
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) 
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright © 2016. Anatomy & Cell Biology

(GLUT) 1, 3, and 4 passively along the concentration gradient 
[2, 3]. Meanwhile, AA is actively transported via sodium-de-
pendent vitamin C transporters (SVCT1 and 2) at the expense 
of energy [4-7]. 

Men cannot, contrary to other animals, synthesize vitamin 
C by themselves because they lack the final step enzyme 
L-gulonolactone oxidase in the synthetic process of vitamin 
C from glucose [8]. Thus, men have to be supplemented 
with extrinsic source of vitamin C for their lives. The daily 
requirement of vitamin C is 75–90 mg [9], and many investi-
gators insist beneficial effects of even more dose, up to 1–10 
g/day, defined as mega-dose [10, 11].

In a cell, vitamin C influences a variety of biological pro-
cesses, one of which is immunological response. Effects of 

Introduction

Vitamin C is a micronutrient which functions as an impor-
tant physiological antioxidant [1]. There are two forms of 
vitamin C. One is its reduced form, the ascorbic acid (AA), 
and the other its oxidized form, the dihydroascorbic acid 
(DHA). DHA is transported into cells via glucose transporters 
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Abstract: Vitamin C is an essential micronutrient that affects immune responses. T cells are one of the main players in acquired 
immunity and have been reported to be influenced by in vivo vitamin C supplementation. Yet, the way by which T cells uptake 
vitamin C and what direct effects vitamin C exerts on the cells are not known. To elucidate, we isolated human peripheral 
blood T cells and analyzed the expression of sodium-dependent vitamin C transporters (SVCT). T cells were activated in vitro 
in the absence or presence of vitamin C, before or after activation. As results, human T cells expressed SVCT2, but not SVCT1, 
and the expression level increased following activation. Vitamin C added in the culture media generally did not affect T-cell 
behaviors following activation, such as proliferation, apoptosis, expression of CD25 and CD69, and interleukin 2 secretion, 
regardless whether it was added before or after activation. However, exceptionally, high concentration vitamin C, when it was 
added before activation, but not after activation, did exert toxic effects on cell activation with respect to the above-mentioned 
parameters. In conclusion, we showed the expression of SVCT2 in human T cells for the first time. Vitamin C exerted toxic 
effects, at least in vitro, when the concentration was high and when it was given before activation. These toxic effects are not 
thought to be via anti-oxidant effects of vitamin C.
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vitamin C on immune responses have been documented both 
in human and in experimental animals. For example, vitamin 
C supplementation increased non-specific IgA and IgM 
titers in human serum [12], and antigen-specific antibody 
titers in guinea pig [13], while reduced serum IgE level in 
chronic granulomatous disease [14]. Mega-dose vitamin 
C administration shifted the overall immune response 
towards Th1 [15], thus augmented cell-mediated immunity 
in a variety of conditions, both in human and experimental 
animals [16, 17]. 

Until now, exact mechanisms of the immunological effects 
of vitamin C have not been elucidated, especially in humans. 
In experimental animal models, such efforts have been 
consistently, but not so much frequently, carried out. Recently, 
we reported that mega-dose vitamin C modulated mouse 
immune responses primarily acting on dendritic cells (DCs), 
thus affecting T cells and B cells subsequently [18, 19]. In 
vitro vitamin C–treated DCs rendered the immune response 
towards Th1, secreting more interleukin-12 p70 (IL-12p70) 
and interleukin (IL)-15 by way of elevated phosphorylation 
of p38 mitogen-activated protein kinase and ERK1/2, and 
increased activation of nuclear factor kB (NF-kB) [15, 20].

Still, many reports still suggest a role of vitamin C in 
human T cells. For example, T cells from vitamin C–
supplemented old and young men showed more proliferating 
capacity when stimulated in vitro [15, 21]. The fact that 
human lymphocytes accumulate much higher concentration, 
up to 80-fold, of vitamin C compared to that in serum [22] 
also suggests a certain role of vitamin C in these cells. In 
addition, because reactive oxygen species (ROS) are formed 
during T-cell activation and act as a second messenger [23, 
24], it could be possible that vitamin C affects T-cell behaviors 
during activation as an antioxidant.

In the present study, we evaluated how human T cells 
uptake vitamin C, and whether they are influenced in their 
function by the presence of various concentrations of vitamin 
C in vitro.

Materials and Methods

Human T-cell isolation and culture
Blood samples were drawn from 10 healthy donors aging 

between 20s and 40s under consent approved by Institutional 
Review Board of our institute (approval No. C-1208-149-424). 
Peripheral blood mononuclear cells were obtained by density 

gradient centrifugation using Ficoll-paque PLUS (1.077±0.001 
g/ml, Amersham, GE Healthcare, Piscataway, NJ, USA). 
CD3+ T cells were isolated using negative selection pan T cell 
isolation kit II (Miltenyi Biotec GmbH, Bergisch Gladbach, 
Germany) following the manufacturer’s instruction. Isolated 
T cells showed over 95% purity when they were analyzed 
by flow cytometry using anti–CD3-PE (Becton Dickinson, 
Franklin Lakes, NJ, USA) (data not shown).

T cells were cultured in RPMI 1640 (Welgene, Daegu, 
Korea) supplemented with 10% fetal bovine serum (Gibco, 
Gaithersburg, MD, USA), 1% penicillin/streptomycin, 1% 
GlutaMAX (Gibco), 1 mM sodium pyruvate (Gibco), and 1% 
non-essential amino acids (Gibco).

If necessary, T cells were activated with 10 ng/ml of 
phorbol-12-myristate-13-acetate (PMA; Calbiochem, San 
Diego, CA, USA) and 50 ng/ml ionomycin (Sigma, St. Louis, 
MO, USA) or dynabeads human T-activator CD3/CD28 
(Invitrogen, Carlsbad, CA, USA).

Reverse transcription polymerase chain reaction
Total RNA was extracted from human T cells using 

Trizol reagent (Invitrogen) following the instruction. 
cDNA was synthesized as usual and was amplified by 
polymerase chain reaction (PCR) for detection of SVCT 
expression. PCR was performed in a 20 ml volume using 
1.5 mM MgCl2, 0.1 mM dNTPs, 8 pmole of each sense 
and antisense primers, and 1 units of Taq polymerase. Pri-
mers used were 5'-GCCCCTGAACACCTCTCATA-3' 
and 5'-ATGGCCAGCATGATAGGA AA-3' for human 
SVCT-1 (product size, 360 bp) [25], 5'-TTCTATGCTCG 
CACAGATGCC-3' and 5'-TAAAAGCCACACAGCCCCC 
TAC-3' for human SVCT-2 (product size, 667 bp) [26], and 
5'-GTGGAGTCTACTGGCGTCTT-3', and 5'-GCCTGCTTC 
ACCACCTTCTT-3' for glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH; product size, 509 bp). PCR for SVCT1 
and SVCT2 was performed 40 cycles of denaturation at 
95oC for 45 seconds, annealing at 55oC or 61oC respectively 
for 45 seconds, and amplification at 72oC at 45 seconds. For 
GAPDH PCR, 30 cycles were carried out with denaturation 
at 95oC for 30 seconds, annealing at 58oC for 30 seconds, and 
amplification at 72oC for 30 seconds. The PCR products were 
analyzed by 2% agarose gel electrophoresis and subjected to 
densitometric analysis using Quantity One software (Bio-Rad 
Laboratories, Hercules, CA, USA).
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Western blotting
Human T cells were lyzed in RIPA lysis buffer (50 mM 

Tris-HCl pH 7.4, 150 mM NaCl, 1% sodium deoxychloride, 
0.1% sodium dodecyl sulfate, 1% Triton X-100, 2 mM 
EDTA, protease inhibitor), and protein concentration of 
the lysate was measured using bicinchronic acid assay. 
Twenty mg of protein was loaded on 12% sodium dodecyl 
sulfate–polyacrylamide gel electrophoresis, transferred to 
nitrocellulose membrane, blocked with 5% (w/v) non-fat milk 
solution in TBST with 0.1% (v/v) Tween 20 for 1 hour, and 
applied with primary antibodies. Used antibodies were goat 
anti-human SVCT-1 (1:200), SVCT-2 (1:200), and g-tubulin 
(1:2,000) antibodies. After overnight incubation at 4oC, 
samples were incubated with horseradish peroxidase (HRP)–
conjugated anti-goat IgG (1:10,000) or HRP-conjugated anti-
mouse IgG (1:5,000) for 1 hour at room temperature (RT), 
and color reaction was performed using ECL detection kit 
(Amersham, GE Healthcare, Buckinghamshire, UK). All 
antibodies used were from Santa Cruz Biotechnology (Santa 
Cruz, CA, USA).

Immunofluorescence staining of SVCTs on T cells
T cells were attached on glass slides by incubating for 1 

hour at RT, washed with phosphate buffered saline (PBS) 

for 3 times, and fixed with 4% paraformaldehyde solution 
for 20 minutes. After washing, T cells were treated with 10% 
normal donkey serum (Vector Laboratories, Burlingame, CA, 
USA) for 1 hour at RT, incubated with primary antibodies 
for 1 hour at RT, after then with donkey anti-goat Alexa 
555 (1:500, Invitrogen) for 1 hour at RT. Primary antibodies 
used were goat anti-human SVCT-1, and anti-hunman 
SVCT-2 antibodies (both 1:100, Santa Cruz Biotechnology). 
Nuclear staining were carried out with DAPI solution. Slides 
were covered with mounting solution (Cat. No. S3025, 
DakoCytomation, Carpinteria, CA, USA) and observed under 
confocal microscope. 

Measurement of vitamin C concentration
Vitamin C concentration was measured using a modified 

2,4-dinitrophenylhydrazine (DNPH) method as previously 
described [18]. Briefly, T cells were lyzed by repeated 
freezing and thawing. Supernatants were obtained and mixed 
with equal volume of 10% metaphosphoric acid (Sigma), 
centrifuged, and supernatants were obtained again, into 
which 0.027 M cupric acid (Sigma), 0.68 M thiourea (Katayaka 
Chemical JIS, Osaka, Japan), and 0.1 M DNPH (Sigma) were 
sequentially added. The mixture was incubated in a 37oC 
water bath for 3 hours to obtain red precipitates, which were 
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Fig. 1. SVCT-2 expression in human T cells. (A) Total RNA was extracted from human T cells and cDNA was synthesized. The expression of 
SVCT-1 and -2 was assessed using reverse transcription polymerase chain reaction. (B) T cells were lysed and subjected to western blotting for 
the expression of SVCT-2. HepG2 (hepatoma cell line) cells were used as positive control of SVCT-1 and -2. (C) Human T cells were collected 
24 hours or 48 hours after activation with phorbol-12-myristate-13-acetate/ionomycin, attached on a slide, and briefly fixed with formalin. The 
expression of SVCT-2 was assessed by immunofluorescence staining. The staining was observed under a confocal microscope.



Vitamin C uptake via SVCT2 and its in vitro effects on human T cells

http://dx.doi.org/10.5115/acb.2016.49.2.88

Anat Cell Biol 2016;49:88-98 91

www.acbjournal.org

melted by adding 12 M sulfuric acid. The absorbance at 520 
nm was measured. 

Analysis of cell proliferation, apoptosis, and activation 
marker expression

Forty-eight hours after activation, T cells were added 
with 1 mCi/well of [3H]-thymidine (American Radiolabeled 
Chemicals, St. Louis, MO, USA) for 16 hours and harvested, 
and the radioactivities were measured in a scintillation 
b-counter (MicroBeta, Trilux, PerkinElmer, Turku, Finland). 
All samples were quadripicated. 

For apoptosis analysis, T cells were cultured in a 24-well 
plate in a CO2 incubator at 37oC, added with various con-
centrations of vitamin C up to 1 mM for 2 hours, and acti-
vated with PMA/ionomycin. After 24 hours, 1×106 cells were 
suspended in Annexin V binding buffer (BD Pharmingen, 
Franklin Lakes, NJ, USA) and incubated with Annexin V 
(BD Pharmingen) for 15 minutes. Propidium iodide (PI) (BD 
Pharmingen) was added just before flow cytometric analysis. 

For the analysis of activation marker expression, human 
T cells in a fluorescence-activated cell sorting (FACS) tube 
(1×106/tube) were washed twice in cold PBS containing 
0.05% bovine serum albumin (Amresco, Solon, OH, USA), 
incubated with anti-human CD69-FITC (BD Pharmingen) 
and anti-human CD25-FITC (BD Pharmingen) antibodies, 
0.2 mg each on ice, and subjected to flow cytometric analysis. 

Flow cytometric analysis was performed using FACS 
Calibur (BD Biosciences, San Diego, CA, USA).

Enzyme-linked immunosorbent analysis for IL-2 secretion
Human T cells (5×105/well) were cultured in a 24-well plate 

and activated with PMA/ionomycin. Vitamin C was added 2 
hours before or 24 hours after activation at a concentration of 
500 mM. Culture sup was obtained 36 hours after activation 
and enzyme-linked immunosorbent analysis (ELISA) for IL-2 
was performed using IL-2 ELISA kit (Invitrogen) following 
the manufacturer’s instruction. 

Statistical analysis 
Statistical analyses were performed by Mann-Whitney test. 

Statistical significance was set for P-values less than 0.05. 

Results

SVCT2 expression in human T cells
In plasma, vitamin C is present dominantly as its reduced 

form, AA [27], which is taken up into cells via SVCTs. Many 
vital organs express SVCT1 and/or SVCT2 to use AA [28, 29]. 
However, it is not evidenced whether T cells express SVCTs. 
To figure out this point, we performed reverse transcription 
polymerase chain reaction (RT-PCR) and western blotting 
for these molecules in T cells. In this experiment, we used 
human hepatoma-derived cell line HepG2 which is known 
to express both SVCTs [30] as a reference to validate the data 
from T cells. RT-PCR revealed the expression of SVCT2, but 
not SVCT1 in human T cells (Fig. 1A). Furthermore, the 
expression increased after activation with PMA/ionomycin. 
Same results were obtained at the protein level, too (Fig. 1B). 
Again, when we immuno-stained T cells for SVCTs, signals 
for SVCT2, but not for SVCT1 were observed on the surface 
of naive T cells, becoming augmented 24 and 48 hours after 
activation (Fig. 1C).

Sodium-dependent vitamin C uptake in T cells
To functionally confirm the presence of SVCT2 in human 

T cells, we activated T cells for 48 hours and added 0.5 mM 
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Fig. 2. Vitamin C uptake by human T cells. Cells were activated with 
phorbol-12-myristate-13-acetate/ionomycin for 48 hours, re-allo-
cated in a various culture condition (4×106 cells/group), and added 
with vitamin C at a concentration of 0.5 mM. After 2 hours, cells were 
harvested and vitamin C concentration was measured using DNPH 
method. The experiment was repeated 3 times with triplicated sam ples 
per each experiment, and a representative one is presented. No VC, 
not treated with vitamin C; VC, treated with vitamin C; DTT+VC, 
treated with vitamin C in the presence of dithiothreitol (DTT); Na+ 
free buffer+VC, cells stayed in Na+ free buffer with vitamin C; Na+ free 
buffer+ DTT+VC, cells stayed in Na+ free buffer with vitamin C and 
DTT in it. **P<0.01.
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vitamin C. Because vitamin C is known to immediately be 
converted to DHA in culture media [31] and thus transported 
into cells via GLUTs, we added 3 mM dithiothreitol (DTT) in 
culture media to prevent the conversion. Also, in another well, 
we used Na+-free buffer to block the action of SVCTs. Two 
hours after vitamin C addition, cells were harvested and lyzed, 
and intracellular vitamin C concentrations were measured 
as described in “Materials and Methods.” With vitamin C 
addition, cellular level of it was substantially increased com-
pared to those without vitamin C addition (Fig. 2, left two 
bars). When DTT was added in culture media, vitamin C 
uptake was decreased (Fig. 2, middle bar) compared to those 
with vitamin C only, but still increased compared to those 
without vitamin C, reflecting the uptake via SVCTs, especially 

SVCT2 in this case. When the function of SVCTs was blocked 
by sodium-depletion (Fig. 2, second-to-the-right bar), it 
still showed substantial uptake of vitamin C, implicating the 
massive conversion of AA to DHA and absorption of it via 
GLUTs. Lastly, when transports via SVCTs and GLUTs were 
all blocked by sodium depletion and DTT addition (Fig. 2, 
right-most bar), cellular vitamin C level was similar to that 
without vitamin C. 

These results in concert indicate the presence of functional 
SVCT2 in human T cells.

The effects of vitamin C on T-cell proliferation added 
before and after activation

As vitamin C supplementation in human has been reported 
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Fig. 3. The effects of vitamin C on proliferation of human T cells. Cells (1×105/well) were plated in flat bottom 96-well and activated with 
phorbol-12-myristate-13-acetate (PMA)/ionomycin or anti-CD3 and anti-CD28 antibodies. Vitamin C was treated 2 hours before (A) or 24 
hours after activation (B) with various concentrations of vitamin C as indicated. [3H]-thymidine was added at 48 hours, cultured additional 16 
hours, and counter per minute (CPM) values were measured. The experiment was repeated three times and a representative one is shown. All the 
samples were quadriplicated. **P<0.01.
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to augment proliferating activity of human T cells [15, 21, 
32], we treated the cells with increasing concentrations of 
vitamin C, from a physiological concentration (62.5 mM [32]) 
to mega-dose (1 mM) for 2 hours, activated them with PMA/
ionomycin or anti-CD3/CD28 antibodies for 48 hours, and 
performed [3H]-thymidine uptake assay. As a result, T-cell 
proliferation did not show any discernable changes with low 
concentrations of vitamin C, but was inhibited with higher 
concentrations, that is, with 500 and 1,000 mM, regardless 
of the activation mode (Fig. 3A). This was against what was 
expected. 

We wondered whether the inhibitory effects of high con-
centration vitamin C were exerted at the beginning of acti-
vation, and/or during activation. Thus, we repeated same 
experiments with vitamin C being added 24 hours after 
activation. In this time, vitamin C did not affected T-cell pro-
lifera tion at all, regardless of the concentrations added (Fig. 
3B). 

To further analyze the time when treated vitamin C exer-
ted toxic effects, we added 1 mM vitamin C into 96-well 
cultures (1×105 cells/well) at 3, 6, 12, and 24 hours after 
activation with PMA/ionomycin, and [3H]-thymidine uptake 
analysis was performed. A partial toxic effect was observed 
with 3-hour treated group (Fig. 4). Thus, at least in vitro, 
high concentration of vitamin C was harmful for T-cell 

proliferation when it was given before activation and at least 
within 3 hours after activation.

Apoptosis induction by high concentration of vitamin 
C in human T cells

To elucidate whether the decreased thymidine uptake by 
T cells in the presence of high concentration vitamin C was 
due to cell death, T cells were cultured with the addition of 
1 mM vitamin C 2 hours before or 24 hours after activation 
using PMA/ionomycin. Cells were harvested 48 hours after 
activation and stained with Annexin V and PI, then subjected 
to flow cytometric analysis. About 30% of T cells without 
vitamin C showed apoptotic figures (Fig. 5, left panel), while 
those treated with vitamin C before activation showed nearly 
60% frequency of apoptosis (Fig. 5, middle panel). Again, T 
cells treated 24 hours after activation showed similar features 
to that of control group (Fig. 5, right panel), consistent with 
results shown in Figs. 3 and 4. 

Expression of T-cell activation markers with vitamin C 
treatment

Because high concentration of vitamin C induced apoptosis 
of T cells when it was given before activation, we raised a 
question whether the same condition affected the activation 
of survived T cells. Cells were activated with PMA/ionomycin 
and maintained for 24 hours, during which 1 mM vitamin C 
was added at various times before and after activation. After 
then, cells were stained for the surface expression of CD69 or 
CD25, the early activation markers of T cells, and subjected to 
flow cytometric analysis. As results, the expression frequency 
of CD69 was not affected by vitamin C treatment regardless 
of the application time. However, a decrease of the mean 
fluorescence intensity (MFI) value was observed in the pre-
treated group (–2 hours in Fig. 6). On the contrary, there was 
a marked decrease of CD25 expression frequency, almost 70% 
compared to the control group. A lowered MFI value also was 
observed in this group. 

IL-2 secretion with vitamin C treatment
Another hallmark of T-cell activation is the secretion of IL-

2, which is a trophic factor for T cells and is important for cell 
cycle progress and clonal expansion of T cells [33]. Thus, we 
evaluated the IL-2–secreting capacity of vitamin C–treated T 
cells. Cells (5×105/well) were plated and activated with PMA/
ionomycin. Vitamin C was added at 500 mM 2 hours before 
or 24 hours after activation. Super natans were obtained 36 
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Fig. 4. Human T cells (1×105 cells/well) were cultured in a 96-well 
plate and activated with phorbol-12-myristate-13-acetate (PMA)/
ionomycin. Cells were treated with 0.5 mM vitamin C 3, 6, 12, or 24 
hours after activation, added with [3H]-thymidine at 48 hours, cultured 
for addi tional 16 hours, and counter per minute (CPM) values were 
measured. All the samples were quadriplicated. The experiment was 
repeated three times and a representative one is shown. Control group 
was cultured without vitamin C treatment. **P<0.01. 
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forward-scattered light.
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hours after activation and IL-2 ELISA was performed. As 
results, pre-treatment of vitamin C substantially reduced 
IL-2 secretion, while after-treatment reduced it only slightly 
without statistical significance (P=0.11). 

Discussion

This study was performed to analyze the mode of vitamin 
C uptake in human T cells and to evaluate direct effects of 
vitamin C on these cells.

As previously described, vitamin C is taken up as DHA 
through GLUTs or as AA through SVCTs. That means DHA 
can be taken up by every kinds of cells. However, it is not 
the case for AA, because the specific transporters SVCT1 
and 2 are not present ubiquitously in the body but confined 
to some organs such as small intestine, liver, kidney, adrenal 
gland, brain, retina, and others [34]. The presence of SVCTs 
in human T cells remained uncertain until we observed 
the expression of functional SVCT2, but not SVCT1 in this 
experiment (Figs. 1, 2). In fact, the presence of SVCT1 and/
or SVCT2 in human T cells could be predicted based on 
previous reports. Peripheral blood lymphocytes, which 
are largely comprised of T cells [35], accumulate up to 80-
fold concentration of vitamin C compared to that in serum 
[22], and majority of vitamin C in the serum is present as its 
reduced form, AA [7], which together suggest the presence 
of a mechanism in T cells that actively takes up AA. Another 
report also support this prediction that lymphocytes transport 
vitamin C effectively and intracellular vitamin C seems to be 
saturated even under low dietary intake [36]. 

What is interesting is that the expression of SVCT2 in T 
cells increased after activation (Fig. 1). This suggests a certain 
beneficial role of vitamin C during T-cell activation. However, 
the results were against our expectation. That is, in vitro 
vitamin C did not augment the proliferation of T cells (Fig. 
3), contrary to what was observed in T cells from vitamin C–
supplemented men [15, 21]. Rather, at higher concentrations, 
pre-treated vitamin C decreased prolife ration, expression 
of activation markers, and IL-2 secretion. In addition. it 
increased the frequency of apoptotic cells following activation 
(Figs. 3–5). These results indicate an inhibitory role of pre-
teated high concentration vitamin C. Similar results have 
been reported previously in mouse T cells [18], in which 0.5 
mM vitamin C in culture media decreased proliferation and 
cytokine secretion (tumor necrosis factor a, interferon g, and 
IL-4), and in human peripheral T cells and lymphocytes [37, 

38], in which the presence of vitamin C decreased viability 
and IL-2 secretion. However, there is no explanation for these 
inhibitory effects. 

With activation, T cells begin to accumulate intracellular 
ROS within minutes [39], and the level peaks 1–2 hours after 
activation and then declines during the following 6 hours [40]. 
These ROS are mainly derived from mitochondria [41] and 
considered to be related to T-cell activation [24, 41]. Many 
investigators suggested the role of ROS by inhibiting T-cell 
activation using several kinds of anti-oxidants. Ferricyanide, 
iron chelators, or free radical scavenger (butylated hydro-
yanisole), when applied at the time of T-cell activation, all 
suppressed cell proliferation and CD25 expression [42]. 
Again, lipo-oxygenase inhibitors, hydroxyl radical scaven-
gers, or oxygen radical scavengers also suppressed T-cell 
proliferation and IL-2 secretion [43]. More specifically, 
blocking ROS formation using complex I inhibitors such as 
rotenone, or metformin, resulted in down-regulation of of 
IL-2, IL-4, and FasL [44, 45]. Because vitamin C also is an 
antioxidant, we could raise an assumption that the toxic effect 
of high concentration vitamin C, suppression of proliferation, 
IL-2 secretion, and CD25 expression, could be exerted by 
reducing intracellular ROS level. In fact, decrease of ROS level 
in human T cells has been reported by addition of 0.5 mM 
vitamin C 30 minutes before activation in vitro [39]. 

However, the suppression of proliferation occurred at a too 
high concentration, 0.5 mM (Fig. 3). At this concentration, 
intracellular ROS was complete eradicated [39]. Thus, this 
suppression could be a result of pro-oxidant effects of vitamin 
C rather than anti-oxidant effects, because vitamin C acts not 
only as an antioxidant but also as a pro-oxidant, particularly 
at high concentrations [46]. 

Apoptotic profile also seems to deny anti-oxidant effects 
of vitamin C in this experiment. ROS is known to promote 
activation-induced cell death (AICD) of T cells by elevating 
FasL expression and down-regulation of Bcl-2 [23, 47]. These 
effects are via activation of nuclear factor of activated T cells 
and NF-kB, respectively. Thus, antioxidants suppressed AICD 
[48, 49]. Our results showed increased frequency of apoptosis 
with vitamin C pre-treatment (Figs. 2, 3), contrary to the 
above-mentioned reports.

Based above considerations, we assume that pre-treated 
vitamin C did not exert anti-oxidant effects during T-cell 
activation at given concentrations. Instead, it seems to act as a 
pro-oxidant at high concentrations.

The question is that why vitamin C, even at lower concen-
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trations, did not exert any effects at all, even though it is 
certainly an “anti-oxidant” and vividly taken up by those cells 
(Fig. 2). One possibility is that there are various kinds of anti-
oxidant systems already set. Those include enzymes such as 
syperoxide dismutase, catalase, glutathione peroxidase and 
so on, and non-enzymatic small molecules such as pyruvate, 
a-ketoglutarate, and oxaloacetate [50]. Thus, exogenous 
vitamin C might have no chance to affect mitochondrial ROS 
that is essential for T-cell activation [41]. Or, more probably, 
ascorbate did not interfere ROS needed for T-cell activation. 
As an anti-oxidant, ascorbate reacts with single oxygen to 
clear it up to yield superoxide, which immediately converts 
to H2O2 [51]. These superoxide and hydrogen peroxide are 
regarded as predominant mitochondrial ROS acting in T-cell 
activation [52, 53]. Thus, absorbed vitamin C could elevate 
the ROS signal level, instead of lowering it. For now, it is 
uncertain what the exact mechanism via which vitamin C 
exerts its toxic effects is. To be noted is that the toxic effects 
did appear only when it was given before or immediately 
after activation (Figs. 3, 4, 6, 7). Further studies are needed 
and would be better to be focused at the initial stage of T-cell 
activation.

In conclusion, we found the expression of SVCT2 in 
human T cells, which level increased with activation. In addi-
tion, we also found that vitamin C did not act as anti-oxidant 
but exerted toxic effects with high concentrations during 
the initial phase of human T-cell activation. Whether these 
phenomena are reflected in vivo is to be determined.
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