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Abstract: Primary aldosteronism (PA) is the most common form of secondary hypertension, with
a prevalence of 5–10% among patients with hypertension. PA is mainly classified into two sub-
types: aldosterone-producing adenoma (APA) and bilateral idiopathic hyperaldosteronism. Recent
developments in genetic analysis have facilitated the discovery of mutations in KCNJ5, ATP1A1,
ATP2B3, CACNA1D, CACNA1H, CLCN2, and CTNNB1 in sporadic or familial forms of PA in the
last decade. These findings have greatly advanced our understanding of the mechanism of excess
aldosterone synthesis, particularly in APA. Most of the causative genes encode ion channels or
pumps, and their mutations lead to depolarization of the cell membrane due to impairment of ion
transport. Depolarization activates voltage-gated Ca2+ channels and intracellular calcium signaling
and promotes the transcription of aldosterone synthase, resulting in overproduction of aldosterone.
In this article, we review recent findings on the genetic and molecular mechanisms of PA.

Keywords: primary aldosteronism; hypertension; somatic mutation; aldosterone-producing adenoma

1. Introduction

Aldosterone is synthesized in the adrenal cortex and plays an essential role in regu-
lating blood pressure by promoting sodium reabsorption in the kidney. Primary aldos-
teronism (PA), which is a disorder of excess aldosterone secretion, is the most common
form of secondary hypertension, with a prevalence of 5–10% among patients with hyper-
tension [1]. The risk of cardiometabolic and renal disease is higher in PA patients than in
essential hypertension patients; thus, early diagnosis and appropriate treatment of PA are
important for reducing its complications [2–5]. PA is mainly classified into two subtypes:
aldosterone-producing adenoma (APA) and bilateral idiopathic hyperaldosteronism (BHA).
Although the etiology of PA has long remained unclear, recent developments in genetic
analysis, including next-generation sequencing (NGS), have expanded our understanding
of the genetic and molecular mechanisms of PA in the last decade. Exome sequencing
discovered somatic mutations in KCNJ5, ATP1A1, ATP2B3, CACNA1D, CACNA1H, CLCN2,
and CTNNB1 in APA [6–13]. Most of the causative genes encode ion channels or pumps,
and their mutations lead to depolarization of the cell membrane due to impairment of ion
transport. Depolarization activates voltage-gated Ca2+ channels and intracellular calcium
signaling and promotes the transcription of aldosterone synthase (CYP11B2), resulting
in overproduction of aldosterone (Figure 1). Furthermore, some key molecules such as
VSNL1, CALN1, GSTA1, NPNT, and CLGN have been detected in APA, and their functions
in aldosterone production have been elucidated [14–18]. Epigenetic regulation of CYP11B2
has also been indicated in APA [19–22].

Familial hyperaldosteronism (FH) has also been reported as a rare cause of PA. There
are four forms of FH (FH type 1 to type 4). Although it is rare, the study of FH was
preferred as an approach to understand the pathophysiology of PA due to its heritability.
The first report of FH was the case of a father and a son presenting the symptoms of PA in
1966, which was corrected by glucocorticoid treatment [23]. Thus, this form of PA is called
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glucocorticoid-remediable aldosteronism (GRA) or FH type 1. In 1992, linkage analysis
revealed that the molecular etiology of GRA was a chimeric gene composed of the promoter
of 11β-hydroxylase (CYP11B1) fused with the coding region of CYP11B2, resulting in
aldosterone overproduction regulated by ACTH [24]. The chimeric CYP11B1/CYP11B2
gene was not identified in APA [25], whereas some causative genes, including KCNJ5,
CLCN2, and CACNA1H, have been discovered in the other forms of FH [6,10–12].
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Figure 1. Cellular mechanism of aldosterone synthesis in aldosterone-producing adenoma. Mutations
of KCNJ5, ATP1A1, and CLCN2 lead to depolarization of the cell membrane due to impairment of
ion transport. Depolarization activates voltage-gated Ca2+ channels and increases intracellular Ca2+

levels. Conversely, mutations of CACNA1D and CACNA1H directly cause an increase in Ca2+ con-
ductance. ATP2B3 mutation reduces Ca2+ export from the cell. Activated calcium signaling promotes
transcription of aldosterone synthase (CYP11B2), resulting in overproduction of aldosterone.

In this review, we aimed to summarize the molecular mechanisms by which genetic
mutations mediate aldosterone production and the clinical and pathological findings
related to the gene mutations.

2. KCNJ5

In 2011, Choi et al. analyzed 22 cases of APA using whole-exome sequencing and iden-
tified two recurrent somatic mutations of KCNJ5 (G151R and L168R) [6]. KCNJ5 encodes the
G protein-coupled inwardly rectifying K+ channel (GIRK4), which belongs to GIRK family
members (GIRK1 to GIRK4). GIRK4, which consists of two membrane-spanning domains,
one pore-forming region between the two transmembrane domains, and intracellular N and
C termini, forms a channel as a homotetramer or heterotetramer with GIRK1. Both substi-
tutions are located near the channel’s ion-selective filter and cause depolarization of the cell
membrane due to the loss of ion selectivity of the K+ channel and the increased intracellular
influx of Na+. The authors proposed that activated voltage-gated Ca2+ channels resulting
from these mutations promote autonomous secretion of aldosterone and cell proliferation.
In subsequent studies with adrenocortical carcinoma cell lines, introduction of the KCNJ5
mutation promoted aldosterone synthesis via depolarization of the cell membrane, allow-
ing sodium and calcium influx into the cell [26–29]. Mutated KCNJ5 also increased the
expression of CYP11B2 with its transcription factors nuclear receptor related 1 (Nurr1) and
activating transcription factor 2 (ATF2), and these stimulatory effects were inhibited by
Ca2+ channel blockers [26,27,30]. Moreover, molecules related to calcium signaling, such
as VSNL1 and CALN1, are highly expressed in APA, and they have important roles in
aldosterone production [14,15,31]. These results show that increased CYP11B2 expression is
mediated by the Ca2+/calmodulin cascade. The relationship between KCNJ5 mutation and
cell proliferation is still controversial, and the difference in KCNJ5 mutation modulation
levels may influence adrenal cell growth [26,32,33]. Several other KCNJ5 mutations such
as E145Q, I157del, and T158A have been reported, although G151R and L168R are the
most frequent [8,29,34–45].
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KCNJ5 is the most commonly mutated somatic gene in Asians, Europeans, and Amer-
icans with APA [38,41,45]. In a report of 474 APA cases from the European Network for
the Study of Adrenal Tumors (ENS@T), KCNJ5 mutation was found in 38% of cases [45].
In White Americans and African Americans, KCNJ5 mutation was found in 43% and 34%
of cases, respectively [37,42]. Conversely, reports from East Asia have shown that nearly
70% of APA patients have a KCNJ5 mutation, with an ethnic difference [41,43,46–50]. A
meta-analysis showed that APA patients with KCNJ5 mutation have phenotypic features
of higher plasma aldosterone levels, young age, female sex, and larger tumor size [51].
Subclinical hypercortisolism is sometimes accompanied by APA; aldosterone and cortisol
co-producing adenoma has also been reported in KCNJ5-mutated APA [52]. However, a
recent prospective study showed that subclinical hypercortisolism was common in APA
without KCNJ5 mutation or with a relatively larger tumor size [53]. Cardiovascular compli-
cations in APA patients with KCNJ5 mutations also have been evaluated in some studies.
In KCNJ5-mutated APA patients, higher left ventricular mass index (LVMI) and plasma al-
dosterone levels were reported than in those without KCNJ5 mutation [54]. Another group
reported that the KCNJ5-mutated group significantly improved LVMI after surgery [55].
A recent study also showed that APA patients with KCNJ5 mutations had higher LVMI
and inappropriately excessive LVMI (ieLVMI), as well as a greater regression of LVMI
and ieLVMI after adrenalectomy, in comparison to those without KCNJ5 mutations in a
propensity-score-matched cohort [56]. These results indicate KCNJ5 mutation is associ-
ated with left ventricular remodeling and diastolic function. KCNJ5 mutation was also
reported to be a predictor of hypertension remission after adrenalectomy for APA [43,57].
On the other hand, subclinical hypercortisolism in patients with APA was indicated to be
associated with a lower clinical complete success rate after adrenalectomy [53].

The adrenal cortex comprises three morphologically and functionally distinct layers:
zona glomerulosa (ZG), zona fasciculata (ZF), and zona reticularis (ZR). Although the
expressions of steroid enzymes are zone-specific, the histological features of APA are
heterogeneous [58]. CYP11B2 is specifically expressed in ZG, and 17α-hydroxylase/17,20-
lyase (CYP17A1) is expressed in ZF and ZR in the normal adult adrenal gland; however,
APA with a KCNJ5 mutation typically has predominant clear cells (ZF-like cells) [59],
and expression of both CYP11B2 and CYP17A1 is found within the same tumor [60,61].
Plasma levels of the hybrid steroids 18-oxocortisol and 18-hydroxycortisol have been
reported to be higher in APA patients, particularly in KCNJ5-mutated APA [62], which
could be explained by its ZF-significant phenotype (Figure 2.) [63]. Thus, steroids have been
indicated as clinical biomarkers, and steroid profiling can be utilized for differentiating
subtypes of PA [64–67].

Germline mutation in KCNJ5 also has been identified in FH. In 2008, Geller et al.
reported the case of a father and two daughters with a new form of PA [68]. They showed
early-onset PA and marked adrenocortical hyperplasia, which did not respond to medical
therapy and led to bilateral adrenalectomy. Choi et al. genetically analyzed this family and
discovered germline KCNJ5 mutation responsible for the disease, which was later classified
as FH type 3 [6]. Since then, various phenotypes of FH type 3 depending on genotype have
been reported; T158A, I157S, E145Q, and G151R are reported to have severe early-onset
PA with bilateral adrenal hyperplasia, requiring bilateral adrenalectomy [6,69–71]. On the
other hand, G151E and Y152C are associated with mild PA with no adrenal abnormalities
on computed tomography (CT) scan and can be controlled by mineralocorticoid receptor
antagonist (MRA) [71–73]. In vitro study demonstrated that transduction of KCNJ5 G151E
leads to profoundly large Na+ conductance compared with other mutations, leading to
Na+-influx-dependent cell lethality [71,72]. Therefore, it is suggested that these marked
alterations of channel function prevent the development of adrenal hyperplasia, resulting
in a mild clinical phenotype. However, there was a report of the early-onset PA with de
novo KCNJ5 G151R germline mutation and no adrenal enlargement whose symptoms were
successfully controlled by MRA, indicating that diverse clinical phenotype in FH type 3
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cannot be defined solely by KCNJ5 genotype [74]. In addition, two cases of early-onset PA
possibly caused by mosaicism for KCNJ5 mutations were reported [75,76].
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Figure 2. Scheme of steroidogenic pathways for aldosterone, 18-oxocortisol, and 18-hydroxycortisol.
Both CYP11B2 (aldosterone synthase) and CYP17A1 (17α-hydroxylase/17,20-lyase) are required
to synthesize 18-oxocortisol and 18-hydroxycortisol. Thus, plasma levels of 18-oxocortisol and
18-hydroxycortisol are likely to be higher in patients with KCNJ5-mutated aldosterone-producing
adenoma (APA), while they are very low in normal adults. CYP11A1: cytochrome P450 choles-
terol side-chain cleavage; CYP11B1: 11β-hydroxylase; CYP21A2: 21-hydroxylase; HSD3B2: 3β-
hydroxysteroid dehydrogenase type 2; StAR: steroidogenic acute regulatory protein; ZF: zona
fasciculata; ZG: zona glomerulosa.

3. ATP1A1

Beuschlein et al. identified a somatic mutation in ATP1A1 in 16/308 (5.2%) APAs [7],
and Azizan et al. found it in 2 of 10 ZG-like APAs without KCNJ5 mutation [8]. In contrast
to KCNJ5-mutated APA, APA with ATP1A1 mutation is more commonly found in males
and has histological features of predominant ZG-like cells [7,8]. ATP1A1 encodes the
alpha 1 subunit of Na+/K+ ATPase, which transports three Na+ ions in exchange for two
K+ ions. The alpha subunit is composed of 10 transmembrane domains (M1–M10) with
intracellular N and C termini. Several somatic mutations such as G99R, L104R, V332G,
and EETA963S were identified in the M1, M4, and M9 domains [7,8,35]. Mutations in the
M1 and M4 domains, which result in alteration of K+ binding and loss of pump activity,
lead to depolarization of the cell membrane and autonomous secretion of aldosterone [7].
Mutations in the M9 domain affect a supposed Na+-specific site, resulting in loss of pump
activity [8]. These mutations were suggested to lead to abnormal H+ or Na+ leakage current,
which is a similar mechanism to that of the KCNJ5 mutation [8]. However, in vitro study
using adrenocortical cells demonstrated that mutations in ATP1A1 induce depolarization of
the cell membrane and intracellular acidification due to H+ leak, but not an overt increase
in intracellular Ca2+ [77]. The specific mechanism of this acidification in autonomous
aldosterone production has not been clarified.

The frequency of ATP1A1 mutation determined through Sanger sequencing performed
on whole tumor sample DNA was not as high as that of KCNJ5 reported previously.
However, a recently developed sequencing method using targeted NGS performed on
DNA extracted from formalin-fixed paraffin-embedded tissues expressing CYP11B2 in
immunohistochemistry (IHC) has enabled the more frequent detection of somatic mutations
in APA [37]. The CYP11B2 IHC-guided targeted NGS approach identified 5.0–17% of
ATP1A1 mutations in APA cases [37,42,78,79], whereas the frequency of ATP1A1 mutations
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was 2.4–8.2% using conventional methods [7,35,38,41,45]. There are few reports of specific
clinical characteristics of APA patients with non-KCNJ5 mutation; one report showed
that APA patients with ATPase mutation tended to have more severe hyperaldosteronism
compared to those with wild type, although the sample size was small [80].

4. ATP2B3

ATP2B3 encodes the plasma membrane Ca2+ ATPase type 3 (PMCA3), which exports
calcium ions from the cytoplasm. Beuschlein et al. reported somatic mutation of ATP2B3
along with that of ATP1A1 in APA [7]. PMCA3 is also composed of 10 transmembrane
domains (M1–M10) with intracellular N and C termini. Most of the mutations identified
in APA are deletion mutations located in the specific region of the M4 domain, which
is involved in Ca2+ binding and ion gating [7,37,38,41,42,45,78,79,81]. This mutation is
presumed to cause a major distortion of the Ca2+ binding site, impairing the clearance
of cytoplasmic Ca2+ ions. Subsequent in vitro studies have demonstrated that ATP2B3
mutation promotes aldosterone production by two different mechanisms: (1) reduction
of Ca2+ export due to the loss of pump function increases resting Ca2+ activity and (2)
influx of Na+ caused by gain of cation permeability leads to depolarization and activates
voltage-gated Ca2+ channels [82]. The frequency of ATP2B3 mutation is relatively low,
accounting for 0.6–10% of APA cases [7,35,37,38,41,42,45,78,79]. ATP2B3 mutation was also
frequently found in APA mainly composed of ZG-like cells [58,70,83]. However, a recent
study using a quantitative histological analytical approach with digital imaging software
showed that ATP2B3-mutated APA tended to have clear cell dominant features [61].

5. CACNA1D

Scholl et al. identified five somatic CACNA1D mutations (G403R and I770M) among
43 APAs without KCNJ5 mutation [9]. CACNA1D encodes a calcium channel voltage-
dependent L-type alpha-1D subunit, which contains four repeated domains (I–IV), each
with six transmembrane segments (S1–S6). These altered residues locate in the S6 segments
lining the channel pore and induce a shift in voltage-dependent gating to a more negative
voltage, leading to an increase in intracellular Ca2+ levels [9]. However, subsequent
studies have shown that somatic mutations in CACNA1D are found throughout the gene in
APA [84]. Azizan et al. also reported somatic CACNA1D mutations in ZG-like APA at the
same time [8]. They also reported that CACNA1D mutations were associated with small
tumor size, but this association was not found in a recent study using the CYP11B2 IHC-
guided targeted NGS approach [79]. The CYP11B2 IHC-guided targeted NGS approach
identified a large number of CACNA1D mutations (14–42%) [37,42,78,79] compared to
conventional methods (0.6–10.3%) [38,41,45]. Moreover, CACNA1D mutations are most
prevalent (42%), followed by KCNJ5 mutations, in African American patients with APA [42].

Scholl et al. also reported de novo germline CACNA1D mutations (G403D and I770M)
in two children featuring early-onset PA with seizures and neurologic abnormalities
(PASNA). Although several cases of neurodevelopmental disease with CACNA1D de
novo germline mutations have been reported, only four cases presenting early-onset PA
have been described to date [9,85,86]. Treatment with calcium channel blockers (amlodip-
ine and nifedipine) normalized blood pressure in two of these cases [9,86], and CT scan
showed no adrenal abnormality in one case [9].

6. CTNNB1

CTNNB1 encodes β-catenin, and its mutation induces constitutive activation of Wnt/β-
catenin signaling. Although Wnt/β-catenin signaling plays a crucial role in normal devel-
opment and maintenance of the adrenal cortex [87], activated Wnt/β-catenin signaling
is also observed in APA [88,89]. In addition to ion channels and ATPases, mutations
in CTNNB1 have been reported in APA with 0–5.1% frequency [13,37,42,78,79,90]. The
extracellular matrix gene NPNT, which is downstream of the Wnt/β-catenin signaling
pathway, is upregulated in ZG-like APA, especially with CTNNB1 mutation. NPNT over-
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expression increases aldosterone production in adrenal cells [17]. CTNNB1 mutation has
also been found in other adrenocortical adenomas and adrenocortical carcinomas [91].
A previous study showed that transgenic mice with constitutive β-catenin activation in
adrenal tumors develop hyperaldosteronism and malignancy [92]. Taken together, these
results suggest that CTNNB1 mutations stimulate ZG cell proliferation and Wnt/β-catenin
activation participates in aldosterone production. APA with CTNNB1 mutation is more
common in females and has variable histological features [13,90]. A higher risk of residual
hypertension after adrenalectomy in patients with CTNNB1-mutated APA was shown in
one report [90]. Clinical and histological features of APA harboring each somatic mutation
are summarized in Table 1.

Table 1. Clinical and histological features of APA harboring each somatic mutation.

Gene Clinical Characteristics Histological Features

KCNJ5

More common in Asians
More often female
Diagnosed at younger age
Larger tumor size
Higher plasma levels of
aldosterone, 18-oxocortisol,
and 18-hydroxycortisol
More likely to have
hypertension remission after
adrenalectomy

Clear cell dominant
(ZF-like)

ATP1A1 More often male
Smaller tumor size

Compact cell dominant
(ZG-like)

ATP2B3 More often male
Smaller tumor size

Compact cell dominant
(ZG-like)

CACNA1D

More common in African
Americans
More often male
Smaller tumor size

Compact cell dominant
(ZG-like)

CTNNB1

More often female
Higher risk of post
adrenalectomy residual
hypertension

Variable

7. CLCN2

In 1991, Gordon et al. reported six relatives who presented with APA or BHA unre-
sponsive to glucocorticoids [93]. Several other familial cases were reported by the same
group, which was defined as FH type 2 [94]. The cause of FH type 2 had been unknown for
a long time; in 2018, Scholl et al. identified CLCN2 R172Q germline mutation as the cause of
FH type 2 by performing exome sequencing on these families [11]. They further analyzed
80 other young-onset PAs without known mutations and reported several CLCN2 germline
mutations with a frequency of 9.9% [11]. At the same time, Fernandes-Rosa et al. also
analyzed 12 young-onset PAs and discovered CLCN2 G24D de novo germline mutation [12].
CLCN2 encodes the inwardly rectifying chloride channel ClC2, which is expressed in many
tissues, including the adrenal glands. These mutations cause depolarization of the plasma
membrane by promoting efflux of Cl– ions through gain of function and activation of
CYP11B2 transcription from voltage-gated Ca2+ channel activity [11,12]. The morphology
of the adrenal glands varied from normal to unilateral nodules on CT scan, but aldosterone
production was bilateral in the three cases that underwent adrenal venous sampling [11].
Recently, somatic mutations of CLCN2 were reported in sporadic APA, but the frequency
is rare [95,96].
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8. CACNA1H

In 2015, Scholl et al. performed exome sequencing in 40 hypertensive patients who
developed PA before the age of 10 years and identified the CACNA1H M1549V germline
mutation in five patients, which was classified as FH type 4 [10]. This mutation occurred
de novo in two patients and was inherited in the remaining three [10]. CACNA1H encodes
a voltage-dependent Ca2+ channel T-type alpha-1H subunit (Cav3.2), which is the second
most highly expressed calcium channel alpha subunit after CACNA1D in the human
adrenal cortex [9]. This mutation reduces the normal inactivation of Cav3.2 compared with
wild type and also activates the channel with less depolarization, causing intracellular
Ca2+ influx, which is a similar mechanism to the CACNA1D mutation [10]. They did not
show neurodevelopmental symptoms seen in PASNA and adrenal hyperplasia on CT scan,
although one sporadic APA case with multiplex developmental disorder and germline
CACNA1H mutation was reported [10,97]. The clinical and molecular characteristics of
FH are summarized in Table 2. In addition, somatic CACNA1H mutations were also
reported in sporadic APAs without known mutations using the CYP11B2 IHC-guided
sequencing approach [78,98].

Table 2. Clinical and molecular characteristics of familial hyperaldosteronism (FH).

Genetic Variant Molecular Mechanism Clinical Characteristics

Type 1 CYP11B1/CYP11B2
chimeric gene

ACTH induces
transcription of CYP11B2
(coding region)

Glucocorticoid-
suppressive
hyperaldosteronism

Type 2 CLCN2 mutations
Increased Cl- efflux
activates CYP11B2
transcription

Early-onset PA

Type 3 KCNJ5 mutations
Increased Na+ influx
activates CYP11B2
transcription

Severe early-onset PA
(T158A, I157S, E145Q,
G151R)
Mild PA
(G151E, Y152C)

Type 4 CACNA1H mutations
Increased Ca2+ influx
activates CYP11B2
transcription

Early-onset PA

9. Other Genes Described in Patients with PA

Somatic mutation of PRKACA, which causes adrenal Cushing’s syndrome, leads to
constitutive activation of protein kinase A (PKA), resulting in excess cortisol production [99].
Somatic mutation of PRKACA was reported in a patient with aldosterone and cortisol co-
secreting adenoma [100]. Somatic mutation of GNAS, which also causes adrenal Cushing’s
syndrome due to constitutive activation of the PKA/cAMP pathway, was reported in two
patients with aldosterone and cortisol co-secreting adenoma [101]. Somatic mutations
in both genes were also reported in the subsequent study using CYP11B2 IHC-guided
targeted NGS, but those mutations were detected in CYP11B2-negative adrenal tumors
from APA patients [37,42]. The role of somatic mutation in PRKACA and GNAS in the
pathogenesis of PA has not been clarified. Genetic variants of ARMC5, ATP2B4, PDE2A,
and PDE2B were indicated to be associated with BHA [102–106].

10. Conclusions and Perspective

Advances in NGS-based analysis techniques over the past decade have revealed
that mutations in ion channels and pumps play a profound role in the pathogenesis of
many APAs. The CYP11B2 IHC-guided targeted NGS approach has been reported to
detect mutations in up to 96% of APA cases [78]. Although these discoveries have shed
considerable light on the mechanisms of aldosterone overproduction, the mechanisms of
APA growth and tumorigenesis remain largely unknown. In the future, exploiting every
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technology and skill would facilitate the elucidation of the pathogenesis of APA without
any mutations. Further basic research is required to explain the tumorigenesis and cell
growth in APA.
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