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� Drugs with only strong and moderate safety profiles can be repurposed for COVID-19 or any other disease targets.
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A B S T R A C T

Safe and effective oral formulation of a drug, that is easy to store, transport, and administer, is imperative to reach
the masses including those without adequate facilities and resources, in order to combat globally transmitted
coronavirus disease 2019 (COVID-19). In this decision analytic modeling study, the safety of investigational
COVID-19 drugs in clinical trials was assessed using the Abbreviated Profile of Drugs (APOD) methodology. The
method was extensively tested for various unbiased datasets based on different criteria such as drugs recalled
worldwide for failing to meet safety standards, organ-specific toxicities, cytochrome P450 inhibitors, and Food
and Drug Administration (FDA) approved drugs with remarkable successes. Experimental validation of the pre-
dictions made by APOD were demonstrated by comparison with a progression of multiparametric optimization of
a series of cancer drugs that led to a potent drug (GDC-0941) which went into the clinical development. The drugs
were classified into three categories of safety profiles: strong, moderate and weak. A total of 3556 drugs available
in public databases were examined. According to the results, drugs with strong safety profiles included molnu-
piravir (EIDD-2801), moderate safety profiles included dexamethasone, and weak safety profiles included lopi-
navir. In this analysis, the physicochemical-pharmacokinetic APOD fingerprint was associated with the drug
safety profile of withdrawn, approved, as well as drugs in clinical trials and the APOD method facilitated decision-
making and prioritization of the investigational treatments.
1. Introduction

An oral formulation, like a tablet or a capsule, is preferred to an
injectable because it is durable, cost-effective, and easy to administer
when considering the global pandemic such as coronavirus disease 2019
(COVID-19), where availability of adequate facilities and resources in
certain parts of the world could be a challenge. COVID-19 is an infectious
disease caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). Infection prevention and control are at the forefront of
public health response efforts. Presently, there are no drugs approved by
the U.S Food and Drug Administration (FDA) to treat COVID-19.
19 May 2021; Accepted 23 July 2
evier Ltd. This is an open access a
Numerous therapeutics are currently being tested in clinical trials to
evaluate the safety and effectiveness against COVID-19.

An ideal oral drug is one that is rapidly and completely absorbed from
the alimentary canal, explicitly distributed to its site of action in the
body, metabolized in a way that does not instantly remove its activity,
and eliminated suitably, without causing any harm (Hodgson, 2001). It is
estimated that nearly half of the drugs in the development fail to make it
to the market due to poor safety (Hodgson, 2001). The laboratory tech-
niques used to determine drug safety are time-consuming. The tell-tale
signs of drug safety are in the actual makeup of the drug itself. Finding
these characteristics requires a careful and exhaustive search of strong
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experimental evidence reported in scientific literature. Applying this
critical information is yet another challenge.

An ideal drug also has a strong safety profile and high biological ac-
tivity (Singal et al., 2014). The safety profile is usually determined using
pharmacokinetics by studying the movement of the drug in the body
including in the processes of absorption, distribution, metabolism, and
excretion of drugs. Drugs with a strong safety profile have fewer side
effects. An example is penicillin, which is virtually nontoxic, even in large
doses (Wilkowske, 1977). Drugs with a weak safety profile have adverse
side effects. An example is mibefradil (posicor), which was a drug used
for the treatment of hypertension and was withdrawn from the market
within a year after it was first released following a spate of danger-
ous/lethal effects (CDER, 2004). Drugs can produce physicological ef-
fects by initiating, inhibiting, modulating, or enhancing the basal
biological activity in cells. Drug activity relates to its pharmacodynamics,
the ability to bind to its target, and its dose. In this sense, a highly
effective drug can cause a change in the behavior of the cell in a given
tissue with only a small amount of the drug. On the other hand, an
ineffective drug does not change the behavior of the cell or a large
amount of the drug may be required to see a comparable change. A risky
drug with adverse side effects has a weak safety profile, no matter how
effective the drug is. An undesirable drug has a weak safety profile and
low biological activity. Naturally, undesirable drugs should be identified
early and eliminated promptly in the drug discovery process.

Laboratory techniques routinely used in the evaluation of the safety
profiles of drugs are the major cause of slowdown in the evaluation
process. These techniques include enzyme assays, cell culture, trans-
location, immunoblotting, and phosphoprotein immunoassay on cell
lines, among others (Raynaud et al., 2009). They should be limited to as
small a number as possible of promising drugs.

The APOD method allows a rapid evaluation of drug safety in a uni-
fied and cohesive way. It has been described in detail in an earlier article
(Hiremath, 2007). Lipinski's rule of five (Ro5) with four conditions
(Lipinski et al., 1997) was not adequate in revealing the drug-like char-
acteristics of compounds. In the spirit of number five, Hiremath's rule
(Hiremath, 2007) included the fifth condition with comprehensive polar
surface area less than 150 Å2 to Ro5. Briefly, APOD uses the drug's
chemical properties for a mathematical model to predict its pharmaco-
kinetic properties. In this approach, all the properties – physicochemical,
biological, pharmacokinetic –were on the same scale from 0 to 9, thereby
making any direct comparison possible. Analogous to the identification
of high blood pressure as a significant risk factor for heart disease, this
method relies on the vast number of proven studies and a comprehensive
knowledge base (Lipinski et al., 1997; Lombardo et al., 2003; Pajouhesh
and Lenz, 2005; Stenberg et al., 2001; Waterbeemd et al., 2001). For
example, it is known that higher lipophilicity of compounds leads to
increased metabolism and poor absorption, along with an increased
probability of binding to undesired hydrophobic macromolecules,
thereby increasing the potential for toxicity (Pajouhesh and Lenz, 2005).
Such interplay of chemical and pharmacokinetic properties has been
integrated into the APOD approach.

Currently, the ADMET-related in silico models predict tens to thou-
sands of descriptors in different representations and units leaving a user
in a maze of properties with ambiguous and indecisive outcomes (Gola
et al., 2006). Machine learning-based methods, such as PrOCTOR and
TargeTox, that are target-driven drug toxicity prediction methods rely on
biological interaction networks which can limit their effectiveness due to
incomplete information about all possible bound proteins (Gayvert et al.,
2016; Lysenko et al., 2018). The challenges of applying machine learning
lie primarily with the lack of interpretability and repeatability of its re-
sults, which may limit their application (Vamathevan et al., 2019). With
machine learning algorithms prediction, there is always a concern with
overfitting or underfitting (Patel et al., 2020). On the other hand, the
wider knowledge-based APOD methodology uses the most critical
2

properties and provides a clear verdict (Hiremath, 2007). Holistically,
APOD provides biological insight not only into absorption, distribution,
metabolism, excretion, and toxicity of a drug but also its exact placement
in the spectrum of drug safety profiles.

SwissADME is a web tool to predict physicochemical properties,
pharmacokinetics and drug-likeness (Diana, Michielin and Zoete, 2017).
It provides easy input and interpretation but it does not predict toxicity.
Additionally, APOD is easy to use and allows for prediction of all ADMET
properties and prioritization of molecules.

There are numerous commercial computational tools available to
predict ADMET behavior (Wu et al., 2020). Quantitative structur-
e–activity relationship (QSAR) employs mathematical models to describe
relationships between molecular structures and their biological activ-
ities. Although the use of QSAR models has made considerable progress
in ADMET prediction, it is limited by its model expansion capability, and
large experimental data are always needed for model construction; the
narrow data distribution may induce over fitting and lead to inaccurate
prediction results (Wu et al., 2020). On the contrary, APOD only uses
readily available physicochemical data of the drug and it also offers
model expansion capability.

This decision analytical model study explores the association of
physicochemical-pharmacokinetic fingerprint with the drug safety pro-
file for the COVID-19 related drugs in clinical trials and assesses whether
Abbreviated Profile of Drugs (APOD) method can facilitate decision-
making and prioritization of the investigational treatments. The molec-
ular mechanisms of action and pharmacodynamics are beyond the scope
of this study.

2. Theory

2.1. APOD knowledge base

The Hiremath “rule of five” are a set of five rules that the properties of
a compound should satisfy to be drug-like (Hiremath, 2007). First, the
molecular weight (W) should be less than 500 Da. Second, the number of
hydrogen-bond acceptors/receivers (R) should be less than 10. Third, the
number of hydrogen-bond donors/givers (G) should be less than 5.
Fourth, the value of octanol-water partition coefficient (L) should be less
than 5. Fifth, the comprehensive polar surface area (S) should be less than
150 Å2.

Presently, the physicochemical knowledge base X as a function of the
modifiable property limits is given by the Hiremath's rule

X¼

2
6666664

lower upper
W 0 500
R 0 10
G 0 5
L 0 5
S 0 150

3
7777775

[1]

where, W is the molecular weight, R is hydrogen-bond acceptors (re-
ceivers), G is the hydrogen-bond donors (givers), L is the octanol-
water partition coefficient, and S is the comprehensive polar surface
area. The lower limit for most properties is zero because the values for
properties such as molecular weight, hydrogen-bond acceptors and
donors, and comprehensive polar surface area cannot be negative.
However, for some compounds the partition coefficient can be
negative.

Based on the physicochemical knowledge base, each property is
expressed in A-POD format by dividing the actual value of the compound
property by its upper limit and then multiplying by the number ten. In
order to obtain a single number, the normalized value must then be
rounded off (“abbreviated”) to the lowest integer.

The pharmacokinetic knowledge base Y as a function of the physi-
cochemical properties is best represented by
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A �2 0 0 �2 þ17

Y ¼

2

666664
D 0 0 0 �2 þ1
M þ1 þ1 þ1 þ1 0
E �1 0 0 �1 0
T 0 0 0 þ1 �1

3

777775
(2)

where, A is the absorption, D is the distribution, M is the metabolism, E is
the excretion, and T is the toxicity. The number represents the weight
assigned to the property, and the positive and negative signs indicate
direct and inverse correlations, respectively.

Empirically, the APOD pharmacokinetic estimation based on the
pharmacokinetic knowledge base Y is performed by the equation

ΠðΓÞ ¼
P

βi ½ 9ð2� αiÞ þ Γið�1Þαi �P
βi

(3)

where,П is the APOD pharmacokinetic property, Г is the APOD chemical
property, i is the number of chemical properties, α is the favorability
factor (2 if favorable, 1 if unfavorable), β is the weighting factor, and Σ is
summation.

The APOD indicator knowledge base Z as a function of the pharma-
cokinetic properties is currently represented by

Z¼

2
6666664

Benefit Risk
A þ1 0
D þ1 0
M 0 0
E 0 �1
T 0 þ1

3
7777775

(4)

Empirically, the APOD score is computed using the equation

ΩðПÞ ¼
P

βk ½9ð2� αkÞ þ Пkð�1Þαk �P
βk

(5)

where, Ω is the APOD indicator, П is the APOD pharmacokinetic prop-
erty, k is the number of pharmacokinetic properties, α is the favorability
factor (2 if favorable, 1 if unfavorable), β is the weighting factor, and Σ is
summation.

It is important to note that the knowledge base can be easily modified
at any time to update, improve, and evolve.

The pharmacokinetic knowledge base can be customized to specific
needs, such as intravenous route, organ-specific toxicities, etc. The
immediate goal for any pharmaceutical formation is to get the
absorbed drug into the bloodstream. For an oral route, the drug should
be able to first survive the low pH of the gastrointestinal tract, and
then diffuse across the cell membrane (lipid bilayer) which limits the
molecular size. When a drug is intravenously administered, the cus-
tomization of the knowledge base could involve allowing for lower
lipophilicity and higher molecular size with appropriate weights based
on their relative importance, for example. The power of the rule-based
APOD method is due to the fact that it captures such knowledge of
human experts in a specialized domain, through solid demonstrated
scientific literature, in the form of explicitly stated and static model of
a domain. From this practical perspective, since we do not need to
simulate intelligence, the statistical and probabilistic methods are not
necessary here.

An interactive web tool with easy input and interpretation of results is
freely available through the website https://apodvision.com/apod/apo
d.pl.

2.2. APOD methodology

In the APOD approach (Hiremath, 2007), the physicochemical
properties are normalized with respect to the upper limit of the corre-
sponding properties. The resulting value for each property is multiplied
3

by the number ten and then rounded off (“abbreviated”) to the lowest
integer. The property values that are violated are set to the upper limit 9
in the APOD representation.

The biological activity (B) is the concentration of the drug needed to
produce a biological effect on a specific target. These values are
different in various targets such as humans, rats, mice, rabbits, and
monkeys. The input for biological activity is in nanomolar units,
accepting values from 0 to 9999. So, the highest value in biological
activity correspond to lowest efficacy and the lower values in biological
activity correspond to higher efficacy of drug. In contrast, the increase
in the APOD value represents the increase in biological activity or ef-
ficacy of the drug. The inverse relationship is converted into a direct
relationship by considering the one-minus-activity values. In order to
easily identify the activity ranges, two groups with 5 values were
implemented; the micro-molar concentrations corresponding to APOD
values from 0 to 4, and the nano-molar concentrations corresponding to
APOD values from 5 to 9.

2.3. Numerical-APOD

The numerical representation (N-APOD) is concatenation of all
property values as a single entity in terms of a fingerprint
(WRGLSBADMET).

2.4. APOD score

The benefit and risk associated values for the drug are determined
separately based on the individual APOD values associated with phar-
macokinetic properties. The APOD score is a pair of APOD values that
represents benefit and risk presented by a drug and indicates whether the
drug would be suitable as a therapeutic.

3. Materials and methods

For analysis, the needed drugs were downloaded as a 2D Structure
Data Format (SDF) file using PubChem, an open chemistry database at
the United States National Institutes of Health (NIH). The SDF file was
input into the online APOD program to calculate the APOD score of the
drug. The market drugs recalled for failing to meet safety standards,
cytochrome P450 inhibitors, as well as the FDA approved drugs, were
used as controls and analyzed using the A-POD approach first. Then,
COVID-19 related drugs in clinical trials were analyzed.

3.1. Data sources

Using FDA approved drugs (Drugs@FDA), the drugs were searched
and a list was created. The Center for Drug Evaluation and Research,
2004 Report to the Nation was downloaded from the U.S. Department
of Health and Human Services, Food and Drug Administration. The list
of safety-based New Molecular Entity (NME) withdrawals comprised of
24 drugs from 1976 to 2005 (CDER, 2004). All drugs were included.
Using the National Institute of Health (NIH), U.S. National Library of
Medicine, the COVID-19 drugs were searched and a list of drugs was
created.

3.2. Drug chemical properties data

First, using PubChem, the drug namewas entered into the search field
(PubChem). After browsing through the output, the relevant drug was
selected. The default drug data available in the 2D Structure Data Format
(SDF) was downloaded to the local computer. The chemical-data file
contains a large number of associated data. The only associated data
needed for analysis are: pubchem_molecular_weight, pubchem_-
cactvs_hbond_acceptor, pubchem_cactvs_hbond_donor, pubchem_xlogp3,
and pubchem_cactvs_tpsa. The pubchem_compound_cid, a unique drug ID

https://apodvision.com/apod/apod.pl
https://apodvision.com/apod/apod.pl


Table 1. Data sets.

PubChem Search Counts (n) Safety Profiles Success (%)

Strong Moderate Weak

1 Withdrawn, worldwide 152 11 27 114 75.0

2 Withdrawn, used in other countries 71 4 13 54 76.1

3 Withdrawn, FDA historic 24 4 0 20 83.3

4 Liver toxicity, FDA (withdrawn) 52 2 12 38 73.1

5 Cardiotoxicity, severe (withdrawn) 30 2 6 22 73.3

6 Hepatotoxicity, US (withdrawn) 14 0 4 10 71.4

7 Hepatotoxicity, non-US (withdrawn) 24 0 5 19 79.2

8 Nephrotoxicity, acute 10 2 0 8 80.0

9 Cytochrome P-450 inhibitors 40 1 0 39 97.5

10 FDA approved 808 170 261 377 53.3

11 COVID-19 1474 558 427 489 *

12 COVID-19 clinical trials 401 81 78 242 *

13 FDA COVID-19 clinical trials (early) 49 8 13 28 *

14 FDA COVID-19 clinical trials 273 55 57 161 *

15 Promising EIDD-2801, similar structures 134 121 11 2 98.5*

Total compounds analyzed 3556

* No oral COVID-19 related drugs have been approved or withdrawn by FDA or other agencies.
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was available. Since the name of the drug was not available in the
associated data, pubchem_common_name was added and the drug name
was entered manually by editing the SDF text file and saved; pub-
chem_bioactivity was also added. Even though, it was not required for the
pharmacokinetic analysis, if the experimental information for bioactivity
was available in the “Biological Test Results” section of PubChem entry
or literature, it was entered as well. This was repeated for all the
necessary drugs for the study. Datasets were created after excluding
duplicates, synonyms, and monoclonal antibodies such as bevacizumab,
Table 2. Withdrawn, FDA historic.

PubChem (CID) Category and drug

Strong/moderate safety profile

1 4369359 Azaribine

2 72474 Grepafloxacin

3 4474062 Flosequinan

4 60021 Temafloxacin

Weak safety profile

5 2099 Alosetron

6 5090 Rofecoxib

7 119607 Valdecoxib

8 60726 Bromfenac

9 4528 Nomifensine

10 5359 Soprofen

11 5733 Zomepirac

12 39941 Benoxaprofen

13 446156 Cerivastatin

14 2769 Cisapride

15 3337 Fenfluramine

16 38409 Ticrynafen

17 48041 Encainide

18 5591 Troglitazone

19 15130 Levomethadyl

20 2247 Astemizole

21 5282375 Etretinate

22 60663 Mibefradil

23 5311399 Rapacuronium

24 5405 Terfenadine

4

eculizumab, mavrilimumab, meplazumab, sarilumab, siltuximab, and
tocilizumab.

3.3. Datasets

For a specific dataset, text searches with the drug name in Pub-
Chem was first performed. Then a list of PubChem identifiers (CIDs)
was used as input to PubChem search to view and download records as
a SDF.
APOD Score (Benefits-Risks) N-APOD (WRGLSBADMET)

7–2 79209069450

6–3 77404957452

5–3 45023055264

5–4 89414046543

4–4 52233045354

4–4 64044044344

4–5 65256044434

3–5 64465033535

3–5 42251033346

3–5 54265033435

3–5 53253033345

2–6 64284022526

2–6 97676023715

2–6 97465023615

2–6 44260032447

2–6 65286022525

1–7 73282011517

1–7 86497012605

1–8 73081011418

0–8 95292000608

0–8 73092010418

0–8 96294901607

0–8 95093901507

0–8 93492000608
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3.4. Safety profile analysis

All the drug files were stored together in a sub directory where the
program resided. Using APOD, a specific drug or dataset was selected and
submit button was clicked.
3.5. Outcomes

The primary outcome were the physicochemical-pharmacokinetic
fingerprint and drug safety profile, numerical-APOD (N-APOD) and
APOD score, respectively. The individual values in the N-APOD were
interpreted based on the PubChem entries or scientific literature if
available.
3.6. Success criteria

Two separate success criteria were used. For withdrawn drugs, the
ratio of the number of weak drugs predicted to the number of drugs in a
specific data set was multiplied by 100. Similarly, for approved drugs, the
ratio of the number of strong/moderate drugs predicted to the number of
drugs in a specific data set was multiplied by 100.

4. Results and discussion

4.1. Association of physicochemical-pharmacokinetic fingerprint and drug
safety profile

The numerical APOD (N-APOD) included individual physicochemical
and pharmacokinetic indicators. The independently determined APOD
score was the sole indicator of drug safety. Based on the APOD score, a
drug was classified into one of three categories: strong, moderate and
weak. For a drug with a strong or moderate safety profile, the APOD
value associated with the benefit (first number) was greater than the
APOD value associated with the risk (second number). When the differ-
ence between the two indicators was large (greater than 4), the drug was
categorized as strong; and when the difference was small (less than or
equal to 4), it was categorized as moderate. On the contrary, for a drug
with a weak safety profile, the risk indicator (second number) was
5

greater than the benefit indicator (first number) in the APOD score,
irrespective of the difference between the two indicators.

A total of 3556 compounds from PubChem (https://pubchem
.ncbi.nlm.nih.gov/) comprising of various unbiased datasets were
analyzed based on different criteria such as drugs withdrawn, toxicity,
approved, and clinical trials (Table 1).

4.2. Withdrawn drugs

For the recalled drugs shown in Figure 1, such as nefazodone and
troglitazone, it was evident that the predicted APOD values (indicated by
arrows) for absorption (A), distribution (D), and excretion (E) were
smaller than those for toxicity (T). For these drugs, the APOD score (of
1–8) indicates that it was alarmingly risky. Justly, these drugs were
withdrawn due to the risk of hepatotoxicity. This pattern of the benefit
indicator dwarfed by the risk indicator was mostly consistent for the
recalled drugs, categorized under weak safety profile in Table 2. The
reasons to withdraw the drug from the market for safety reasons were
reported to be stroke, liver toxicity, fatal allergic reaction, hemolytic
anemia, flank pain syndrome, fatal arrhythmia, kidney failure, increased
deaths, heart value disease, severe constipation, breathing difficulty,
birth defects, and skin disease (CDER, 2004). Besides, manufacturers or
distributors usually implement voluntary recalls in order to carry out
their responsibilities to protect the public health when they need to
remove a marketed drug product that presents a risk of injury to con-
sumers or to correct a defective drug product (CDER, 2004). Out of 24
historic FDA withdrawn drugs, only 4 drugs - azaribine, grepafloxacin,
flosequinan, and temafloxacin - indicated false positives (categorized
under strong/moderate safety profile in Table 2). This indicates that the
APOD method had a success rate of 83.33 %.

Interestingly, the false positives for the 4 withdrawn drugs could be
due to that fact they seem to be non-ADMET related issues. Azaribine is a
prodrug, a biologically inactive compound which must be converted into
the pharmacologically active agent (that would usually have issues such
as poor aqueous solubility, instability, and other adverse effects or tox-
icities) by metabolic transformation (Wu, 2009). The most common
adverse events with grepafloxacin were gastrointestinal, such as nausea,
vomiting, and diarrhea (Lode et al., 1999). Flosequinan increased the
heart rate and neurohormonal activation (Packer et al., 2017).
Figure 1. Graphical-APOD (G-APOD) represen-
tation of recalled drugs. (A) Nefazodone (B)
Troglitazone. The bars in red correspond to the
APOD values associated with chemical properties
comprising of molecular weight (W), hydrogen-
bond acceptors (R), hydrogen-bond donors (G),
octanol-water partition coefficient (L), and
comprehensive polar surface area (S). The bar in
green in the middle corresponds to the APOD
value associated with the biological activity
property (B). The bars in blue correspond to the
predicted APOD values associated with pharma-
cokinetic properties comprising of absorption
(A), distribution (D), metabolism (M), excretion
(E), and toxicity (T). The numerical representa-
tion (N-APOD) is the height of the bars for each of
the properties as a single entity in terms of a
fingerprint (WRGLSBADMET). The two drugs
have the N-APOD of 95083911507 and
86497812605, respectively. The benefit and risk
associated values for the drug are determined
separately based on the pharmacokinetic prop-
erties and represented in the APOD score. The
two drugs have the APOD-score of 1–8 and 1–7,
respectively.

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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Temafloxacin was withdrawn due to immune hemolytic anemia (Blum
et al., 1994).
4.3. Adverse effects

Ninan and Wertheimer compared the drugs banned in the U.S. versus
the drugs banned in other prominent countries and showed that drug
withdrawal is an important task that involves continued surveillance and
pharmacovigilance and is as important as the process of drug discovery
and production (Ninan and Wetheimer, 2012). Based on this expanded
list of 152 drugs withdrawn worldwide, the APOD success rate was
75.0 %.

The World Health Organization (WHO) recommends that the coun-
tries carefully select the medicines to be included in their national
essential medicines lists. Charles and others studied essential medicines
list and found countries still use medicines that have been withdrawn
worldwide (Charles et al., 2019). These 71 drugs indicated the APOD
success rate of 76.1 %.

Drug-induced liver injury (DILI) is one of the major safety concerns
for drug developer, regulators and clinicians. Chen and others have
created a reference drug list with sufficient number of drugs that are well
annotated based on their DILI risk in humans (Chen et al., 2016). Based
on the 52 withdrawn drugs in the FDA drug induced liver injury rank
(DILIrank) dataset (fda.gov), the APOD success rate was 73.1 %.
Table 3. Withdrawn drugs due to severe cardiovascular effects.

PubChem (CID) Category and drug

Strong safety profile

1 16574 Azaribine

2 135413539 Tegaserod maleate

Moderate safety profile

3 71329 Dofetilide

4 72474 Grepafloxacin

5 39371 Levomethadyl acetate HCl

6 60662 Mibefradil dihydrochloride

7 4086 Orciprenaline

8 60464 Sparfloxacin

Weak safety profile

9 2247 Astemizole

10 2467 Buflomedil

11 2318 Benfluorex

12 10007 Chlorphentermine

13 6917698 Cisapride monohydrate

14 26602 Cloforex

15 26937 Clobutinol

16 66265 Dexfenfluramine

17 5702697 Dithiazanine iodide

18 48040 Encainide HCl

19 3337 Fenfluramine

20 47811 Pergolide mesylate

21 9801 Prenylamine

22 10100 Propoxyphene

23 5090 Rofecoxib

24 77999 Rosiglitazone

25 60149 Sertindole

26 5210 Sibutramine

27 5405 Terfenadine

28 23480 Terodiline

29 5452 Thioridazine

30 119607 Valdecoxib

6

Bayzigitov and others have compiled a list of drugs belonging to
various drug categories such as histamine antagonists, antipsoriatic
agent, peripheral vasodilator, anorectic and hypolipidaemic agent,
sympathomimetics, cough suppressant, antiobesity agents, and anthel-
mintic that have been withdrawn from market because of unexpected
severe side effects on cardiovascular system (Bayzigitov et al., 2016).
These 30 drugs (Table 3) indicated the APOD success rate of 73.3 %.

Guengerich has listed withdrawn drugs due to hepatotoxicity
(Guengerich, 2011). The 14 US and 24 non-US withdrawn drugs have the
APOD success rate of 71.4 % and 79.2 %, respectively.

Drugs are a common source of acute kidney injury, also known as
nephrotoxicity. Naughton has published the list of drugs withdrawn due
to nephrotoxicity (Naughton, 2008). These 10 FDA withdrawn drugs
have the APOD success rate of 80.0 %.
4.4. Cytochrome P450 inhibitors

Cytochrome P450 enzymes are essential for the metabolism of many
medications. These enzymes can be inhibited or induced by drugs,
resulting in clinically significant drug-drug interactions that can cause
unanticipated adverse reactions or therapeutic failures (Lynch and Price,
2007). All 40 drugs on the list of strong cytochrome P450 CYP3A4 in-
hibitors (Table 4) at the DrugBank (https://go.drugbank.com/cat
egories/DBCAT002647) yielded the APOD success rate of 97.5 %.
APOD Score (Benefits-Risks) N-APOD (WRGLSBADMET)

7–2 79209069450

7–2 87909059650

5–4 88438046532

6–3 77404057452

5–4 73201046354

5–3 96604047542

6–3 44814066463

6–2 79606058551

0–8 95292000608

3–5 65043034345

0–8 76292010618

3–5 31251043256

2–6 97465023615

2–6 52272022437

2–6 52261032337

2–6 44260032447

2–6 94064023415

3–5 73432034445

2–6 44260032447

1–7 62282021427

0–8 61290010419

1–7 63081011428

4–4 64044044344

3–5 76266034524

1–7 83282011517

0–8 51090010329

0–8 93492000608

0–8 51290010429

1–7 74093011517

4–5 65256044434

http://fda.gov
https://go.drugbank.com/categories/DBCAT002647
https://go.drugbank.com/categories/DBCAT002647
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Interestingly, methimazole is a small molecule with 13 atoms and all its
chemical properties are at the lower end.
4.5. FDA approved drugs

For the FDA approved drugs (Drugs@FDA) shown in Figure 2, such as
tylenol and cipro, the trends were opposite. For these drugs, the APOD
score of 6–2 indicates that these drugs had a moderate safety profile. This
pattern of the benefit indicator outweighing the risk indicator was
consistent for the FDA approved drugs (partial list) shown in Table 5.

For a total of 808 FDA approved drugs in PubChem, the number of
drugs with strong, moderate, and weak safety profiles were 170, 261, and
377, respectively, yielding a success rate of 53.3 %. At first glance, it may
seem that FDA approved drugs represent uniform number of drugs across
the safety spectrum. These compounds bring to attention the importance
Table 4. Cytochrome P450 CYP3A4 inhibitors.

PubChem (CID) Category and drug

Strong safety profile

1 1349907 Methimazole

Weak safety profile

2 71616 Voriconazole

3 3002190 Telithromycin

4 456201 Ketoconazole

5 4449 Nefazodone

6 3793 Itraconazole

7 84029 Clarithromycin

8 441243 Saquinavir

9 213039 Darunavir

10 468595 Posaconazole

11 92727 Lopinavir

12 3010818 Telaprevir

13 11625818 Idelalisib

14 25151504 Cobicistat

15 5311454 Stiripentol

16 969516 Curcumin

17 392622 Ritonavir

18 151171 Conivaptan

19 202225 Troleandomycin

20 64139 Efavirenz

21 148192 Atazanavir

22 54682461 Tipranavir

23 5284596 Naloxone

24 644241 Nilotinib

25 5625 Delavirdine

26 3955 Loperamide

27 44631912 Ribociclib

28 11285588 Danoprevir

29 5277135 Elvitegravir

30 9829523 Midostaurin

31 5405 Terfenadine

32 8223 Ergotamine

33 3198 Econazole

34 8987 Ditiocarb

35 5362440 Indinavir

36 64143 Nelfinavir

37 10324367 Boceprevir

38 28417 Danazol

39 39186 Diltiazem

40 148195 Lonafarnib
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of context when considering toxicity events. In general, more frequent
and serious side effects will be acceptable for drugs that are used to treat
severe and otherwise untreatable conditions, such as cancer (Gayvert
et al., 2016). If we consider human disease as an imbalance in the system
with increased or decreased effects, then we need every tool in the
arsenal of approved drugs to correct or cure by inhibiting or inducing
changes to bring the system back into balance. After all, the ultimate goal
in finding a cure to a disease is maximizing benefits with minimal or no
adverse effects. Naturally, focusing more on the analysis of withdrawn
drugs is justified here.
4.6. Sensitivity

The APOD approach demonstrates remarkable sensitivity as well. As
indicated in Table 5, penicillin G, which was a commonly used penicillin
APOD Score (Benefits-Risks) N-APOD (WRGLSBADMET)

7–2 21203077183

4–4 68235045443

2–6 99289023704

1–7 96084012506

1–8 95083011507

1–7 99096012606

4–5 99869035813

2–6 97989023804

4–4 99659035722

1–7 99297012705

1–7 95898012705

2–6 98889023804

2–6 87476023615

2–6 99699013804

2–6 43272032437

3–5 76466034524

2–6 99899013804

1–7 93495011606

2–6 99089023604

1–7 65282021527

2–6 99999013904

1–7 99497012705

4–4 65444044444

1–7 99496012706

4–5 97647035623

0–8 93292000508

4–4 87446035533

4–5 99669035713

1–7 87495011706

1–7 94295011606

0–8 93492000608

4–5 96647035623

0–8 72091010418

4–4 22232054265

4–5 97857035723

1–7 96898012805

4–5 95869035713

2–6 63273022426

2–6 86065023525

1–7 93295011506



Figure 2. G-APOD representation of FDA approved drugs. (A) Tylenol (B) Cipro.

Table 5. FDA approved drugs as a positive control.

PubChem (CID) Category and drug APOD Score (Benefits-Risks) N-APOD (WRGLSBADMET)

Strong safety profile

1 2088 Alendronate 8–1 48909079570

2 3639 Hydrochlorothiazide 8–1 57609079460

3 6249 Ampicillin 7–1 66609069460

4 27661 Isosorbide Mononitrate 7–1 36206078271

5 4091 Metformin 7–1 21606078281

6 60773 Valacyclovir 7–1 66609069460

7 33613 Amoxicillin 7–2 77809069550

8 6915944 Cefdinir 7–2 79809069650

9 27447 Cephalexin 7–2 66619068450

10 54671203 Doxycycline 7–2 89909059650

11 3001055 Ranitidine 7–2 67407068461

Moderate safety profile

12 23664709 Penicillin G 6–2 75217957351

13 5904 Penicillin (Parent) 5–3 65437956442
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derivative (sodium or potassium salts) on the market, had an APOD score
of 6–2, whereas the parent, penicillin, had an APOD score of 5–3,
matching with comparatively lower benefit and higher risk.

4.7. Experimental validation with series of cancer drugs

Raynaud and others showed a progression in multiparametric opti-
mization of a series of cancer drugs from PI-103 through PI-540 and then
to GDC-0941 (Raynaud et al., 2009). Based on the pharmacokinetic
methods such as enzyme assays, cell culture, translocation, immuno-
blotting, and phosphoprotein immunoassay on cell lines, it was suc-
cessfully shown that their data support the development of an improved
drug GDC-0941 as a potent drug which went into the clinical develop-
ment (Raynaud et al., 2009). Their optimized derivatives exhibited im-
provements in antitumor efficacy, solubility, bioavailability, and
Table 6. Progression of the series of cancer drugs.

PubChem (CID) Category and drug

Weak safety profile

1 9884685 PI-103

2 11669062 PI-540

Moderate safety profile

3 17755052 GDC-0941
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metabolism with high tissue distribution in mice; the fast plasma and
tissue clearance were attributed to the rapid glucuronidation of phenol
group. GDC-0941 showed limited microsomal metabolism, resulting in
78 % oral bioavailability (Raynaud et al., 2009). The APOD scores in
Table 6 indicate a consistent improvement in benefits-indicator and
reduction in risks-indicator, providing a real-world practical application
of the APOD methodology. The APOD scores for PI-103, PI-540, and
GDC-0941 are 3–5, 4-4, and 5–3, respectively. The APOD values for the
two compounds, PI-103 and GDC-0941 as shown in Figure 3, there is
increase in APOD values associated with absorption (A) by 1 and distri-
bution (D) by 3, as well as decrease in APOD value associated the toxicity
(T) by 3. The changes in chemical properties that led to the changes in
pharmacokinetic properties is depicted by difference APOD (D-APOD) in
Figure 3C. The patterns and consistencies between the experimental
evidence and the independent APOD results are striking.
APOD Score (Benefits-Risks) N-APOD (WRGLSBADMET)

3–5 67255934534

4–4 88246935533

5–3 99239947531



Figure 3. Comparison of the starting drug and the improved drug using APOD. (A) PI-103 (B) GDC-0941 (C) Difference APOD (D-APOD).
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4.8. APOD guided optimization of drug safety profile

The improvement in the safety profile of the widely used penicillin G
is due to the potassium salt penicillin derivative. The progression of the
series of cancer drugs from PI-103 to clinical development candidate
GDC-0941 is due to the shift in the safety profile favorably (Figure 3C) by
increasing the polar surface area through rearrangement of the oxygen
atoms in the structure and addition of hydrogen-bond acceptors while
staying within the ideal property boundaries. This implies that the
existing effective drugs with weak safety profile can be modified into
effective drugs with moderate/strong profiles through the insights from
the APOD fingerprint and difference APOD, even before the molecule is
synthesized.
4.9. Analysis of COVID-19 related drugs in clinical trials worldwide

Since COVID-19 is an emerging, rapidly evolving situation, the
number of COVID-19 drugs in clinical trials also keeps evolving. At any
time, one can only get a snapshot. There are over 400 drugs being
repurposed for COVID-19 around the world. However, an analysis of
curated list of 68 investigational drugs related to COVID-19 in the
worldwide clinical trials (Table 7) showed that 11 drugs including mol-
nupiravir (also known as EIDD-2801) had strong safety profiles, 12 drugs
including dexamethasone had moderate safety profiles, and 45 drugs
including lopinavir had weak safety profiles. For the representative drugs
in the three categories, if we consider the drug profile spectrum going
from strong to weak, evidently the APOD values associated with ab-
sorption, distribution and excretion decrease whereas the APOD value
associated with toxicity increases (Figure 4). By sorting the APOD score
in the descending order for benefits and ascending order for risks, it is
possible to prioritize drugs on the basis of their APOD score (Table 7).
4.10. Strong safety profiles

A representative in the category of strong safety profiles is molnu-
piravir which includes avigan, aviptadil, azvudine, baricitinib, deferox-
amine, emtricitabine, galidesivir, riamilovir, ribavirin, and tenofovir
with their APOD scores ranging from 8–1 to 7–2.

Molnupiravir, previously EIDD-2801 or MK-4482, is a broad-
spectrum antiviral currently in phase III clinical trials. Recently, Wahl
and others have shown that molnupiravir dramatically inhibited human
coronavirus (SARS-CoV-2) replication in vivo and thus has significant
potential for the prevention and treatment of COVID-19 (Wahl et al.,
2021). Their results indicate that molnupiravir did not cause significant
mitochondrial toxicity. Molnupiravir has an APOD score of 7–1. Based on
its N-APOD, the APOD values associated with absorption, distribution
and toxicity were 6, 9 and 0, respectively. With improved oral
bioavailability in non-human primates, it is hydrolyzed in vivo, and
distributes into tissues where it becomes the active 50-triphosphate form
(PubChem).
9

For tenofovir, based on its N-APOD, the APOD values associated with
metabolism and toxicity were 4 and 0, respectively. Tenofovir has been
shown to be highly effective in patients that have never had an antire-
troviral therapy and it seemed to have lower toxicity than other antivirals
such as stavudine. In phase 3 clinical trials, tenofovir presented an effi-
cacy profile similar to efavirenz in treatment-naive HIV patients. In
hepatitis B infected patients, after one year of tenofovir treatment, the
viral DNA levels were undetectable. Tenofovir presents minimal meta-
bolic processing and it does not appear to be a significant cause of drug
induced liver injury (PubChem).
4.11. Moderate safety profiles

A representative in the category of moderate safety profiles is dexa-
methasone which includes AT-527, alpha lipoic acid, anakinra, apremi-
last, camostat, colchicine, dexamethasone, methylprednisolone,
oseltamivir, remdesivir, suramin, and thalidomide with their APOD
scores ranging from 6–2 to 5–4.

For remdesivir, based on its N-APOD, the APOD values associated
with metabolism and toxicity were 7 and 1, respectively. In a study, 537
patients hospitalized for severe COVID-19 who were treated intrave-
nously with compassionate-use remdesivir, clinical improvement was
observed and appears to have a favorable clinical safety profile (Grein
et al., 2020). However, it has also been reported that remdesivir was not
suitable for oral delivery as its poor hepatic stability, because it was
extensively metabolized, would likely result in almost complete first-pass
clearance; there were no liver changes in rats or monkeys; remdesivir was
non genotoxic in a standard battery of in vitro and in vivo studies (Grein
et al., 2020).
4.12. Weak safety profiles

A representative in the category of weak safety profiles is lopinavir
which includes abivertinib, acalabrutinib, arbidol, atorvastatin, atova-
quone, azithromycin, baloxavir marboxil, bemcentinib, chloroquine,
cholecalciferol, ciclesonide, clopidogrel, cobicistat, danoprevir, dar-
unavir, dihydroartemisinine, ebastine, fingolimod, glucocorticoid, gly-
cyrrhizinate, hydroxychloroquine, ifenprodil, imatinib, leflunomide,
levamisole, losartan, naproxen, nintedanib, omeprazole, piperaquine,
pirfenidone, prasugrel, RBT-9, ritonavir, rivaroxaban, ruxolitinib, seli-
nexor, simvastatin, tetrandrine, tofacitinib, tradipitant, triazavirin, val-
sartan, and vidofludimus with their APOD scores ranging from 4-4 to
0–8.

Liponavir is an antiretroviral protease inhibitor. Based on its N-APOD,
the APOD values associated with absorption, metabolism and toxicity
were 1, 7 and 5, respectively. Lopinavir has exceptionally low oral
bioavailability, undergoes extensive oxidative metabolism by hepatic
cytochrome P450, and can cause serious adverse effects (PubChem).
Researchers reported that liponavir/ritonavir caused significant liver
damage (Cao et al., 2020).



Table 7. Worldwide clinical trials related to COVID-19 treatments.

PubChem (CID) Category and drug APOD Score (Benefits-Risks) N-APOD (WRGLSBADMET) Country

Strong safety profile

1 10445549 Galidesivir 8–1 57909079560 US

2 3113817 Riamilovir 8–1 46209079370 US

3 37542 Ribavirin 8–1 47809079470 CN, US

4 464205 Tenofovir 8–1 58609079460 CN, US

5 24769759 Azvudine 7–1 57608068460 CN

6 60877 Emtricitabine 7–1 45407078371 CN, US

7 145996610 Molnupiravir 7–1 67809069560 US

8 492405 Avigan 7–2 34405077272 JP

9 16132300 Aviptadil 7–2 99909059640 EU, US

10 44205240 Baricitinib 7–2 77208068450 CA, EU, US

11 2973 Deferoxamine 7–2 99909059640 US

Moderate safety profile

12 5426 Thalidomide 6–2 54205067262 US

13 2536 Camostat 6–3 76429057441 JP, US

14 122527270 AT-527 5–3 99839047731 EU

15 864 Alpha lipoic acid 5–3 44235055353 CN

16 139595263 Anakinra 5–3 99629047631 AU, EU, US

17 65028 Oseltamivir 5–3 65426056452 US

18 121304016 Remdesivira 5–3 99839047731 AU, EU, US, WHO

19 5361 Suramin 5–3 99939047731 CN

20 11561674 Apremilast 5–4 97238046532 EU, US

21 6167 Colchicine 5–4 76225046443 US

22 5743 Dexamethasone 5–4 76636046543 UK, US

23 6741 Methylprednisolone 5–4 75636046543 US

Weak safety profile

24 213039 Darunavir 4–4 99659035722 US

25 26879 Levamisole 4–4 42032044255 US

26 4594 Omeprazole 4–4 66246045443 US

27 40632 Pirfenidone 4–4 31031054165 CN

28 25126798 Ruxolitinib 4–4 64245045444 CA, CN, US

29 9926791 Tofacitinib 4–4 65235045443 US

30 11285588 Danoprevir 4–5 99669035713 CN, EU

31 9875401 Rivaroxaban 4–5 86257035523 US

32 107770 Dihydroartemisinine 3–5 55253033445 CN

33 3495 Glycyrrhizinate 3–5 99979024813 CN

34 3899 Leflunomide 3–5 56253033445 CN

35 156391 Naproxen 3–5 43263033346 US

36 71481097 Selinexor 3–5 89466024624 US

37 52947239 Triazavirin 3–5 59499033624 CN

38 71226662 Acalabrutinib 3–6 96467024614 EU

39 124081896 Baloxavir Marboxil 3–6 99078024614 CN

40 9820008 Vidofludimus 3–6 75465033525 US

41 447043 Azithromycin 2–6 99989023804 AU, UK, US

42 60606 Clopidogrel 2–6 64073022426 CA, US

43 25151504 Cobicistat 2–6 99699013804 US

44 107970 Fingolimod 2–6 63684022526 US

45 3652 Hydroxychloroquine 2–6 64473022526 AU, UK, US, WHO

46 5291 Imatinib 2–6 97475013615 US

47 3961 Losartan 2–6 85486022615 US

48 6918456 Prasugrel 2–6 76074022526 CA

49 154731616 RBT-9 2–6 98476023715 EU

50 392622 Ritonavir 2–6 99899013804 AU, CN, UK, US, WHO

51 60846 Valsartan 2–6 86487023615 US

52 3689 Ifenprodil 2–7 63472022527 US

53 72734520 Abivertinib 1–7 98686012705 US

54 131411 Arbidol 1–7 95285012606 CN, US

55 60823 Atorvastatin 1–7 96897012805 US

(continued on next page)
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Table 7 (continued )

PubChem (CID) Category and drug APOD Score (Benefits-Risks) N-APOD (WRGLSBADMET) Country

56 74989 Atovaquone 1–7 73293011517 US

57 46215462 Bemcentinib 1–7 97496012706 US

58 6918155 Ciclesonide 1–7 97296012606 US

59 11502129 Glucocorticoid 1–7 77694011717 CN

60 92727 Lopinavir 1–7 95898012705 AU, CN, UK, US, WHO

61 135423438 Nintedanib 1–7 97486012705 US

62 54454 Simvastatin 1–8 85294011607 CA

63 2719 Chloroquine 0–8 63291010518 AU, CN, EU, US, WHO

64 5280795 Cholecalciferol 0–8 71291010418 CA

65 3191 Ebastine 0–8 93091000508 CN

66 122262 Piperaquine 0–8 96092000608 CN

67 73078 Tetrandrine 0–8 98094001607 US

68 9916461 Tradipitant 0–8 99094001607 US

Drugs are oral formulations unless indicated.
a Injection.

Figure 4. G-APOD representation of COVID-19 related drugs in clinical trials. (A) Molnupiravir (B) Dexamethasone (C) Lopinavir. The drugs were classified into three
categories of safety profiles: strong, moderate and weak.
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4.13. Success rate

In this study, a mathematical model was used to investigate whether
the physicochemical-pharmacokinetic fingerprint was associated with
the drug safety profile for investigational treatments of COVID-19. The
model was specific for oral formulations of a drug and relies on the best-
known scientific data available on a large number of property-safety
relationships to predict the pharmacokinetic outcome of a drug. The
APOD method encapsulates these associations in a fingerprint of drug
and the APOD score reveals the drug safety. For a variety of 417 recalled
drugs for failing to meet safety standards demonstrated that the
physicochemical-pharmacokinetic fingerprint was associated with the
drug safety profile, with an average success rate of 78 %. The classifi-
cation of a large number of investigational treatments of COVID-19 into
three categories of drug safety profiles, namely strong, moderate, and
weak, was also achieved.
4.14. Global trials

World Health Organization (WHO) had announced a large global trial
called Solidarity for the 6 (Table 7) promising coronavirus drugs to find
out whether they could treat infections with the new coronavirus for the
dangerous respiratory disease. As presented here, remdesivir had a
moderate safety profile; hydroxychloroquine, chloroquine, and lip-
onavir/ritonavir had a weak safety profile. These safety profiles were
consistent with the observations reported (Cao et al., 2020).
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4.15. Repurposing

FDA approved drugs comprise of safe as well as weak drugs. Drugs
with weak safety profiles cannot be repurposed. The safety is an inherent
characteristic of the drug, arising purely from the chemical property.
Hence, the APOD score is independent of the disease target. Drugs with
strong and moderate safety profiles can be repurposed for other disease
targets.
4.16. APOD screening

High throughput screening (HTS) involves the screening of a large
compound library directly against the drug target using a cell-based
essay. Currently, all compounds are screened for all diseases in the
early stages of drug discovery. Due to the iterative nature of the drug
discovery process, this has a risk of starting with a set of unsafe drugs
with weak safety profiles, thereby wasting precious time and resources.
In future, it is recommended that the large compound library databases
are screened using the APOD method and a small subset are created for
initial screening against a new disease target. This sets a path with much
greater success of drug for human therapeutics use.
4.17. Limitations of the study

As demonstrated, the APOD methodology predicts cardiotoxicity,
hepatotoxicity, and nephrotoxicity with remarkable successes. However,
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the limitation of APOD seems to be in predicting adverse effects arising
from thromboembolism, hypoglycaemia, skin reactions, hypersensitivity
reaction, heartburn, lactic acidosis, birth defects, severe constipation,
diarrhea, neurohormonal activation, immune hemolytic anemia, and
breathing difficulty.

5. Conclusion

In this analysis, the physicochemical-pharmacokinetic fingerprint
was associated with the drug safety profile of withdrawn, approved and
COVID-19 related drugs. The pharmacokinetic modeling for drug safety
was solely focused on the oral formulation of a drug due to the global
aspiration of a durable, cost-effective, and easy to administer treatment
that can reach everyone including those lacking facilities and resources.
The APOD method provides an advancement in the field of drug dis-
covery by unifying all properties in the fingerprint, making any prop-
erty comparisons possible with uniform representation, and integrating
pharmacokinetic insights into drug design. APOD is sensitive and easy
to use. The strengths of APOD are interpretability and repeatability of
results. APOD provides biological insight not only into absorption,
distribution, metabolism, excretion, and toxicity of a drug but also its
exact placement in the spectrum of drug safety profiles. The prioriti-
zation of drugs based on their safety profiles allows for the acceleration
of the pace of drug discovery. The five physicochemical properties
needed for drug safety analysis are already available as online com-
pound data, making the instantaneous extraction of the pharmacoki-
netic properties to produce an APOD score, which is independent of the
disease target, highly convenient. Future work will focus on making the
APOD score available routinely for all drugs that are part of public
databases.
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