusted probability values.
In our study, the mean values were typically seen to stabilize
after about 200 iterations (Supporting Information Figure 3),
but the process was repeated to 500 iterations for the results
reported here. The effect of the probability adjustment was
measured by comparing the number of protein identifications
at 1% FDR without adjustment to the number of protein
identifications at 1% FDR after probability adjustment (RPKM
or GPMfreq based). The percent improvement from all of the
various subsets was calculated and plotted, as shown in Figure
3A,B. Loess smoothing was performed on the values to show
trends clearly.
The probability adjustment results in improvements of

almost 8% in the HEK293 cell line and up to 4% in VCaP
(Figure 3). Notably, the amount of improvement observed is
similar for both the RPKM and GPMfreq adjustments.
Furthermore, it appears that using RNA-seq data generated in
parallel to the MS/MS data (VCaP) or RNA-seq generated at a
different time and location from the MS/MS data (HEK293)
does not significantly affect the results.
We believe the probability adjustment works by boosting

protein identifications that fall in a gray zone of confidence of
identification. To test this hypothesis, the entire analysis

Figure 3. Percentage improvement due to the probability adjustments (RPKM and GPMfreq) for VCaP (A) and HEK293 (B) cell lines plotted at
various depths of proteome coverage (no. of proteins). The adjustment is more effective for low- and medium-coverage data sets.
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described above was repeated using maximum hyperscore
instead of maximum peptide probability as the identification
confidence score. Hyperscore is a spectral matching score
calculated and reported by the X!Tandem search engine. The
maximum hyperscore for a protein can be used as an alternate,
albeit less effective than the maximum peptide probability,
confidence score for sorting protein identifications and
estimating FDR thresholds. Because maximum hyperscore is
a suboptimal score compared to maximum peptide probability,
the resulting protein identifications should have more proteins
in the gray zone and therefore the probability adjustment on
these identifications should provide increased improvement. As
expected, Figure 4A,B shows that the percentage improvement
is much greater (7−20%) in the maximum hyperscore-based
analysis. These results support the idea that the amount of
improvement obtained from probability adjustment is depend-
ent on the number of proteins falling in the gray zone of the
confidence of identification.
In our analysis, a clear trend of the percentage improvement

from probability adjustment decreasing as the depth of
proteome coverage (i.e., number of proteins identified in the
data set) increases can be seen (Figure 3). With deeper
coverage of the proteome, low abundance and rare proteins are
increasingly identified. As per our assumptions, such proteins
would have low RNA-seq abundance and/or low frequency of
identification in GPMDB. Therefore, these proteins will not
benefit from a probability adjustment based on RPKM/
GPMfreq evidence and, in fact, may have their confidence
scores decreased by it. Furthermore, increasing depth of
proteome coverage not only increases the number of proteins
identified but also increases the amount of MS/MS or spectral
evidence collected for each identified protein. This would lead
to a decrease in the number of proteins falling in the gray zone.
On the basis of this, we believe that the observation of
decreased improvement in deeper coverage data sets reflects
the fact that in these data sets there are fewer proteins that
would benefit from the probability adjustment.
Validating Proteins Promoted by Probability Adjustment

A more detailed analysis of the effects of probability adjustment
was carried out on one of the sampled data subsets from each
cell line, the results of which are shown in Table 1. Proteins
that were promoted above the 1% FDR threshold as a result of
the probability adjustment were selected for manual validation.
These selected proteins were compared with the list of proteins
identified at 1% FDR in the complete data set (largest data set

without any sub sampling) of that cell line. A promoted protein
being found in the complete sample would suggest that the
protein is indeed a true identification. It is possible that there
was not sufficient MS/MS evidence in the smaller sampled data
set for the protein to be confidently identified, but the
probability adjustment using RPKM/GPMfreq information
provided the necessary boost to promote it above the FDR
threshold. In our analysis, 70−80% of the promoted proteins
were indeed identified in the larger sample. Therefore, the
probability adjustment was successful in promoting true
positive identifications.
The remaining 20−30% of promoted proteins, which were

not observed in the complete data set, were seen to have high
confidence scores in the same range as that of the validated
proteins. In other words, unobserved proteins were not outliers
(Supporting Information Figure 6). We believe that these
unobserved proteins are also true positive protein identifica-
tions. It is possible that these proteins were not observed in the
complete data set because, even with the increased amount of
MS/MS evidence collected in the complete data set, there still
is not sufficient evidence to confidently identify them solely by
MS/MS evidence without the aid of external information. In
our analysis, a larger proportion of proteins are validated in the
VCaP sample, which has more MS/MS data collected (∼6000
proteins), than in the HEK293 sample (∼3000 proteins), which
appears to support this interpretation.

■ DISCUSSION
The probability adjustment method described here allows us to
utilize external data, such as RNA-seq abundance, or GPMDB
identification frequency, to improve the sensitivity of protein
identification through database searching. Although some
studies generate RNA-seq data in parallel to proteomics data,
large amounts of RNA-seq data for many common organisms
and/or cell lines used in biological research are already freely
available from public resources such as the Sequence Read

Figure 4. Percentage improvement at various depths of proteome coverage when probability adjustment is performed on a maximum hyperscore-
based protein identification probability. As expected, the improvement is significantly greater when the suboptimal maximum hyperscore is used
instead of maximum peptide probability (Figure 3).

Table 1

cell line rescoring
no. of promoted proteins in

sampled data set
no. identified in
complete data set

VCaP RPKM 55 43
GPMfreq 52 41

HEK293 RPKM 82 55
GPMfreq 88 63
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Archive (SRA).33 As we can see from Figure 3, whether RNA-
seq data is generated in parallel with proteomics data (VCaP)
or independently (HEK293) does not appear to significantly
affect its utility for probability adjustment. This will allow us
effectively leverage the large amounts of publicly available
RNA-seq data.
Furthermore, the improvement obtained by adjusting

probability based on GPMfreq is similar to, and sometimes
better than, improvement from RPKM adjusted probability.
This is very convenient, allowing us to make use of readily
available GPMDB information in our proteome analysis
pipelines. Of course, this requires that the GPMDB repository
contains enough experiments for the organism of interest for
the GPMfreq values to be meaningful. However, for commonly
studied organisms of interest such as human or mouse, with
numerous experiments in GPMDB, it can be a useful source of
external information. Computing a combined adjusted
probability from both RNA-seq and GPMDB information
does not result in a marked improvement in protein
identification over the individual probability adjustments
(Supporting Information Figure 4), suggesting that RNA-seq
and GPMDB capture similar types of information about a
sample for the purposes of probability adjustment.
As mentioned earlier, the improvement obtained from

probability adjustment decreases as the depth of proteome
coverage of the experiment increases because there are fewer
proteins in the gray zone that would benefit from the
probability adjustment and there are more rare and low-
abundance proteins that could be penalized by it. This is an
inherent upper limit to the amount of improvement that is
possible by this method and must be taken into consideration
when applying this probability adjustment to large samples.
However, this method remains useful for MS/MS data of low-
to-medium levels of proteome coverage. Hence, one potential
application of this method may be for data obtained from older
instruments or experiments where the amount of instrument
time available was low. Compared to the customized database
approach described by Wang et al.,13 the probability adjustment
method was seen to provide better improvement for low-to-
medium-coverage samples, whereas the customized database
approach performed better for deep-coverage samples
(Supporting Information Figure 9), suggesting nonoverlapping
scenarios of usage for the two methods.
Although the probability adjustment approach has been

demonstrated using RNA-seq and GPMDB data, it does not
include any assumptions that would limit it to only these two
kinds of data. Therefore, this approach can be utilized to
incorporate any external source of data (with a significant
association with protein presence or abundance) into
proteomic analysis pipelines to improve the sensitivity of
protein identification.
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