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Objective. To explore the application value of the radiomics method based on enhanced T1WI in glioma grading. Materials and
Methods. A retrospective analysis was performed using data of 114 patients with glioma, which was confirmed using surgery and
pathological tests, at our hospital between January 2017 and November 2020.1e patients were randomly divided into the training
and test groups in a ratio of 7 : 3. 1e Analysis Kit (AK) software was used for radiomic analysis, and a total of 461 tumor texture
features were extracted. Spearman correlation analysis and the least absolute shrinkage and selection (LASSO) algorithm were
employed to perform feature dimensionality reduction on the training group. A radiomics model was then constructed for glioma
grading, and the validation group was used for verification. Results. 1e area under the ROC curve (AUC) of the proposed model
was calculated to identify its performance in the training group, which was 0.95 (95% CI� 0.905–0.994), accuracy was 84.8%,
sensitivity was 100%, and specificity was 77.8%.1e AUC of the validation group was 0.952 (95% CI� 0.871–1.000), accuracy was
93.9%, sensitivity was 90.0%, and specificity was 95.6%. Conclusions.1e radiomics model based on enhanced T1WI improved the
accuracy of glioma grading and better assisted clinical decision-making.

1. Introduction

Glioma is the most common primary tumor of the human
brain, which accounts for about 30%–40% of the human
central nervous tumors. 1e WHO suggested classifying
gliomas into four grades. It is generally believed that grades I
and II are low-grade gliomas (LGGs) and grades III and IV
are high-grade gliomas (HGGs). 1ere are major differences
in the prognosis and treatment of gliomas of different
grades. Surgical resection is the preferred treatment for
LGGs, and adjuvant radiotherapy and chemotherapy [1, 2]
are required for treating HGGs postoperatively. Studies have
shown that the higher the tumor grade, the higher is the
postoperative recurrence rate and the lower is the patient’s
survival rate [3]. 1erefore, accurate grading of gliomas
before surgery is essential to guide the selection of treatment

and improve the prognosis of the patients. Magnetic reso-
nance imaging (MRI) is the most commonly used exami-
nation method for preoperative diagnosis of glioma.
Although functional MRI and multiparameter imaging have
made rapid progress in the diagnosis and identification of
glioma in recent years, they have shown limited accuracy in
tumor grading before the surgery [4]. Additionally, due to
individual differences in patients, gliomas show significant
heterogeneity [5, 6]. Although traditional imaging methods
are very useful, they cannot fully meet the needs of precision
medicine [7].

Radiomics was proposed by Lambin in 2012 [8] to ex-
tract and analyze a large number of quantitative image
features in a high-throughput manner [8]. Previously,
radiomics has been applied in tumor studies, including
meningioma and lung cancer [9, 10]. 1e current study
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reports the application of MRI radiomics based on enhanced
T1WI to establish a convenient and noninvasive method to
grade glioma before surgery and improve the accuracy of
diagnosis.

2. Data and Methods

2.1. Patients’ Information. 1e current research was ap-
proved by the Ethics Committee of the Jiangxi Provincial
People’s Hospital (No. 2022–026). Since it was a retro-
spective study, procuring informed consent from the pa-
tients was exempted. A retrospective analysis was performed
using data of patients who were admitted to our hospital
between January 2017 and November 2020 and met the
following criteria. Inclusion criteria were as follows: MRI
showed intracranial space-occupying lesions, which were
later confirmed by surgery and pathological tests as glioma,
and the pathological grade was clear; and the intracranial
lesions were not treated (using, for example, surgery, che-
motherapy, radiotherapy, biopsy, or hormone therapy).
Exclusion criteria were as follows: the case information was
incomplete or cannot be followed up for any reason and due
to motion or magnetic-sensitive artifacts, the image quality
was poor and could not meet the research requirements.

Among the 134 glioma patients, 10 received preoperative
chemotherapy, 2 had a history of surgery, and 8 patients
were lost to follow-up due to various reasons.1erefore, data
of 114 patients were considered, 35 LGG (WHO grade II)
cases and 79 HGG (21 cases of WHO grade III and 58 cases
of grade IV) cases. Surgery was performed on all the patients
included in the study 1-2 weeks after the MRI images were
collected. 1e pathological diagnosis was performed by a
neuropathologist having 20 years of clinical experience.

2.2. Collection of MRI Images. 1e 3.0 MRI scanner (GE
Discovery MR750W) and an 8-channel head-phased array
coil were used. 1e sequences used were head axial routine
plain scan T1WI, T2WI, and contrast-enhanced T1WI se-
quence. Gadolinium-containing contrast agent (0.1mL/kg
Ga-DTPA; Bayer, Germany) was injected at a rate of 2.0mL/
s. After injecting 20mL of saline at the same rate, the pa-
rameters of the T1WI sequence used were TR, 550ms; TE,
12ms; NEX 2, matrix 256× 320; layer thickness, 5mm; and
field of view (Fov), 24× 24 cm. 1e parameters of the T2WI
used were TR, 5500ms; TE, 100ms; NEX 2, matrix
256× 320; layer thickness, 5mm; and Fov, 24× 24 cm. 1e
same machine and scan parameters were used to acquire
images of all patients to minimize errors.

2.3. Image Analysis. Multiparameter MRI data were ana-
lyzed and processed on AW 4.6 workstation (Function Tool;
GE Healthcare). 1e patients’ gender and age were recorded.
Two radiologists who had more than 8 years of experience
used the blinding method to evaluate the features of glioma
in the MR images, mainly the size of the lesion (measuring
the maximum diameter of the tumor thrice and considering
the average), proportion of tumors with a clear boundary,

proportion of tumors with hemorrhage, and proportion of
tumors with peritumoral edema. When the evaluation was
inconsistent, a consensus was reached after discussing it.

2.4. Feature Extraction. Images were imported into the
image processing software (ITK-SNAP) in DICOM format,
and the two radiologists, having no knowledge of the
pathological results, using a semiautomatic method with an
interactive level-set volume of interest via threshold-based
and edge-based algorithms, outlined the region of interest
(ROI) layer by layer on all levels of the displayed tumor in
the enhanced T1WI sequences. To ensure the accuracy of the
study, the ROIs should be selected as close as possible to the
tumor boundary, while avoiding necrosis, calcification, and
peritumoral edema [11]. When viewing the features of
glioma in MRI images, the tumor boundary is the clearest in
enhanced T1WI [12]. 1erefore, all ROI images in this study
were outlined in contrast-enhanced T1WI (Figures 1 and 2).

1e original image and the segmented tumor ROI file
were imported into the AK software at the same time
(Artificial Intelligence Kit V3.0.0.R, GE Healthcare) [12, 13].
1e software automatically extracted 461 quantitative image
feature parameters including morphology, histogram,
Haralick feature, run-length matrix (RLM), gray-level co-
occurrence matrix (GLCM), and gray-level size zone matrix.
Each feature value for the patients was obtained by per-
forming normalization using a Z-score (x.m/s), where “x”
represented the value of the feature, “m” represented the
average value, and “s” represented the standard deviation.
Before using the machine learning model for classification,
the unit limit of each feature was eliminated.

2.5. Establishment of the Radiomics Model. Of the 114 pa-
tients, 80 comprised the training group and 34 comprised
the test group, to maintain a ratio of 7 : 3. 1e redundancy
between characteristic parameters was calculated using the
Spearman method. If the correlation coefficient was greater
than 90%, one of them was retained. 1en, the least absolute
shrinkage and selection (LASSO) regression algorithm was
employed to reduce the dimensionality of the features
[9, 13]. 1e logistic regression method was used to establish
the prediction model using the selected parameters. 1en,
the selected radiomics features were linearly weighted
according to the respective LASSO coefficients in the
training and test groups to generate a radiomics risk score
for the brain glioma grading.

2.6. Statistical Analysis. 1e “glmnet” package in the R
software (3.6.1) was used to perform LASSO dimensionality
reduction analysis. “glm” was used to build the regression
model, and the “pROC” package was used to draw the ROC
curve to evaluate the accuracy of the model. SPSS 23.0
software was used to perform statistical analysis using
population age, gender, and MRI image features of the
patients.

2 International Journal of Clinical Practice



3. Results

3.1. Clinical Data and MRI Routine Imaging Features.
1ere was no significant difference in the gender of patients
between the LGG and HGG groups, but there was a sig-
nificant difference in age. When comparing the imaging
features between the two groups, the size of the tumor,
proportion of tumors with a clear boundary, proportion of
tumors with hemorrhage, and proportion of tumors with
peritumoral edema were not significantly different. How-
ever, the enhancement of the tumor was significantly dif-
ferent between the two groups (Table 1).

3.2. Establishment of Radiomics Labels. 1e Analysis Kit
(AK) was used to extract a total of 461 parameters from five
categories, including morphological features, histogram
features, gray-level co-occurrence matrix features, run-
length matrix features, and gray-scale region size matrix
features. Spearman correlation was used to calculate the
redundancy between the feature parameters, and 0.9 was
selected as the redundancy threshold. After deredundancy
processing, 28 features were retained, and 9 feature pa-
rameters with a greater predictive value were selected using
the LASSO dimensionality reduction algorithm (Figure 3,
Table 2), including four histogram features, one Haralick

Figure 1: (a) LGG of the right temporal lobe (WHO grade II). (b) HGG of the right temporal lobe (WHO grade IV).

Figure 2: Using the image processing software (ITK-SNAP), the area of interest was manually outlined on all levels of the brain glioma
(grade II) in the enhanced T1WI, and the levels merged into a 3D area of interest (red).
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feature, two GLCM features, one RLM feature, and one gray-
level size zonematrix feature (Table 3). A linear equation was
used to calculate the radiomics score for each patient, and
the following formula was used:

Radscore � (2.951×MeanDeviation) + (−0.517×

quantile 0.025) + (0.141×MedianIntensity) + (−0.488 ×

kurtosis) + (0.571×Correlation_angle0_offset1) + (0.541×

GLCMEntropy_AllDirection_offset4) + (4.399 ×

Table 1: Clinical and imaging features of patients with LGG and HGG.

LGG (n� 35) HGG (n� 79) Test value P value
Gender (male/female) 18/17 42/37 0.029a 0.864
Age (year) 43± 10 60± 13 −7.122t ≤0.001∗
Max diameter (cm) 4.1± 1.3 3.9± 1.5 0.748t 0.456
Borders (indistinct/clear) 31/4 61/18 2.008a 0.156
Intratumoral bleeding (yes/no) 16/19 29/50 0.823a 0.364
Peritumoral edema (with/without or mild) 25/10 48/31 1.199a 0.274
1e enhancement level 78.092a ≤0.001∗
No or light 26 3
Moderate 9 11
Severe 0 65

t, t-test; achi square test.

-10 -8 -6
Log (lambda)

-4 -2

2.0

20 20 20 20 19 19 17 18 16 14 12 9 9 2 1

1.5

Bi
no

m
ia

l d
ev

ia
nc

e

1.0

0.5

(a)

-10 -8 -6
Log lambda

0.00477145905815973

-4 -2

20 20 17 12 2

500

Co
ef

fic
ie

nt
s

100

300

0

(b)

Figure 3: Screening radiomics features using LASSO regression. (a) LASSO regression uses cross-validation.1e vertical dashed line on the
left represents the log (λ) value corresponding to the best λ value.1e selection standard was the minimum deviation value, i.e., −5.3. (b)1e
coefficients of texture parameters changing with λ.1e vertical line corresponds to 9 features with nonzero coefficients selected using LASSO
cross-validation.

Table 2: Texture parameters and their corresponding coefficient values after dimensionality reduction.

Feature parameter Value

Histogram parameters

MeanDeviation 2.95
Quantile 0.025 −0.51
MedianIntensity 0.15

Kurtosis 0.49

GLCM parameters
Correlation_angle0_offset1 0.53

GLCMEntropy_AllDirection_offset4 0.51
GLCMEntropy_AllDirection_offset7 4.45

RLM parameters LongRunEmphasis_angle0_offset1 0.65
GLZSM parameters GrayLevelNonuniformity_AllDirection_offset7 −1.01
GLCM, gray-level co-occurrence matrix; RLM, run-length matrix; GLZSM, gray-level size zone matrix.

Table 3: Diagnosis using the radiomics model in the training and test groups.

AUC (95% CI) Accuracy Sensitivity Specificity
Training group 0.950 (0.905–0.994) 0.848 1.0 0.778
Test group 0.952 (0.871–1.000) 0.939 0.9 0.956
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Figure 4:1e comparison of LGG andHGGRAD scores in the training (a) and test groups (b). Labels 1 and 0 correspond toHGG and LGG,
respectively.
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Figure 5: (a) For the training group (n� 80), the region of interest was used to evaluate the prediction model based on the enhanced T1WI,
and the AUC value was 0.950. (b) According to the region of interest of the experimental group (n� 34), the prediction model based on the
enhanced T1WI was evaluated, and the AUC value was 0.952.
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GLCMEntropy_AllDirection_offset7) + (0.757× Long
RunEmphasis_angle0_offset1) + (−1.02× GrayLevel
Nonuniformity_AllDirection_offset7).

1e differences in RAD scores between HGG (label� 1)
and LGG (label� 0) in the training and test groups were
significantly different (P< 0.01) (Figure 4). 1e accuracy of
the training and validation groups was 84.8% and 93.9%,
respectively, the sensitivity was 100% and 90.0%, respec-
tively, the specificity was 77.8% and 95.6%, respectively, and
the AUC value was 0.950 and 0.952, respectively, suggesting
the model showed good predictive performance in both the
training and test groups (Figure 5 and Table 3).

4. Discussion

4.1. Development of Tumor ROI. In the current research, a
radiomics model was structured for glioma grading by
selecting 461 feature parameters. 1e model showed im-
proved glioma grading. Building a predictive model requires
extracting feature data, and delineating the region of interest
is the prerequisite for extracting feature data. Most glioma
tumors are rich in blood supply, and the enhancement is
obvious in the enhanced T1WI sequences. 1erefore, we
chose to outline the region of interest in the enhanced T1WI
sequences. Manual delineation is susceptible to other
nonobjective factors. To reduce errors and obtain stable
features, based on previous experience [9, 13, 14], the
current study used two doctors for segmentation and the
addition of interference noise.

4.2. Correlation of Texture Features with the Tumor. In the
current study, 9 radiomics features were obtained using the
enhanced T1WI. 1ese features showed good predictive
performance in the identification of LGG and HGG before
surgery. 1ere is complex heterogeneity in tumors, and
conventional MR images show different signals and en-
hancement levels [15]. Since glioma is often accompanied by
bleeding, the tumor signals are mixed due to intratumoral
hemorrhage in different periods. However, the enhancement
of the tumor still has a high degree of recognition, which is
consistent with the results of glioma image features. Ad-
ditionally, the heterogeneity is also manifested as different
gray levels that are difficult to recognize using the naked eye
[16], and histogram features and texture features can
quantify the orientation, spatial distribution, and roughness
of the texture in the tumor, which clearly and intuitively
reflect the spatial heterogeneity of the different levels of
glioma and provide more information for the preoperative
graded diagnosis of glioma.

4.3. Application of the Radiomics Model in Glioma Grading.
MRI is the most commonly used preoperative diagnostic
method for glioma, but conventional MRI is often limited to
positioning and auxiliary qualitative diagnosis and has little
influence on glioma grading. Some progress has been made
in MR functional imaging and multiparameter imaging
diagnosis. However, the use of MRI for preoperative grading
is still limited. Nowadays, radiomics methods are more and

more widely used in the evaluation of various diseases. Some
researchers have tried to apply it to meningioma, lung
cancer, cervical cancer, and gastrointestinal stromal tumors
[9, 10, 13, 14, 17]. Some researchers have also used similar
methods to actively study glioma [18, 19]. Rathore collected
735 images of glioma patients and performed grading on
these images, and the results showed that gliomas of dif-
ferent grades were different (accuracy� 0.751, AUC� 0.652)
[20]. In the current study, we used software to extract high-
throughput and multidimensional texture features. 1e
results (accuracy� 0.848, AUC� 0.950) are better than those
of the previous models, indicating that the proposed model
is very reliable.

Nevertheless, the current research had certain limita-
tions: the ROI of the current study was limited to the essence
of the tumor, and there was insufficient research on pe-
ripheral necrosis and edema of the tumor. 1e sample size
was considerably small, especially for low-grade brain gli-
oma (there were no cases of grade I brain glioma and only 35
cases of grade II brain glioma).1erefore, even having found
promising results, they need to be confirmed by futures
studies with larger sample size.1e study was a single-center
retrospective study and lacked external verification using
multicenter large sample data to ensure the reliability of the
predictive model in actual clinical application.

5. Conclusions

In conclusion, the radiomics model based on enhanced
T1WI imaging showed good prediction performance and
has a certain guiding value for the presurgery grading
prediction of brain glioma.
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