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Abstract: Amyloids are self-perpetuating protein aggregates causing neurodegenerative diseases in
mammals. Prions are transmissible protein isoforms (usually of amyloid nature). Prion features were
recently reported for various proteins involved in amyloid and neural inclusion disorders. Heritable
yeast prions share molecular properties (and in the case of polyglutamines, amino acid composition)
with human disease-related amyloids. Fundamental protein quality control pathways, including
chaperones, the ubiquitin proteasome system and autophagy are highly conserved between yeast
and human cells. Crucial cellular proteins and conditions influencing amyloids and prions were
uncovered in the yeast model. The treatments available for neurodegenerative amyloid-associated
diseases are few and their efficiency is limited. Yeast models of amyloid-related neurodegenerative
diseases have become powerful tools for high-throughput screening for chemical compounds and
FDA-approved drugs that reduce aggregation and toxicity of amyloids. Although some environmental
agents have been linked to certain amyloid diseases, the molecular basis of their action remains
unclear. Environmental stresses trigger amyloid formation and loss, acting either via influencing
intracellular concentrations of the amyloidogenic proteins or via heterologous inducers of prions.
Studies of environmental and physiological regulation of yeast prions open new possibilities for
pharmacological intervention and/or prophylactic procedures aiming on common cellular systems
rather than the properties of specific amyloids.

Keywords: amyloid; prion; chaperone; ubiquitin; heat shock; environmental factors;
neurodegenerative disease; drug discovery

1. Protein Misfolding Diseases

Amyloids are highly ordered fibrous protein aggregates in a cross-β sheet conformation [1].
The assembly of normally soluble proteins into amyloid fibrils is often associated with devastating
neurological disease. To date, approximately 50 human diseases have been linked to the
formation of amyloids, including Alzheimer’s (AD), Parkinson’s (PD) and Huntington’s (HD)
diseases, and transmissible spongiform encephalopathies (TSEs), or prion diseases [2]. Prions are
self-perpetuating protein isoforms, usually of amyloid nature that are transmitted via extracellular
infection in mammals. This capacity to seed, or template, the conversion of respective soluble protein
into an aggregated pathogenic form is the basis of prion infectivity.

However, the ability to form self-templating amyloid is not unique to proteins traditionally
designated as prions. There is a growing understanding that the more common neurodegenerative
diseases, including AD and PD, spread in brains by a mechanism somewhat analogous to prion
transmission [3–7]. Several neurodegenerative diseases are associated with the accumulation of
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self-templating amyloid forms of specific proteins, such as β-amyloid (Aβ) and tau in AD, α-synuclein
in PD, and huntingtin in HD. Typically, amyloidogenesis is a specific self-seeding process in which
the amyloid form of a protein only converts other copies of the same protein and not proteins with a
different primary sequence. However, on rare occasions, so-called ‘cross-seeding’ occurs, when an
amyloid form of one protein catalyzes the assembly of another protein into an amyloid. Usually,
cross-seeding is not as effective as self-seeding, but it may play an important role in the initiation of
fiber assembly from a non-amyloid state. Cross-seeding events might also have an important role
in neurodegenerative disorders. For example, pure α-synuclein and tau synergize to promote the
fibrillization of each other [8]. Recent evidence of prion-like propagation of several misfolded proteins
from cell to cell within the brains, if not from tissue to tissue, raise concerns that various protein
misfolding diseases might have spreading, prion-like etiologies that contribute to pathogenesis.

Considering the high incidence of AD, PD and HD, it is crucial to understand if some cases
can be initiated by transmission events. Although there is little or no evidence of human-to-human
transmission of these diseases, prion properties of respective proteins were uncovered in the cellular
or animal models [9,10], and as protein misfolding within individuals apparently propagate via a
prion-like mechanism, it is important to know how it can be altered to change a course of disease.
The search for therapeutic treatments against amyloid/prion diseases spans more than 30 years, but has
had only limited success [1,11].

2. Yeast Prions and Protein Quality Control

Regardless of its relative simplicity, yeast harbors a significant number of cellular pathways
and factors relevant to human neurodegeneration, including conserved chaperone and protein
remodeling, the ubiquitin proteasome system, secretion, vesicular trafficking, and autophagy.
The high degree of conservation enables researchers to reliably model disease mechanisms in a
highly controllable environment.

Yeast prions are endogenous heritable amyloids, most often studied in the yeast Saccharomyces
cerevisiae [12–15]. The molecular foundation of inheritance for yeast prions and mammalian amyloids
is through nucleated polymerization of amyloid fibrils. The phenotypic effects of prion formation are
typically manifested as a decrease of protein function in the amyloid state. Due to convenient genetic
and phenotypic assays, yeast prions provide a useful model system for studying mechanisms of amyloid
formation and propagation that are mostly applicable to mammalian and human diseases [12–15].

Cellular defense machineries such as chaperone proteins and the ubiquitin–proteasome system,
aimed at protecting the cells from aggregation of stress-damaged proteins, also recognize amyloid
aggregates and stress-related proteins and serve as major modulators of prion formation and
propagation in yeast [16–21]. The same chaperone machinery that is involved in disaggregation
of stress-damaged proteins is involved in propagation and inheritance of yeast prions [17,18].
The connection between chaperones and prions was first established using [PSI+] prion as a model
(Figure 1). The chaperone machinery fragments large fibrils into small oligomers, which initiate
a new cycle of prion replication. The first identified component of this machinery is a chaperone
protein Hsp104 [22]. The Hsp104 is essential for all amyloid-based cytosolic yeast prions [18,23].
The machinery also includes members of the Hsp70 family Ssa [24–27] and cochaperones of the
Hsp40 family, also known as J-proteins [28–30]. In the current model of [PSI+] prion propagation,
the Hsp70/40 complex binds to amyloid fibrils and recruits Hsp104 [31]. While Hsp104 is required for
prion propagation, overproduction of Hsp104 destabilizes or “cures” some yeast prions, for example
[PSI+] and [MOD+], and at high levels, [URE3] [17,18,22,23,32]. Potentially this anti-prion effect
is due to the fact that direct binding of Hsp104 to amyloid fibrils (without Hsp70-Ssa) is not only
incapable of fragmenting fibrils but also antagonizes prion propagation [31]. Proposed (and mutually
non-exclusive) models for prion curing by excess Hsp104 include removal of monomers from the
termini of fibrils, resulting in eventual destruction of prion polymers [33], and prion mal-partition
during cell divisions [13,34] (see recent experimental evidence [35]).
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Figure 1. ”Life cycle” of the [PSI+] prion and the role of chaperone machinery. Chaperone Hsp70-Ssb 
with the cochaperones of the ribosome-associated complex (RAC) assist in normal protein folding, 
thus counteracting misfolding. Misfolded proteins assemble into amyloidogenic oligomers, 
producing amyloid fibrils. In the case of a prion, amyloids are fragmented by chaperone complex 
Hsp104/Hsp70-Ssa/Hsp40 into oligomeric “propagons” (transmissible amyloids), continuing the 
propagation cycle after cell division. Non-fragmented fibrils generate large non-transmissible 
amyloid deposits, which do not re-enter the propagation cycle and/or are malpartitioned in cell 
divisions. 

Although most components of the chaperone machinery are evolutionarily conserved, Hsp104 
orthologs are not present in the cytosol of multicellular animals, including mammals. At the same 
time, it was demonstrated that the chaperone system Hsp70-Hsp40-Hsp110 can promote protein 
disaggregation in mammalian cells [36–40]. To date, auxillary proteins involved in propagation of 
mammalian amyloids remain to be identified. Recent data [41] suggest that some Hsp104 functions 
could be assumed by its distant mammalian paralogs, RuvbL1 and RuvbL2, whose orthologs are also 
present in yeast under the names of Rvb1 and Rvb2, respectively. However, the impact of RuvbL1/2 

Figure 1. ”Life cycle” of the [PSI+] prion and the role of chaperone machinery. Chaperone
Hsp70-Ssb with the cochaperones of the ribosome-associated complex (RAC) assist in normal protein
folding, thus counteracting misfolding. Misfolded proteins assemble into amyloidogenic oligomers,
producing amyloid fibrils. In the case of a prion, amyloids are fragmented by chaperone complex
Hsp104/Hsp70-Ssa/Hsp40 into oligomeric “propagons” (transmissible amyloids), continuing the
propagation cycle after cell division. Non-fragmented fibrils generate large non-transmissible amyloid
deposits, which do not re-enter the propagation cycle and/or are malpartitioned in cell divisions.

Although most components of the chaperone machinery are evolutionarily conserved, Hsp104
orthologs are not present in the cytosol of multicellular animals, including mammals. At the same
time, it was demonstrated that the chaperone system Hsp70-Hsp40-Hsp110 can promote protein
disaggregation in mammalian cells [36–40]. To date, auxillary proteins involved in propagation of
mammalian amyloids remain to be identified. Recent data [41] suggest that some Hsp104 functions
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could be assumed by its distant mammalian paralogs, RuvbL1 and RuvbL2, whose orthologs are also
present in yeast under the names of Rvb1 and Rvb2, respectively. However, the impact of RuvbL1/2
on prions still needs to be investigated. At the same time, potentiated variants of Hsp104 have been
engineered to disaggregate misfolded proteins of higher eukaryotes, connected with PD (α-synuclein)
and amyotrophic lateral sclerosis (ALS) (TDP-43 and FUS) [42,43]. Using lessons learned from yeast
models, similar potentiated human protein disaggregases, such as Hsp110/Hsp70/Hsp40 [40] and
HtrA1 [44], could be engineered. Another approach is identification of small-molecule enhancers of the
chaperone activity, that could potentially yield transformative therapeutics for ALS, PD, and AD [43].
Potential danger, associated with these approaches, is that as we saw in yeast, modulations of
chaperone activity may work in both directions, for example, increased chaperone activity may in
fact promote amyloid propagation through increased fragmentation. Further understanding of the
mammalian chaperone machinery, associated with amyloids, is necessary for successful development
in this direction.

3. Contribution of Environmental Factors to Amyloid Disease

It is widely believed that environmental exposures contribute to the vast majority of sporadic
Alzheimer’s, Parkinson’s, Huntington’s and prion diseases alone or via interactions with genetic
factors [45–49]. Epidemiological studies have associated environmentally persistent organic pollutant
exposure to brain disorders [46]. Proven and potential neurotoxic substances include heavy metals,
organic solvents, persistent organic pollutants, plastic exudates, pesticides, brominated flame retardants,
and polycyclic aromatic hydrocarbons [45,50–54]. Smoking is implicated in a decreased risk of
developing Parkinson’s disease [45,53] and caffeinated coffee consumption is associated with a reduced
risk of PD and AD [55], but this association is controversial. According to recent discoveries, the PD
patients are less likely to establish smoking habits, because of a decreased responsiveness to nicotine
and that ease of smoking cessation is an early manifestation of premotor PD related to the loss of
nicotinic rewards [56]. This should be noted that effects of environmental risk factors identified thus
far are characterized only for specific amyloid diseases, so that it is not clear if any of them have a
general pro-amyloid effect.

With the proliferation of electric devices and wireless communication equipment, the concern was
raised about the health effects of extremely low-frequency electromagnetic field (ELF-EMF) and radio
frequency electromagnetic field (RF-EMF). It was found that exposure to ELF-EMF could increase
production of amyloid beta (Abeta), an amyloidogenic protein associated with AD, and elevate the risk
of AD [57]. At the same time, exposure to RF-EMF has some beneficial effects in regard to AD pathology
in a transgenic model [58,59], and its beneficial effect was also reported from the epidemiological
survey of AD and PD patients [60].

Aging is the primary non-genetic risk factor for sporadic AD. The early-life environment was
implicated as one of primary factors in defining an individual’s susceptibility to AD and PD [61–63].
Fundamental aging-related processes, such as decreased adaptation to stress and accumulation of
reactive oxygen species (ROS), as well as a decline in protein homeostasis, may serve as initiators of
Aβ and prion aggregation [64–66]. The current model of AD considers amyloid formation by Aβ as a
triggering factor in AD [67].

Various environmental stresses may impact amyloids and prions via different mechanisms;
therefore, studying the environmental triggers and modifiers of neurodegenerative diseases is critically
important. In contrast to genetic factors, environmental factors potentially could be modified, and this
may have a dramatic effect on prevention, occurrence and treatment [45]. Yeast model systems
described below provide an excellent tool for the investigation of the impact of environment on the
formation and propagation of amyloids.
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4. Effects of Chemical Agents and Environmental Factors on the Formation of Yeast Prions

Molecular mechanisms triggering conversion from a normally soluble protein into the
amyloid/prion form remain largely unknown. Understanding these mechanisms is central to the
development of both prophylactic recommendations and effective therapeutic strategies, aimed at
amyloid diseases. Yeast models provided important data showing how amyloids and prions
arise in vivo. For example, transient overproduction of a prionogenic protein results in prion
formation [68–70]. Once prion assemblies are generated, they can be propagated even at normal
expression levels of a prionogenic protein [18]. This process is greatly facilitated by the presence of
other proteins in an aggregated state, suggesting that cross-seeding interactions can nucleate de novo
amyloid/prion formation in yeast [71,72].

A variety of environmental stress conditions are known to increase the frequency of prion
formation in yeast. This is in an agreement with the fact that conditions favoring protein misfolding
may also favor the conversion of a normally soluble protein into an amyloid form [17,73]. For example,
formation of the yeast prion [PSI+], an aggregated form of the translation termination factor Sup35,
is facilitated by prolonged incubation at low temperature [16], heat stress [74], osmotic and oxidative
stresses [75,76], the unfolded protein response and ER stress [34,73,77]. Typically, these effects are
detected in the strains containing another protein, such as Rnq1, in an amyloid form. Rnq1 prion is
known to increase [PSI+] formation, possibly via a cross-seeding mechanism [71,72,78].

De novo generation and propagation of another yeast prion [URE3] increased after the exposure to
low-frequency (ELF-EMF) and radio-frequency (RF-EMF) electromagnetic fields [79]. The observation
that production of ROS, as well as the activities of superoxide dismutase (SOD) and catalase (CAT),
but not the levels of chaperone proteins, were elevated in yeast cells in these conditions supports the
hypothesis that ROS may play a role in the effects of EMF on protein misfolding and amyloid formation.

Active adaptation of yeast cells to environmental stress apparently involves conversion of some
normally soluble proteins into an aggregated (and in some cases, amyloid) form. It is possible that
amyloid formation may promote survival under stress conditions, for example, by assembling the
damaged proteins into amyloid deposits. Thus, minimizing their damaging effect to the cell. Reversible
assemblies may also help to protect essential proteins from degradation machinery, activated during
stress, as proposed in [16]. Our data show that the yeast stress-inducible cytoskeleton-associated
protein, Lsb2, forms a metastable prion [LSB+] in response to high-temperature stress [80]. This prion
has been shown to promote conversion of other cellular proteins into a prion form [80,81] (Figure 2).
These data demonstrate a possible role for Lsb2 as a sensor of stress. Apparently, Lsb2 acts as a
transient catalyst of heterologous prion formation due to its ability to form a transient stress-inducible
prion state that facilitates the potentially cytoprotective assembly of other aggregation-prone proteins
into deposits at specific cytoskeleton-associated sites [81]. The metastable stress-inducible Lsb2 prion
confers the memory of stress to a subpopulation of yeast cells. If the prion form of Lsb2 is playing
an adaptive role, such a stress memory could be adaptive during repetitive stresses, via conferring
increased stress “awareness” and, therefore, increased stress resistance to the prion-containing cells.
Notably, the ability of Lsb2 to form an aggregated state and to promote aggregation of other proteins is
confined to a single amino acid substitution which has been acquired in evolution at the same time
when Saccharomyces yeast adapted to higher growth temperatures. Therefore, it is possible that
prion-based stress memory has arisen as a defensive tool intended to minimize the pathogenic effects
of the increased accumulation of misfolded proteins and to prevent degradation of essential proteins
under unfavorable conditions [16,82].
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and reduction in Mot3 levels occurring in hypoxic cells results in the de-repression of the target 
anaerobic genes. Formation, elimination and phenotypic manifestation of the [MOT3+] prion are all 
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elaborate biofilm. Ethanol stress increases the frequency of [MOT3+] formation, while hypoxia 
eliminates [MOT3+], possibly due to a decrease in Mot3 protein levels. In natural conditions, yeast 
cultures frequently undergo transitions from high ethanol stress (caused by utilization of sugars via 
brewing) to hypoxia. Thus, formation and loss of [MOT3+] prion might work as a molecular switch 
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contribute to the natural morphological diversity of budding yeast [83]. 

Formation of the [MOD+] prion, by a tRNA modification enzyme, Mod5, was observed when 
non-prion yeast was grown under selective pressures from antifungal drugs [84]. [MOD+] cells 
accumulate more ergosterol and are resistant to ergosterol synthesis inhibitors, such as fluconazole 
and ketoconazole—common antifungal drugs. However, it remains uncertain if [MOD+] is induced 
by azoles or simply selected in their presence. Connections to some drugs are also described for other 
yeast prions. For instance, the prion form of a chromatin remodeler, Swi1 [85], leads to formation of 
the prion state [SWI+], which is resistant to microtubule disrupting drugs [86]. Similarly, the antibiotic 
G418 increases the frequency of [URE3] prion induction [87]. In this case, [URE3] prion does not 
confer the resistance to an antibiotic, instead the antibiotic treatment increases the rate of translational 

Figure 2. Lsb2 aggregation and prion formation during thermal stress. Thermal stress (39 ◦C) leads to
an increased synthesis of the Lsb2 protein, as well as to misfolding of other proteins. When present at
high concentration, Lsb2 forms prion-like aggregates ([LSB+]), which are associated with peripheral
cytoskeletal patches and promote assembly of misfolded proteins into protective (but potentially
amyloidogenic) aggregate deposits. [LSB+] aggregates are metastable and lost in cell divisions after
stress, while the Lsb2 protein is ubiquitinated and degraded by a proteasome.

Another environmentally regulated and potentially adaptive yeast prion is [MOT3+ ] [83]. It is a
prion form of transcriptional factor Mot3, which regulates genes involved in cell wall and ergosterol
biosynthesis in yeast. Mot3 is also involved in repression of anaerobic genes during aerobic growth and
reduction in Mot3 levels occurring in hypoxic cells results in the de-repression of the target anaerobic
genes. Formation, elimination and phenotypic manifestation of the [MOT3+] prion are all modulated
by specific environmental conditions. Formation of the [MOT3+] prion results in the acquisition of
an adhesive phenotype, formation of multicellular chains and generation of a more elaborate biofilm.
Ethanol stress increases the frequency of [MOT3+] formation, while hypoxia eliminates [MOT3+],
possibly due to a decrease in Mot3 protein levels. In natural conditions, yeast cultures frequently
undergo transitions from high ethanol stress (caused by utilization of sugars via brewing) to hypoxia.
Thus, formation and loss of [MOT3+] prion might work as a molecular switch that occurs sequentially
in the natural fermentation/respiration cycles of yeast populations and contribute to the natural
morphological diversity of budding yeast [83].

Formation of the [MOD+] prion, by a tRNA modification enzyme, Mod5, was observed when
non-prion yeast was grown under selective pressures from antifungal drugs [84]. [MOD+] cells
accumulate more ergosterol and are resistant to ergosterol synthesis inhibitors, such as fluconazole and
ketoconazole—common antifungal drugs. However, it remains uncertain if [MOD+] is induced by
azoles or simply selected in their presence. Connections to some drugs are also described for other
yeast prions. For instance, the prion form of a chromatin remodeler, Swi1 [85], leads to formation of
the prion state [SWI+], which is resistant to microtubule disrupting drugs [86]. Similarly, the antibiotic
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G418 increases the frequency of [URE3] prion induction [87]. In this case, [URE3] prion does not confer
the resistance to an antibiotic, instead the antibiotic treatment increases the rate of translational errors,
which apparently results in an increase of the frequency of Ure2 misfolding and prion formation.

An interesting example of the environmentally regulated prion is [GAR+], a membrane-associated
heteromeric complex consisting of the plasma membrane proton pump Pma1 and the glucose-repressed
gene regulator Std1. In contrast to most other yeast prions, it is not proven that [GAR+] is associated
with an amyloid state. Also, it appears that [GAR+] generation involves some changes in the protein
complex assembly. Formation of [GAR+] occurs with nutrient fluctuations in the environmental niche
and reverses glucose-associated repression in S. cerevisiae [88,89]. Notably, [GAR+] is induced across an
entire population in response to lactic acid secreted by certain bacterial species [90,91] and eliminated
by desiccation [92]. As [GAR+] cells produce less ethanol and, therefore, do not inhibit growth of
bacteria, [GAR+] induction is certainly beneficial to bacterial cells producing the [GAR+]-inducing
compounds. It was argued that [GAR+] could also be beneficial to yeast due to an increased choice of
utilized carbon sources. This could be true in a general sense, although it is not clear if induction of
[GAR+] is beneficial to yeast in the particular situation of the mixed yeast/bacterial community.

5. Clearance of Yeast Prions by Chemical Agents and Environmental Factors

In vivo clearance pathways for misfolded proteins include the ubiquitin–proteasome system (UPS)
and the autophagy–lysosome network (ALN) [93,94]. Some data connect these pathways to clearance
of amyloid aggregates, although effects are not straightforward. For example, proteasomes are not
likely to be efficient in degrading aggregated proteins, although they may counteract subsequent
aggregation by degrading misfolded precursors. One of the approaches to aggregate clearance in
proliferating cells is asymmetric segregation in cell divisions [95]. Chaperone proteins participate in all
these pathways and make a significant impact on amyloid clearance.

Incubation with various chemical agents, such as guanidine hydrochloride (GuHCl),
dimethylsulfoxide, ethanol, methanol, glycerol, succinate, glutamate and MgCl2 ”cures” yeast cells of
some prions [73,96]. The mechanism behind action of these chemicals is largely unknown, with the
exception of GuHCl, which is an inhibitor of Hsp104 [97–100], a major chaperone required for yeast
prion propagation (see ref. [22] and above, Figure 1). Growth of yeast cultures in the presence of
millimolar concentrations of GuHCl cures most of yeast prions known to date in a generation-dependent
manner, due to a defect in fibril fragmentation and production of new seeds, so that pre-existing
prion units are diluted and, eventually, lost upon cell division. This should be noted that some other
abovementioned anti-prion agents influence levels of yeast Hsps, thus it is possible that they also act
via a modulation of the chaperone machinery.

Some environmental stresses, such as severe heat shock, also cause loss of the [PSI+] prion [96],
although a mild increase in growth temperature was initially reported to have no effect. However, it
was then shown that short-term exposure of exponentially growing yeast culture to mild heat shock
(e.g., 39 ◦C), followed by immediate resumption of growth, leads to destabilization of the [PSI+] prion,
that is most pronounced in so-called “weak” prion variants [34]. (Variants, or “strains” of prion
likely represent amyloid isoforms with different structures of a cross-β core region, see refs. [13,101]).
Most of prion destabilization occurs due to impairment of prion segregation in the divisions following
resumption of cell proliferation [34,102]. Longer incubation at increased temperature results in
prion recovery. Remarkably, both prion destabilization and recovery depend on protein synthesis,
and maximal prion destabilization coincides with maximal imbalance between Hsp104 and other Hsps,
such as Hsp70-Ssa [19,34]. This is consistent with the notion that efficient prion fragmentation and
segregation requires a proper balance between Hsp104 and Hsp70-Ssa chaperones. Segregational prion
loss after heat shock was attributed to either malpartition of prion aggregates under conditions where
their normal proliferation is impaired due to altered Hsp balance [34], or asymmetric distribution
of excess Hsp104 in cell divisions following heat shock [103]. These explanations are not mutually
exclusive. Recent data [104] show that [PSI+] destabilization by mild heat shock is significantly
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decreased in the absence of protein deacetylase Sir2, previously implicated in the control of asymmetric
segregation of the aggregated heat-damaged proteins in the cell divisions following heat shock [105].
Indeed, the aggregates of Sup35 tagged with Red Fluorescent Protein (RFP) colocalize with the Hsp104
(a marker of the deposits of heat-damaged proteins) tagged with Green Fluorescent Protein (GFP) in
heat shocked cells and show a tendency of mother-specific accumulation in the post-heat-shock cell
divisions [104]. Notably, the abovementioned cytoskeleton-associated stress-inducible prionogenic
protein, Lsb2, and its non-prionogenic paralog, Lsb1, partially protect [PSI+] from destabilization
by mild heat shock, consistent with their general “pro-aggregation” effect [81,102]. Another prion
eliminated by growth at a mildly elevated temperature is [SWI+] [27], although the detailed mechanism
of curing has not been deciphered in this case.

Osmotic stress also causes loss of the [PSI+] prion [34,96]. However, in contrast to heat shock,
[PSI+] destabilization by osmotic stressors does not necessarily depend on cell proliferation and/or
protein synthesis [34], indicating that different stresses may impact the prion via different mechanisms.

Nutrient deprivation (that is, growth in poor synthetic medium) results in the increased loss
of some variants of the [PSI+] prion [106]. This was attributed to an increased release of chaperone
Hsp70-Ssb from the ribosome-associated complex (RAC) into cytosol. Indeed, RAC disruption due to
depletion of Hsp40-Zuo1 or Hsp70-Ssz1 (cochaperones, composing the ribosome-associated complex,
RAC that links Hsp70-Ssb to translating ribosomes) also has a destabilizing effect on [PSI+] propagation.
An excess of Hsp70-Ssb in the cytosol antagonizes binding of another Hsp70 chaperone, Ssa to prion
aggregates, that impairs prion propagation [106,107]. Release of Hsp70-Ssb from the ribosome is also
detected during heat shock, and both single deletions of either of the genes coding for Hsp70-Ssb,
SSB1 or SSB2, or double deletion of both genes (ssb1/2∆) decrease destabilization of [PSI+] by mild
heat shock [104]. In contrast, deletion of either gene coding for the RAC component, zuo1∆ or ssz1∆,
increases [PSI+] destabilization by heat shock. This effect of RAC disruption on [PSI+] is, in a significant
part, mediated by Hsp70-Ssb, as it is ameliorated in the triple ssb1/2∆ zuo1∆ strain [104]. These data
show that intracellular relocalization of the heat shock non-inducible chaperone, Hsp70-Ssb, modulates
propagation of protein aggregates after heat shock. Possibly, Hsp70-Ssb released from the ribosome into
cytosol antagonizes Hsp70-Ssa, thus further increasing the imbalance between Hsp104 and Hsp70-ssa
proteins, bound to prion aggregates. Both orthologs of RAC components and ribosome-associated
Hsp70s that are functionally analogous to Hsp70-Ssb are found in human cells [108]. This makes it
likely that RAC-dependent regulation of amyloid aggregation is not restricted only to yeast [107].

Alterations in protein degradation pathways have been linked to both heritable and sporadic
aggregation-related neurodegenerative diseases [109]. Protein ubiquitination is a reversible
post-translational modification in which the 76 aa polypeptide called ubiquitin (Ub) is covalently
linked, via its C-terminal glycine residue to the ε-amino group of lysine residues in target proteins [110].
UPS failure leads to the accumulation and aggregation of misfolded proteins [93,111], which may
result in enhanced nucleation of amyloids. On the other side, accumulation of protein aggregates can
sequester Ub and other UPS components, inhibiting the proteasome and exerting pleiotropic effects on
cellular metabolism in target proteins. UPS defects have been linked to certain amyloid and neural
inclusion diseases in mammals and humans [112]. In yeast, UPS alterations influence formation and
propagation of the [PSI+] prion [20,21]. De novo [PSI+] induction by excess Sup35 is more efficient at
increased Ub levels, and is reduced by a decrease in the levels of free Ub, for example, in the strains
lacking the deubiquitinating enzyme Ubp6 [20]. Deletion of UBC4, which encodes one of the major
yeast ubiquitin conjugating (E2) enzymes, increases both [PSI+] resistance to “curing” by overexpressed
chaperone Hsp104 and de novo [PSI+] formation [21]. The simplest explanation for the effect of
ubc4∆ (and possibly, other UPS-deficient deletions) on [PSI+] would be that a defect in ubiquitination
prevents degradation of misfolded Sup35, thereby increasing its abundance and conversion into a
prion. However, despite numerous searches, there is no evidence for direct ubiquitination of Sup35.
Another (not mutually exclusive) explanation could be that ubc4∆ acts via auxillary factors. Indeed,
the amount of the Hsp70-Ssa chaperone associated with Sup35 aggregates is increased in the ubc4∆
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cells [21]. Hsp70-Ssa is known to promote the formation and propagation of [PSI+] (see above), and is
itself ubiquitinated [113]. Yeast cytoskeletal protein Lsb2 that triggers [PSI+] prion formation and
protects [PSI+] from destabilization during stress ([81,102], see above) is ubiquitinated and degraded
via the proteasome [81]. The metastable nature of the [LSB+] prion could be at least partly related to the
proteolytic instability of its carrier protein because mutations impairing ubiquitination and subsequent
degradation of Lsb2 also increase transmission of [LSB+] in cell divisions [80].

Autophagy is a non-selective degradation process which destroys the bulk of cytoplasm and/or
whole organelles and recycles macromolecules in response to starvation conditions. Autophagy
can serve as a protein quality control mechanism degrading protein aggregates [114]. Spermidine,
a polyamine that has been used to induce autophagy, has been reported to “cure” yeast cells of the
prion forms of proteins Sup35 ([PSI+]) and Rnq1 ([PIN+]) [76,115].

6. Yeast Models for Discovery of Anti-Prion Drugs

S. cerevisiae yeast has been successfully used to model protein aggregation in human disorders
including AD, PD, HD and TSEs. The low cost of yeast experiments and the availability of
high-throughput techniques makes yeast suitable for large-scale genetic and pharmacological screens.
More than 1000 genes involved in human disorders have orthologs in the yeast genome. These genes
can be genetically and functionally replaced by their human equivalents. The creation of “humanized”
yeast strains with whole pathways modified to resemble human cell biology [116,117] facilitates the
use of yeast in studying human diseases. Yeast has become a widely used tool for discovery of new
drugs and their mechanisms of action, and this has been applied to amyloids and prions as well.

A red-/white colorimetric assay for identification of antiprion compounds (Figure 3) has been
developed on the basis of the yeast prion [PSI+]. [PSI+] is an aggregated, partially inactive isoform
of translation termination factor Sup35. Therefore, readthrough of stop codons occurs in the cells
bearing [PSI+]. The detection assay employs a specifically designed yeast strain containing a stop
codon (nonsense-mutation) in the middle of the coding region of ADE1 gene [13]. When Sup35 is in an
active soluble form, it terminates translation at the stop codon. As a result, yeast cells cannot grow on
a metabolic medium lacking adenine and accumulate a red pigment generated by an intermediate.
When Sup35 is present in its aggregated prion form, it fails to terminate translation and the ribosome
reads through the nonsense codon. This allows cells to grow on the medium lacking adenine and
cells growing on rich medium are white, because accumulation of the red intermediate is prevented.
This assay was used for safe and high-throughput screening of anti-prion compounds. To increase
sensitivity, an anti-prion compound, GuHCl, was added to the yeast medium at a low concentration.
A chemically diverse library of 2500 compounds (synthetic and natural products purified from various
sources by academic laboratories) was screened for the ability to cure the [PSI+] phenotype, detected
by the generation of a red halo surrounding a disk of filter paper with a tested compound on a Petri
dish [118,119]. [PSI+]-curing compounds were then tested for their activity against another yeast
prion, [URE3] followed by the analysis of their effects on the pathogenic mammalian prion protein
PrPSc (associated with TSEs) in a cell-based assay and mouse models [120]. Notably, quinacrine and
chlorpromazine, shown to promote mammalian PrPSc clearance in cell cultures, were also active in the
yeast-based method. Imiquimod (IQ), a potent Toll-like receptor 7 agonist, imiquimod, was identified
as new compound with anti-prion activity against yeast prion [PSI+] and [URE3] [121]. IQ also has
anti-prion activity against mammalian prions and was already in clinical use. Biochemical and genetic
studies reveal that IQ and two other compounds identified in yeast assay, 6-aminophenanthridine and
guanabenz acetate, target ribosomal RNA (rRNA) and specifically inhibit the protein folding activity
of the ribosome (PFAR) [122], borne by domain V of the large subunit rRNA. PFAR is evolutionarily
conserved and could be a potential therapeutic target for human protein misfolding diseases [123].
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Figure 3. Yeast model to screen for inhibitors of Aβ oligomerization. In the ade1-14 reporter strain, the
stop codon UGA, introduced into the ADE1 gene, is normally recognized by the translation termination
complex, including release factor Sup35. Fusion of Aβwith functional domain (MRF) of Sup35 leads
to its oligomerization. When Aβ-MRF is in an oligomeric for, translation termination is impaired.
This results in synthesis of full-length Ade1 protein due to readthrough of the stop codon, inability of
cells to grow on the medium lacking adenine (–Ade) and white color on the complete (YPD) medium
(Left panel). If cells are treated with a compound able to counteract oligomerization of Aβ-MRF,
translation termination is restored, leading to the production of truncated Ade1 protein, inability of
cells to grow on -Ade medium and accumulation of red pigment (a polymerized intermediate of the
adenine biosynthetic pathway) on YPD medium (right panel).

The same principle was used for an optimized liquid phase micro-culture assay, operating with
yeast strains, carrying prions [PSI+] and [URE] [124] and applied to identification of natural inhibitors
of yeast prions in extracts of marine invertebrates, collected from temperate waters in Australia. As a
result, several bromotyrosine derivatives from the extract of Suberea ianthelliformis were identified as
potent inhibitors of yeast prions. All anti-prion compounds from the sponge extracts contained an
ethylaminodibromophenyl (EADP) moiety. This may serve as a useful lead for the future development
and design of novel and improved anti-prion therapeutics [124].

7. Yeast Models for Identifying Candidate Drugs Against Alzheimer’s Disease

Yeast models are also playing an increasingly important role in unravelling the fundamental disease
aspects of AD [125]. The triggering event in Alzheimer’s disease is believed to be the aggregation of the
β-amyloid (Aβ) peptides [67]. The predominant types of Aβ peptide in human cells are Aβ40 and Aβ42,
of which the latter one is considered to be most aggregation-prone and pathogenic. Extensive evidence
suggests that the primary neurotoxic effects are associated with smaller (dimers, trimers, and tetramers)
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oligomers of Aβ42, which seem to appear during the early stages of Aβ42 assembly [126]. Various yeast
models for studying Aβ aggregation by screening chemical compounds that reduce Aβ aggregation or
oligomerization were developed [127,128]. In one model, Aβ42 was substituted for the prion domain
of yeast translational termination factor Sup35 (Aβ42-MRF). The functional region of Sup35 was
retained as a reporter, allowing for a red/white assay based on the same principle as described above
(Figure 3). The fact that yeast ortholog of the human AD risk factor, phosphatidylinositol-binding
clathrin assembly protein (PICALM), reduces oligomerization of Aβ42-MRF indicates that Aβ42-MRF
reporter system is suitable for identifying compounds that could be developed into therapies that
prevent or arrest AD [129]. This approach was used to screen for agents that reduce abundance of Aβ42
oligomers [127,130]. Two presumptive anti-oligomeric compounds were identified from a sub-library
of 12,800 drug-like small molecules [131], and seven compounds were identified from a screen of
1200 FDA-approved drugs and drug-like small molecules [129]. These include: three antipsychotics
(bromperidol, haloperidol and azaperone), two anesthetics (pramoxine-HCl and dyclonine-HCl),
tamoxifen citrate, and minocycline-HCl. All seven drugs caused Aβ42 to be less toxic to cultured PC12
human cells. One potential disadvantage of this assay is that the chimeric construct oligomerizes
instantly in yeast cells, thus it is possible to look for agents counteracting existing oligomers but may
not be as useful for those acting at initial oligomer nucleation.

Several labs employed Aβ40 or Aβ42, fused to fluorescent protein, green (GFP), yellow (YFP)
or cyan (CFP), and expressed in yeast. The fusion protein spontaneously misfolds and aggregates.
Depending on the type of construct, this either allowed for microscopic detection of Aβ-based
aggregates in yeast [132], or suppressed green fluorescence [128,133]. Suppression of fluorescence in
the GFP-Aβ constructs was used to screen for compounds that increase fluorescence, with the
hope that such compounds would antagonize aggregation and play a protective role against
AD. Folinic acid was uncovered from such a screen, suggesting folate can assist with preventing
Aβ-misfolding/aggregation [128].

Fluorescently detected Aβ-based aggregates were shown to interact with mammalian PrP protein
in yeast cells [132]. This reproduces results previously described for mammalian and human cells [134].
The Aβ-PrP interaction was shown to play a role in AD pathology [135], although its specific impact is
still unclear.

The GFP-Aβ model was also used to test rationally designed compounds with the potential
anti-amyloid effect [136]. The hydrophobic core region encompassing residues 11 through 25 is thought
to be crucial for Aβ assembly into fibrils, and peptides representing portions of this region can bind
full-length Aβ. Of those, pentapeptides KLVFF or LVFFA were used as recognition units in the design
of inhibitors of Aβ fibrillization. Such peptidomimetics showed moderate to good activity in both
inhibition and dissolution of Aβ aggregates as demonstrated by thioflavin assay, circular dichroism
measurements and microscopy. They also ameliorated the toxicity caused by GFP-Aβ in yeast and
were able to clear the GFP-Ab aggregates in vivo in an autophagy-dependent manner [136].

Another anti-histamine drug, Latrepirdine (Dimebon™), which has shown some benefits in
trials of Alzheimer disease [137], was demonstrated to reduce levels of GFP-Aβ42 aggregates and
attenuated Aβ42-induced toxicity in yeast [138]. In the yeast AD model, Latrepirdine upregulates
yeast vacuolar (lysosomal) activity and promotes transport of the autophagic marker (Atg8) to the
vacuole. The mechanism of Latrepirdine action in the clearance of Aβ42 aggregates via induction of
autophagy was later confirmed by a mouse AD model [139].

In all the abovementioned studies, Aβ was expressed in the cytoplasm of yeast cells. To
recapitulate the Aβ secretion and endocytosis observed in human brains, a new yeast model was
developed that is based on a secreted form of Aβ [140,141]. For this purpose, Aβ42 was fused
to either the endoplasmic reticulum-targeting signal (ssAβ42-GFP) [140], or the mating factor α
(MFα) signal peptide (MFα- Aβ42-GFP) [141], so that multi-compartmental distribution of Aβ42
was successfully mimicked in yeast. Expression of ssAβ42-GFP disrupted normal cellular endocytic
trafficking (possibly due to accumulation of Aβ in the space outside of the cell membrane), which
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results in cytotoxicity [140]. Over 140,000 compounds were screened for the reversal of toxicity, and a
class of protective metal-binding compounds related to clioquinol (CQ), a compound that alleviates
Aβ toxicity in mouse AD models was identified [140]. These structurally dissimilar compounds
strongly synergized at concentrations otherwise not competent to reduce toxicity. They were able to
increase Aβ turnover, restore vesicle trafficking and provide oxidative stress protection. Treatment with
clioquinol-related compounds inhibited Aβ accumulation and resulted in a dramatic improvement in
learning and memory in mouse transgenic models [142] and human patient cohorts [143]. Notably,
drugs identified in the yeast screen for antagonists of oligomerization [129] were also active in the
toxicity assay [144]. The major disadvantage of this assay is that it is aimed at Aβ42 accumulation and
secretion, rather than at aggregation or oligomerization per se.

8. A Yeast Model for Discovery of Drugs against Huntington’s Disease

The budding yeast Saccharomyces cerevisiae has recently emerged as an effective tool to study
Huntington’s disease (HD) [145]. A hallmark of HD is the accumulation of aggregates of huntingtin
protein (Htt) or its N-terminal fragment containing the polyQ repeat [146]. A poly(Q)-length-dependent
model of Htt aggregation was established by fusing the first 68 N-terminal amino acids of wild-type
HTT exon-1 containing poly(Q) tracts of varying length (25, 42, 72 or 103 glutamines) with a C-terminal
GFP (green fluorescent protein) tag [147,148]. Aggregation of Htt-GFP in yeast depends on the length
of the polyQ repeat, so that polyQ expansion promotes aggregation as in humans. PolyQ-dependent
aggregation is toxic to yeast cells and can be modified both by genetic and pharmacologic means.
Some yeast [149] or mammalian [150] chaperones of the Hsp40 family were shown to counteract
aggregation and toxicity of the Htt-based polyQ constructs in the yeast model, agreeing with data
obtained in mammalian models [151]. Notably, aggregation and toxicity of the Htt exon-1 based
polyQ constructs in yeast cells is promoted by the presence of the endogenous yeast QN-rich prions,
such as Rnq1 [148]. In contrast, the presence of the P-rich sequence, which immediately follows the
polyQ stretch within exon-1 of Htt, ameliorates cytotoxicity by facilitating the assembly of polyQ
aggregates into a protective aggregate deposit, reminiscent of the mammalian aggresome [119]. Still,
the aggresome becomes toxic in the presence of [PSI+], prion form of the translation termination
factor Sup35 (eRF3), as the aggregated form of Sup35 mediates sequestration of another translation
termination factor, Sup45(eRF1), by polyQ aggregates [152]. These data show that the composition of
endogenous aggregated proteins serves as a major modulator or Htt aggregation and toxicity at least
in yeast (and possibly in humans). Therefore, both the prion composition of the reporter yeast [153]
and Htt-based polyQ constructs in yeast are important.

Several types of cellular dysfunction that are observed in HD patients and higher eukaryote
HD models are also found in HD yeast models. These include impairment of endocytosis [154,155],
dysfunction of mitochondria [156], increased levels of ROS [157], dysregulation of transcription [158],
induction of apoptotic markers [153]. Yeast models of HD have been successfully used to identify new
potent compounds with therapeutic potential. A yeast-based approach based on the aggregation and
cytotoxicity of Htt-103Q–GFP was used to screen a library of 16,000 small chemical compounds [159].
Effects of the newly identified compounds were further validated in mammalian cell-based models of
HD, and in the transgenic mouse model for HD [159,160]. The screen has yielded several highly potent
compounds including C2–8, that was then shown to inhibit polyQ aggregation in cultured mammalian
cells and intact neurons, and to rescue polyQ-mediated neurodegeneration in vivo [159]. The fact that
several chemical compounds showed anti-aggregation properties in yeast led to successful pre-clinical
studies in HD mouse models, demonstrating the value of yeast models for initial screening of toxicity
modulators [160,161].

Intracellular antibodies (intrabodies) against Htt bind to huntingtin and prevent its misfolding and
toxicity. Thus, intrabodies may be a useful gene-therapy approach to treatment of the disease. Disulfide
bond-free single-domain intracellular antibody VL12.3 was engineered that inhibits aggregation and
toxicity in the S. cerevisiae and neuronal cell culture models of HD [162]. These effects were later
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validated in some mouse models of HD [163,164] and strengthened the concept of using intrabodies as
a therapeutic approach against HD.

By using a yeast deletion library, a set of gene deletions that suppress toxicity of a mutant
Htt-103Q fragment has been discovered [157]. Unfortunately, this screening has not considered
that some deletion strains from the collection have lost the Rnq1 prion, [PIN+], that is required for
the Htt103Q cytotoxicity in the given yeast strain [148]. Indeed, it turned out that some deletion
derivatives that have lost [PIN+] were false positives in the screen [165]. However, the most potent
suppressor, deletion of a gene that encodes Bna4 (kynurenine 3-monooxygenase, KMO), an enzyme in
the kynurenine pathway of tryptophan degradation, was not a result of [PIN+] loss. This enzyme has
been linked directly to the pathophysiology of Huntington’s disease in humans [166]. In agreement,
treatment with a small molecule inhibitor of KMO, Ro 61-8048, results in a partial amelioration of
growth defects in Htt103Q-expressing yeast cells [157]. KMO inhibition leads to an altered product
and intermediate profile of tryptophan degradation, reducing cellular stress and cell death [157,159].
The kynurenine pathway is now well-studied and discussed as a drug target for HD [166,167]. Further
on, KMO inhibition has been extensively approached pharmacologically and chemically in pre-clinical
rodent and Drosophila HD models [168,169].

A yeast HD model was also used to screen for the huntingtin aggregation/toxicity modifiers
among the natural substances. For example, the polyphenol (−)-epigallocatechin-3-gallate (EGCG),
a major bioactive component in green tea, has been identified as a potent suppressor and modulator of
Htt aggregation and toxicity in yeast models [170]. This substance has become a promising candidate
for healthy aging and promotes lifespan extension in worms, flies, and rodents [159,171–174].

In another high-throughput screen of natural products in a yeast HD model, actinomycin D was
identified as a potent aggregation inhibitor [175]. It was demonstrated that applying a low dose of
actinomycin D results in increased levels of certain Hsps (including Hsp104, Hsp70, and Hsp26) and
enhanced binding of Hsp70 to the polyQ in yeast. The drug actinomycin D has many approved medical
uses and could become an exciting drug lead in HD research.

Raspberry (Rubus idaeus var. Prestige) extracts were tested on different S. cerevisiae strains
expressing disease proteins associated with Alzheimer’s, Parkinson’s, or Huntington’s disease [176].
Salidroside, a glycosylated phenol, displayed significant bioactivity against Huntington’s disease. Next,
a metabolic route to salidroside was reconstructed in S. cerevisiae generating the yeast strain able to
produce salidroside with the same positive effects as salidroside of natural origin [176]. The mechanism
by which the R. idaeus polyphenol-enriched extract mediates cellular protection is associated with the
removal of superoxide anions accumulated by the expression of HTT103Q-GFP.

9. Drug Discovery in Yeast Model of Parkinson’s Disease

Aggregation of alpha-synuclein (αSyn), a small 140-amino-acid protein, is a hallmark of Parkinson’s
disease [177]. Yeast does not have an ortholog of αSyn, but several features of PD can be reproduced in
yeast expressing human αSyn. In the first yeast model for PD, human αSyn was expressed in wild-type
yeast cells. Expression of αSyn in yeast cells results in intracellular inclusions of αSyn, is toxic as
reflected by growth inhibition, and can cause cell death [178]. Overexpression of αSyn inhibited cell
growth in a αSyn dose-dependent manner [178]. Pathways that are associated with αSyn toxicity
include vesicular trafficking, endocytosis, ubiquitin–proteasomal system, lipid metabolism, oxidative
stress, mitochondria function, and autophagy [179].

Yeast was used for screens that resulted in the identification of several therapeutic candidates,
rescuing αSyn aggregation and toxicity [180]. Two flavonoids, quercetin and epigallocatechin gallate,
were identified as preventingαSyn toxicity in the presence of iron, reinforcing the role of oxidative stress
in αSyn-initiated cellular degeneration [181]. Small molecules that rescue αSyn toxicity by stimulating
function of the Rab GTPase, associated with PD, and/or increasing Rab1 levels were also obtained [182].
A screen of about 115,000 compounds in the yeast cells, expressing αSyn in a fusion with yellow
fluorescent protein (YFP), identified a class of structurally related 1,2,3,4-tetrahydroquinolinones [183].
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These compounds were found to reduce the formation of αSyn inclusions, re-establish ER-to-Golgi
trafficking, and ameliorate the mitochondrial dysfunction [183]. It was also shown that the same small
molecules are counteracting the toxicity of αSyn in nematodes and in primary rat neuronal midbrain
cultures [183]. Cyclic peptides (CPs), natural product-like chemicals with potent bioactivity were also
screened in a yeast PD model. Two related CPs—identified as reducing αSyn toxicity in yeast—also
prevented dopaminergic neuron loss in the nematode, Caenorhabditis elegans [184]. In another screen,
a N-aryl benzimidazole (NAB) was found to protect against αSyn toxicity not only in yeast but also
in other models of PD (C. elegans, rat primary neuronal cultures and cortical neurons, differentiated
from PD-patient-induced pluripotent stem cells [185]. These screens also revealed the conserved
mode of action of this compound, which promotes endosomal transport via the E3 ubiquitin ligase,
Rsp5/Nedd4, alleviating the dysfunctional endosomal and ER-to-Golgi vesicle trafficking promoted by
αSyn [185]. Mannosylglycerate, a compatible solute typical of marine microorganisms thriving in hot
environments, was found to reduce αSyn aggregation in a yeast model of PD [186]. Ascorbic acid,
a natural antioxidant, was found to promote a significant reduction in the percentage of yeast cells
bearing αSyn inclusions [187].

10. General and Specific Patterns of the Yeast Models for Anti-Amyloid Drug Discovery

The main feature of yeast models for neurodegenerative disorders, such as PD, HD and AD,
is expression of a human disease hallmark protein, forming cross-β amyloid structures, in yeast
cells. Aggregation (and in some cases, toxicity) of amyloidogenic proteins appears to show similar
patterns in yeast and human cells. The advantage of yeast models includes unicellularity, rapid growth,
easy cultivation techniques and a wide range of research tools available. Yeast is a eukaryotic organism
with defined cellular compartments and similar systems of vesicular trafficking, a key component in
neurological signaling linked to neurodegenerative disorders. The majority (although not all) of the
key chaperone families modulating protein aggregation are conserved between yeast and humans.
“Humanized” yeast models are extremely useful for the early steps in the discovery of candidate
compounds that can be used for the development of a treatment against the disease. Screens for
compounds preventing aggregation and toxicity of disease-specific proteins were performed and
revealed potential leads which were then validated in animal models. Even despite the obvious fact
that some of the physiological processes involved specifically in the neurobiology of Alzheimer’s,
Huntington’s and Parkinson’s diseases cannot be recapped in this simple single-cell model, yeast assays
have a unique property of efficiently targeting the mechanism of protein oligomerization/aggregation,
a triggering factor in these diseases.

11. Conclusions

The development of effective therapies and preventive treatments for neurodegenerative diseases
such as Alzheimer’s, Huntington’s and Parkinson’ diseases is still a great challenge, mainly because of
insufficient knowledge of both molecular mechanisms of diseases, and environmental factors triggering
and affecting these diseases. Yeast cells contain endogenous amyloid proteins (yeast prions), that cause
easily detectable phenotypes and are efficiently employed for understanding the general mechanisms
of amyloid formation and propagation (applying to both yeast and humans), identifying the pro- or
anti-prion agents and conditions with a broad spectrum of action, and building the amyloid-specific
detection tools. In this way, yeast models contribute to understanding of molecular foundation of the
disease, identification of molecular targets and new compounds with therapeutic potentials.
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