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Abstract Insects adapt their response to stimuli, such as odours, according to their pairing 
with positive or negative reinforcements, such as sugar or shock. Recent electrophysiological and 
imaging findings in Drosophila melanogaster allow detailed examination of the neural mechanisms 
supporting the acquisition, forgetting, and assimilation of memories. We propose that this data 
can be explained by the combination of a dopaminergic plasticity rule that supports a variety of 
synaptic strength change phenomena, and a circuit structure (derived from neuroanatomy) between 
dopaminergic and output neurons that creates different roles for specific neurons. Computational 
modelling shows that this circuit allows for rapid memory acquisition, transfer from short term to 
long term, and exploration/exploitation trade-off. The model can reproduce the observed changes 
in the activity of each of the identified neurons in conditioning paradigms and can be used for flex-
ible behavioural control.

Editor's evaluation
This ambitious study goes from signalling mechanisms to fly behavior through a model of a memory 
circuit in the fly brain. The authors call this the incentive circuit. The model draws extensively from 
anatomical and physiological measurements. The study makes a wide range of predictions about 
how this circuit mediates behaviour and learning through attractive and repulsive cues.

Introduction
Animals deal with a complicated and changing world, and they need to adapt their behaviour 
according to their recent experience. Rapid changes in behaviour to stimuli accompanied by intense 
reinforcement require memories in the brain that are readily susceptible to alteration. Yet associations 
experienced consistently should form long-term memories (LTMs) that are hard to change. Memories 
that are no longer valid should be forgotten. Every neuron cannot have all of these properties, but 
they must be connected in a circuit, playing different roles such as supporting short-term memory 
(STM) or LTM, and enabling processes to form, retain, and erase memories. This complex interaction 
of memory processes is familiar in principle, but its implementation at the single-neuron level is still 
largely a mystery.

The fruit fly Drosophila melanogaster is able to form, retain, and forget olfactory associations with 
reinforcements, for example, electric shock. The key neural substrate is known to lie in the neuropils of 
their brain called the mushroom bodies (MBs) (Davis, 1993; Heisenberg, 2003; Busto et al., 2010). 
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There are two MBs in the insect brain, one in each hemisphere, composed of intrinsic and extrinsic 
neurons. Extrinsic projection neurons (PN) deliver sensory input to the only intrinsic neurons of the 
MBs, the Kenyon cells (KCs), whose long parallel axons travel through the pendunculus and then split 
forming the vertical (α/α′) and medial (β/β′ and γ) MB lobes (see Figure 1). The extrinsic mushroom 
body output neurons (MBONs) extend their dendrites in different regions of the lobes, receiving 
input from the KCs and forming 15 distinct compartments (Turner et al., 2008; Tanaka et al., 2008; 
Campbell et al., 2013; Aso et al., 2014a). Their activity is thought to provide motivational output 
that modulates the default behaviour of the animal (Aso et al., 2014b). Different groups of extrinsic 
dopaminergic neurons (DANs) terminate their axons in specific compartments of the MB and modu-
late the connections between KCs and MBONs (Aso et al., 2014a). Many of the DANs respond to 
a variety of reinforcement signals (Mao and Davis, 2009; Schwaerzel et al., 2003; Claridge-Chang 
et al., 2009; Liu et al., 2012; Lin et al., 2014), and therefore, they are considered the main source 
of reinforcement signals in the MB. Finally, many of the MBON axons and DAN dendrites meet in the 
convergence zones (CZs), where they create interconnections, such that the motivational output can 
also influence the activity of the reinforcement neurons (Li et al., 2020).

Several computational models have tried to capture the structure and function of the MBs, usually 
abstracting the common features of this network across various insect species. Modellers have treated 
the MBs as performing odour discrimination (Huerta et al., 2004), olfactory conditioning (Balkenius 
et al., 2006; Smith et al., 2008; Finelli et al., 2008; Young et al., 2011; Wessnitzer et al., 2012; 
Peng and Chittka, 2017; Faghihi et  al., 2017; Zhao et  al., 2021; Springer and Nawrot, 2021; 

Figure 1. Overview of the mushroom body circuit. Left: the main anatomical pathways. In the illustration, the presented odour activates the Kenyon cells 
(KCs) through the projection neurons (PNs). The parallel axons of KCs propagate this signal to the lobes of the mushroom body. The mushroom body 
output neurons (MBONs) extend their dendrites in the mushroom body lobes, receiving input from the KCs. Electric shock creates a punishing signal 
that excites some dopaminergic neurons (DANs), whose axons terminate in the lobes and modulate the synaptic weights between KCs and MBONs. 
Right: schematic of potential connections between punishment/reward DANs and approach/avoidance MBONs. Note that although DANs transferring 
punishing signals modulate the KC activation of MBONs that encode positive motivations (decreasing attraction to the presented odour and increasing 
attraction to odours not present [the dopaminergic plasticity rule]), MBONs that encode negative motivations will also gain higher responses due to 
release of inhibition between MBONs, and the feedback connections from MBONs to other DANs. In our model, we further decompose these functions 
using three DANs and three MBONs for each motivation (positive or negative) and map these units to specific identified neurons and microcircuits in 
the brain of Drosophila. These circuits include some direct (but not mutual) MBON-MBON connections (dashed inhibitory connections).

https://doi.org/10.7554/eLife.75611
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Eschbach et al., 2020; Bennett et al., 2021), or calculating the scene familiarity (Wu and Guo, 2011; 
Baddeley et al., 2012; Arena et al., 2013; Bazhenov et al., 2013; Ardin et al., 2016). However, it 
seems like they can subserve all these functions, depending on context (or experience), that is, what 
is driving the activity of the KCs (Cohn et al., 2015). This suggests that the output neurons of the MB 
do not just inform the animal whether an odour is known or attractive, or if a scene is familiar, but 
they actually motivate the animal to take an action like approach, avoid, escape, or forage. There is 
emerging evidence supporting this idea of the MBONs driving non-binary but antagonistic motiva-
tions (Schwaerzel et al., 2003; Krashes et al., 2009; Gerber et al., 2009; Waddell, 2010; Lin et al., 
2014; Perisse et al., 2016; Senapati et al., 2019), which has started to be explored in recent models.

In addition to the structural and functional depiction of the MBs, a variety of plasticity rules have 
been used in order to explain the effect of dopamine emitted by the DANs on the KC→MBON 
synapses. Although the best supported biological mechanism is that coincidence of DAN and KC 
activity depresses the output of KCs to MBONs, most of the models mentioned before use variations 
of the Hebbian rule (Hebb, 2005), where the coincidence of the input (KCs) and output (MBONs) 
activation strengthens the synaptic weight (or weakens it for the anti-Hebbian case) and this is gated 
by the reinforcement (DANs). More recent approaches that try to model the activity of DANs and 
MBONs in the brain have used plasticity rules (Zhao et al., 2021) or circuit structures (Springer and 
Nawrot, 2021; Bennett et al., 2021; Eschbach et al., 2020) that implement a reward prediction error 
(RPE) (Rescorla and Wagner, 1972), which is the most widely accepted psychological account of asso-
ciative learning with strong validation evidence in the vertebrate brain (Niv, 2009). For the MB, this 
plasticity rule is interpreted as the output (MBON) being the prediction of the reinforcement (DAN), 
so their difference (gated by the activity of the input, KC) drives the synaptic plasticity. However, 
details of neuronal dynamics in fruit flies (Hige et al., 2015; Dylla et al., 2017; Berry et al., 2018) 
suggest that neither Hebbian nor RPE plasticity rules capture the plasticity dynamics in the MBs (also 
in larva: Schleyer et al., 2018; Schleyer et al., 2020) as both rules need the conditional stimuli (CS) 
to occur (KCs to be active) for synaptic weight change. This highlights the importance of investigating 
new plasticity rules that are a closer approximation to the actual dopaminergic function.

In this work, we propose such a novel plasticity rule, named the dopaminergic plasticity rule (DPR), 
which reflects a recent understanding of the role of dopamine in depression and potentiation of 
synapses. Based on the evidence of existing MBON→DAN connections, we build a 12-neuron compu-
tational model, which we call the incentive circuit (IC), and uses the proposed plasticity rule. In this 
model, we name three types of DANs (‘discharging’, ‘charging’, and ‘forgetting’) and three types 
of MBONs (‘susceptible’, ‘restrained’, and ‘LTM’) for each of the two opposing motivational states. 
We demonstrate that the neural responses generated by this model during an aversive olfactory 
learning paradigm replicate those observed in the animal; and that simulated flies equipped with the 
IC generate learned odour preferences comparable to real flies. Finally, we suggest that such a model 
could work as a motif that extends the set of motivations from binary (e.g., avoidance vs. attraction) to 
a spectrum of motivations whose capabilities are equivalent to ‘decision-making’ in mammals.

Results
The dopaminergic plasticity rule
We implement a novel dopaminergic plasticity rule (DPR) to update the KC→MBON synaptic weights 
proportionally to the dopamine level, KC activity, and current state of the synaptic weight with respect 
to its default (rest) value. Our DPR is based on recent findings regarding the role of dopamine (and 
co-transmitters) in altering synaptic efficacy in the fruit fly MB (see methods section ‘Derivation of 
the dopaminergic plasticity rule’). Instead of calculating the error between the reinforcement and its 
prediction, DPR uses the reinforcement to maximise the separation between the synaptic weights 
of reinforced inputs, which is functionally closer to the information maximisation theory (Bell and 
Sejnowski, 1995; Lee et al., 1999; Lulham et al., 2011) than the RPE principle. While this rule, in 
combination with some specific types of circuits, can result in the prediction of reinforcements, it can 
also support a more flexible range of responses to stimulus-reinforcement contingencies, as we will 
show in what follows.

The dopaminergic learning rule is written formally as

https://doi.org/10.7554/eLife.75611
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	﻿‍ ∆Wij
k2m(t) = δj(t)[ki(t) + Wij

k2m(t) − wrest]‍� (1)

where ‍∆Wij
k2m‍ is the change in the synaptic weight connecting a KC, i, to an MBON, ‍j‍. The 

KC→MBON synaptic weight, ‍W
ij
k2m ≥ 0‍, and the KC response, ‍ki(t) ≥ 0‍, have a lower bound of 0, 

while the resting weight, ‍wrest = 1‍, is a fixed parameter. The rule alters the connection weight between 
each KC and MBON on each time-step depending on the dopaminergic factor, ‍δj(t)‍, which is deter-
mined by the responses of the DANs targeting this MBON. The dopaminergic factor can be positive 
[‍δ

j(t) > 0‍] or negative [‍δ
j(t) < 0‍], which we motivate from recent observations of the differential roles 

in synaptic plasticity of DopR1 and DopR2 receptors (Handler et al., 2019), as detailed in ‘Materials 
and methods’. When combined with two possible states of KC activity (active or inactive), this results 
in four different plasticity effects: depression, potentiation, recovery, and saturation.

These effects can be inferred directly from Equation 1. If the dopaminergic factor is zero (contrib-
uting DANs are inactive or mutually cancelling), no learning occurs. If the dopaminergic factor is nega-
tive and the KC is active (positive), the KC→MBON synaptic weight is decreased (depression effect of 
the plasticity rule, see Figure 2A). However, if the synaptic weight is already low, the synaptic weight 
cannot change further. The recovery effect takes place when the dopaminergic factor is negative and 
the KC is inactive (‍ki(t) = 0‍), in which case the synaptic weights tend to reset to the resting weight (see 
Figure 2C). When the dopaminergic factor is positive and the KC is active, we have the potentiation 
effect, which causes an increase in the synaptic weights (see Figure 2B). In contrast to the depression 
effect, as the synaptic weight becomes stronger, it further enhances this effect. If the KC is inactive 
and the dopaminergic factor is positive, then we have the saturation effect, where if the current 
synaptic weight is higher than its resting weight, the synaptic weight continues to increase, while if it 
is lower then it continues to decrease (see Figure 2D). This effect enhances diversity in the responses 
of the MBON to the different past and current CS experiences, which is essential for memory consol-
idation (i.e., continued strengthening of a memory) and the formation of long-term memories (i.e., 
slower acquisition and resistance to further change).

The different effects described above can work together in single KC→MBON synapses (i.e., 
through the influence of multiple DANs), leading to more complicated effects like the formation of 
short-term memories (e.g., combining the depression/potentiation and recovery effects) or long-term 

Figure 2. The different effects of the dopaminergic plasticity rule, depending on the activity of the Kenyon cell (KC) (orange indicates active) and the 
sign of the dopaminergic factor (white arrowheads in dots). The dopaminergic plasticity rule (DPR) can cause four different effects that work in harmony 
or discord to maximise the information captured in each experience and allow different types of memories to be formed for each KC→MBON synapse. 
In each box, time-step ‍t = tpre‍ shows the initial KC→MBON synaptic weights (thickness of the arrows); electric shock activates the DAN in time-step 

‍t = tlearn‍ causing modulation of the synaptic weights (red: increase; blue: decrease), while time-step ‍t = tpost‍ shows the synaptic weights after the shock 
delivery. (A) Example of the depression effect – the synaptic weight decreases when ‍δj(t) < 0‍ and the KC is active. (B) Example of the potentiation effect 
– the synaptic weight increases when ‍δj(t) > 0‍ and the KC is active. (C) Example of the recovery effect – the synaptic weight increases when ‍δj(t) < 0‍ 
and the KC is inactive. (D) Example of the saturation effect – the synaptic weight increases further (when ‍W

ij
k2m(t) > wrest‍) or decreases further (when 

‍W
ij
k2m(t) < wrest‍) when ‍δj(t) > 0‍ and the KC is inactive. MBON: mushroom body output neuron.

https://doi.org/10.7554/eLife.75611
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memories (e.g., combining the potentiation and saturation effects). However, we will see that by adding 
MBON→DAN feedback connections a very wide range of circuit properties can be implemented. We 
next introduce a set of microcircuits that have been found in the fruit fly MBs and describe how they 
could interlock and interact in one IC to control the motivation and hence the behaviour of the animal.

The incentive circuit
What we call the IC is a circuit in the MB of the fruit fly D. melanogaster that allows complicated 
memory dynamics through self-motivation. We have identified and modelled this circuit (shown 
in Figure 3) which consists of six MBONs that receive KC input and six DANs that modulate the 
KC-MBON connections. The circuit includes some MBON-MBON connections and some feedback 
connections from MBONs to DANs. All the neurons and connections in this circuit are mapped to 
identified connectivity in the MB as summarised in Table 1. We will describe each of the microcircuits 
and the biological justification for their assumed function in detail below, but here we provide an initial 
overview of the IC function.

As presented in Figure 3, for each motivation (attraction or avoidance), the IC has three types 
of MBON — susceptible, restrained, and LTM — and three types of DAN — discharging, charging, 
and forgetting. More specifically, working from the outer edges of the model, we have ‘discharging’ 
DANs that respond to punishment (left side) or reward (right side) and influence the ‘susceptible’ 
MBONs, which by default respond to all KC inputs (not shown). These in turn inhibit the responses of 
the ‘restrained’ MBONs of opposite valence. When the discharging DANs depress the response of 
the susceptible MBONs of opposite valence, they release the restrained MBONs of the same valence, 
and also decrease the inhibitory feedback to the discharging DANs from the susceptible MBONs. 
The restrained MBONs activate their respective ‘charging’ DANs, which start to potentiate the LTM 
MBONs of the same valence, while also depressing the response (to KC input) of the restrained 
MBON of opposite valence. Similarly, the LTM MBONs enhance the activity of the charging DANs, 
increasing the momentum of LTM, while simultaneously activating their respective ‘forgetting’ DANs, 
to decrease the momentum of the opposite valence LTM. The forgetting DANs also depress the 
restrained MBONs, which makes space for the acquisition of new memories while preserving old ones.

In the following sections, we show in detail how each simulated neuron of this circuit responds 
during acquisition and forgetting in the aversive olfactory conditioning paradigm shown in Figure 4 
and compare this to observed responses in the corresponding identified neurons in the fly from 
calcium imaging under the same paradigm. We then describe the behaviour of simulated flies 
under the control of this circuit and learning rule in a naturalistic setting with two odour gradients, 

Figure 3. The incentive circuit (IC) integrates the different microcircuits of the mushroom body into a unified model allowing the expression of more 
complicated behaviours and memory dynamics. It combines the susceptible, restrained, reciprocal short- and long-term memories and the memory 
assimilation mechanism microcircuits in one circuit that is able to form, consolidate, and forget different types of memories that motivate the animal to 
take actions. ‍dav‍ and ‍dat‍: avoidance- and attraction-driving discharging dopaminergic neurons (DANs); ‍cav‍ and ‍cat‍: avoidance- and attraction-driving 
charging DANs; ‍fav‍ and ‍fat‍: avoidance- and attraction-driving forgetting DANs; ‍sav‍ and ‍sat‍: avoidance- and attraction-driving susceptible mushroom 
body output neurons (MBONs); ‍rav‍ and ‍rat‍: avoidance- and attraction-driving restrained MBONs; ‍mav‍ and ‍mat‍: avoidance- and attraction-driving long-
term memory MBONs.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Figure supplement 1. Behaviour generated by the model correlates with 92 experiments reported in Bennett et al., 2021.

Source data 1. Experimental data from Bennett et al., 2021 modified to include the predicted neuron types.

https://doi.org/10.7554/eLife.75611
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paired singly or jointly with punishment or reward. By using more abstracted behavioural modelling, 
following the approach of Bennett et al., 2021, we are also able to create closely matching results 
for 92 different olfactory conditioning intervention experiments, that is, the observed effects on fly 
learning of silencing or activating specific neurons (Figure 3—figure supplement 1, ‍∆f ‍ of the model 
and experiments are correlated with correlation coefficient ‍r = 0.76, p = 2.2 × 10−18

‍).

Microcircuits of the mushroom body
Susceptible and restrained memories
Pavlowsky et al., 2018 identified a microcircuit in the MB, where a punishment-encoding DAN (PPL1-
γ1pedc) depresses the KC synapses onto an attraction-driving MBON (MBON-γ1pedc>α/β), which in 
turn inhibits the same DAN. They argue that this is a memory consolidation mechanism as the drop 
in the MBON response will reduce its inhibition of the DAN, enhancing the formation of the memory 
if the same odour-punishment pairing is continued. Felsenberg et  al., 2018 further showed that 
the same MBON directly inhibits an avoidance-driving MBON (MBON-γ5β′2a), such that its activity 
increases (driving avoidance) after punishment as the inhibition is released. Figure 5A shows these 
neurons in the MB and Figure 5B a schematic representation of their interconnections. Note that the 
MBON⊣MBON inhibition is not reciprocal, rather we assume (see Figure 3 and below) that there is 

Table 1. Connections among neurons in the Drosophila mushroom body mapped to the connections of the incentive circuit.
Connection types: ‘⊸’, modulates the synaptic weights of the KC→MBON connections terminating in that MBON; ‘→’, excitatory 
connection; ‘⊣’, inhibitory connection. Microcircuit – SM: susceptible memory; RM: restrained memory; RSM: reciprocal short-term 
memories; LTM: long-term memory; RLM: reciprocal long-term memories; MAM: memory assimilation mechanism. Evidence – A: 
anatomical connection is known (i.e., using light or electron microscopy); F: functional connection is known (i.e., whether activating 
the presynaptic neuron leads to an excitatory or inhibitory effect on the postsynaptic neuron and/or the neurotransmitter released by 
the presynaptic neuron); KC: Kenyon cell; MBON: mushroom body output neuron; IC: incentive circuit.

Connection in the MB Connection in the IC Microcircuit Evidence References

PPL1-γ1ped ⊸ MBON-γ1ped ‍dav ⊸ sat‍ SM A, F Aso et al., 2014a; Pavlowsky et al., 2018

MBON-γ1ped ⊣ PPL1-γ1ped ‍sat ⊣ dav‍ SM A, F Aso et al., 2014a; Pavlowsky et al., 2018

PAM-γ4<γ1γ2 ⊸ MBON-γ4>γ1γ2 ‍dat ⊸ sav‍ SM A Aso et al., 2014a

MBON-γ4>γ1γ2 ⊣ PAM-γ4<γ1γ2 ‍sav ⊣ dat‍ SM A, F Aso et al., 2014a; Cohn et al., 2015

MBON-γ1ped ⊣ MBON-γ5β′2a ‍sat ⊣ rav‍ RM A, F Aso et al., 2014a; Felsenberg et al., 2018

MBON-γ4>γ1γ2 ⊣ MBON-γ2α′1 ‍sav ⊣ rat‍ RM A Aso et al., 2014a

PPL1-γ2α’12 ⊸ MBON-γ2α′1 ‍cav ⊸ rat‍ RSM A, F Aso et al., 2014a; McCurdy et al., 2021

MBON-γ2α′1 → PAM-β′2a ‍rat → cat‍ RSM A, F Aso et al., 2014a; McCurdy et al., 2021

PAM-β′2a ⊸ MBON-γ5β′2a ‍cat ⊸ rav‍ RSM A, F Aso et al., 2014a; McCurdy et al., 2021

MBON-γ5β′2a → PPL1-γ2α’12 ‍rav → cav‍ RSM A Li et al., 2020

PPL1-γ2α’12 ⊸ MBON-α’1 ‍cav ⊸ mav‍ LTM A Aso et al., 2014a

MBON-α’1 → PPL1-γ2α’12 ‍mav → cav‍ LTM A Aso et al., 2014a; Li et al., 2020

PAM-β’2a ⊸ MBON-β2β′2a ‍cat ⊸ mat‍ LTM A Aso et al., 2014a

MBON-β2β′2 a → PAM-β′2a ‍mat → cat‍ LTM A Aso et al., 2014a; Li et al., 2020

PPL1-γ2α’11 ⊸ MBON-α’1 ‍fat ⊸ mav‍ RLM A Aso et al., 2014a

MBON-α’1 → PAM-β2β′2a ‍mav → fav‍ RLM A Li et al., 2020

PAM-β2β′2a ⊸ MBON-β2β′2a ‍fav ⊸ mat‍ RLM A Aso et al., 2014a

MBON-β2β′2a → PPL1-γ2α’11 ‍mat → fat‍ RLM A Li et al., 2020

PPL1-γ2α’11 ⊸ MBON-γ2α’1 ‍fat ⊸ rat‍ MAM A Aso et al., 2014a

PAM-β2β′2a ⊸ MBON-γ5β′2a ‍fav ⊸ rav‍ MAM A Aso et al., 2014a

https://doi.org/10.7554/eLife.75611
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a different microcircuit in which an avoidance-driving MBON inhibits an attraction-driving MBON. 
Figure 5C–E shows the responses of these neurons from experimental data (left) and from our model 
(right) during aversive conditioning (the paradigm shown in Figure 4), which follow a similar pattern.

Learning in this circuit is shown by the sharp drop (in both experimental data and model) of the 
response of MBON-γ1pedc>α/β (Figure 5D) to odour B already from the second trial of the acqui-
sition phase. There is a similar drop in the response to odour A in the reversal phase. This rapid 
decrease is due to the depressing effect of the DAN on the KC→MBON synaptic weight. Note that 
we name this a ‘discharging’ DAN as the target synaptic strengths are high or ‘charged’ by default. 
However, due to our plasticity rule, if the unconditional stimuli (US) subsequently occurs without 
the CS (see unpaired phase in the model, for which we do not have experimental data), the MBON 
synaptic weights reset due to the recovery effect (see Figure 5—figure supplement 3A, odour B). 
This is consistent with the high learning rate and low retention time observed in Aso and Rubin, 
2016, and it results in a memory that is easily created and erased: a ‘susceptible memory’ (SM). 
The response of MBON-γ5β′2a (Figure 5E) can be observed to have the opposite pattern, that is, 
it starts to respond to odour B from the second trial of acquisition as it is no longer ‘restrained’. 
Note, however, that the response it expresses, when the restraint is removed, also depends on its 
own synaptic weights for KC input, which, as we will see, may be affected by other elements in the 
IC. In Figure 5C, the experimental data shows a slight drop in the shock response (first paired with 
odour B, then with odour A) of the DAN, PPL1-γ1pedc, during the whole experiment, although it 
remains active throughout. We assume that this drop may reflect a sensory adaptation to shock but 
have not included it in our model. Consequently, the model data shows a positive feedback effect: 

Figure 4. Description of the experimental setup and the aversive olfactory conditioning paradigms. (A) Setup for visualising neural activity via Ca2+ 
imaging during aversive olfactory memory acquisition and reversal. Flies are head-fixed and cuticle dissected for ratiometric imaging of Ca2+-sensitive 
GCaMP6f and Ca2+-insensitive tdTomato. (B) The aversive olfactory conditioning experimental paradigm. 5 s presentations of odours A (3-octanol [OCT]; 
coloured pink) and B (4-methylcyclohexanol [MCH]; coloured yellow) continuously alternate, separated by fresh air, while the shock input (100 ms of 120 
V) forms the different phases: one repeat of pre-training, where no shock is delivered; five repeats of acquisition, where shock (thin red line) is delivered 
in the last second of odour B; two repeats of reversal where shock is paired with odour A. (C) Abstract representation of the computational model as 
an electronic chip. The model receives the conditional (odour) and unconditional stimuli (electric shock) and produces the dopaminergic neuron (DAN) 
and mushroom body output neuron (MBON) responses using the incentive circuit and the dopaminergic plasticity rule. (D) The aversive olfactory 
conditioning experimental paradigm modified for testing the model. Odours A (coloured pink) and B (coloured yellow) are presented for two time-steps 
each, in alternation, separated by one time-step fresh air, while the shock input forms the different phases and forgetting conditions: one repeat of pre-
training, where no shock is delivered; five repeats of acquisition, where shock is delivered in the second time-step of odour B; five repeats of forgetting 
that can be either extinction (lightest shade of odour colour) where shock is not presented, unpaired (mid shade of odour colour) where shock (thin red 
line) is paired with the fresh air ‘break’, or reversal (dark shade of odour colour) where shock is paired with odour A.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Imaging data of all the recorded neurons in the Drosophila melanogaster mushroom body.

Figure supplement 1. The responses from all the recorded neurons in the Drosophila melanogaster mushroom body during the experiment described 
in Figure 4B.

https://doi.org/10.7554/eLife.75611
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the DAN causes depression of the MBON response to odour, reducing inhibition of the DAN, which 
increases its response, causing even further depression in the MBON. Note that this is opposite to 
the expected effects of reward prediction error.

Similar microcircuits in the MB can be extracted from the connectome described in Aso et al., 
2014a and Li et al., 2020 (also identified in larvae; Eichler et al., 2017). This leads us to the assumption 
that there are exactly corresponding susceptible and restrained memory microcircuits with opposite 
valence, that is, a reward-encoding DAN that discharges the response to odour of an avoidance-
driving MBON, which in turn releases its restraint on an attraction-driving MBON (see Figure 5—
figure supplement 1B and right side of the IC in Figure 3, which mirrors the left side, with opposite 
valence). We further suggest specific identities for the neurons forming this circuit: PAM-γ4<γ1γ2 as 
the reward-encoding discharging DAN; MBON-γ4>γ1γ2 as the avoidance-driving susceptible MBON; 
and MBON-γ2α’1 as the attraction-driving restrained MBON (see Figure 5—figure supplement 1A). 
The latter identification is based on the possibility of inhibiting connections from MBONs in the γ4 
compartment to the ones in the γ2 compartment suggested by Aso et al., 2019 and Cohn et al., 
2015. Although MBON-γ4>γ1γ2 is characterised by the glutamate neurotransmitter, it is possible 
that it can inhibit MBON-γ2α′1 through glutamate-gated chloride channels (Cleland, 1996; Liu and 
Wilson, 2013; McCarthy et al., 2011).

Figure 5. The susceptible and restrained microcircuits of the mushroom body. (A) Image of the attraction-driving susceptible and avoidance-driving 
restrained memory microcircuits made of the PPL1-γ1pedc, MBON-γ1pedc, and MBON-γ5β′2a neurons – created using the Virtual Fly Brain software 
(Milyaev et al., 2012). (B) Schematic representation of the susceptible and restrained memories microcircuits connected via the susceptible mushroom 
body output neuron (MBON). The responses of (C) the punishment-encoding discharging dopaminergic neuron (DAN), ‍dav‍, (D) the attraction-driving 
susceptible MBON, ‍sat‍, and (E) the avoidance-driving restrained MBON, ‍rav‍, generated by experimental data (left) and the model (right) during the 
olfactory conditioning paradigms of Figure 4D. Lightest shades denote the extinction, mid shades the unpaired, and dark shades the reversal phase. 
For each trial, we report two consecutive time-steps: the off-shock (i.e., odour only) followed by the on-shock (i.e., paired odour and shock) when 
available (i.e., odour B in acquisition and odour A in reversal phase); otherwise, a second off-shock time-step (i.e., all the other phases).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. The avoidance-driving susceptible memory, attraction-driving restrained memory, and their responses.

Figure supplement 2. The responses of the neurons of the incentive circuit using the connections introduced so far of the susceptible memory (SM) 
and restrained memory (RM) microcircuits.

Figure supplement 3. The KC→MBON synaptic weights of the neurons of the incentive circuit using the connections introduced so far of the 
susceptible memory (SM) and restrained memory (RM) microcircuits.

https://doi.org/10.7554/eLife.75611
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Reciprocal short-term memories
McCurdy et al., 2021 suggest that the attraction-driving restrained MBON in the previous circuit 
(MBON-γ2α′1) indirectly decreases the synaptic weights from KCs to the avoidance-driving restrained 
MBON (MBON-γ5β′2a) via an attraction-encoding DAN (PAM-β′2a). This microcircuit is also supported 
by Felsenberg et al., 2018 and Berry et al., 2018. Cohn et al., 2015 and Li et al., 2020 suggest 
that the corresponding avoidance-driving restrained MBON (MBON-γ5β′2a) excites an avoidance-
encoding DAN (PPL1-γ2α′1), which closes the loop by affecting the KC connections to the attraction-
driving restrained MBON, forming what we call the ‘reciprocal short-term memories’ microcircuit as 
shown in Figure  6A (actual neurons in the MBs) and Figure  6B (schematic representation of the 
described connections).

The ‘charging’ DANs, PAM-β′2a and PPL1-γ2α′1 (named after their long-term memory charging 
property, i.e., potentiation effect on another KC→MBON synapse, as we describe in the long-term 
memory microcircuit section), should be activated directly by reinforcement as well as the restrained 
MBONs. This allows for memories to be affected directly by the reinforcement, but also by the expres-
sion of the opposite valence memories. The latter feature keeps the balance between the memories 
by automatically erasing a memory when a memory of the opposite valence starts building up and 

Figure 6. The reciprocal short-term memories microcircuit of the mushroom body. (A) Image of the reciprocal short-term memories microcircuit made of 
the MBON-γ5β′2a, PAM-β′2a, PPL1-γ2α′1, and MBON-γ2α′1 neurons – created using the Virtual Fly Brain software (Milyaev et al., 2012). (B) Schematic 
representation of the reciprocal short-term memories microcircuit (coloured) connected to the susceptible memories via the restrained mushroom 
body output neurons (MBONs). The responses of (C) the punishment-encoding charging dopaminergic neuron (DAN), ‍cav‍, the (D) attraction-driving 
restrained MBON, ‍rat‍, and (E) the reward-encoding charging DAN, ‍cat‍, generated by experimental data (left) and the model (right) during the olfactory 
conditioning paradigms of Figure 4D. Lightest shades denote the extinction, mid shades the unpaired, and dark shades the reversal phase. For each 
trial, we report two consecutive time-steps: the off-shock (i.e., odour only) followed by the on-shock (i.e., paired odour and shock) when available (i.e., 
odour B in acquisition and odour A in reversal phase); otherwise, a second off-shock time-step (i.e., all the other phases).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. The responses of the neurons of the incentive circuit using the connections introduced so far of the susceptible memory (SM), 
restrained memory (RM), and reciprocal short-term memory (RSM) microcircuits.

Figure supplement 2. The KC→MBON synaptic weights of the neurons of the incentive circuit using the connections introduced so far of the 
susceptible memory (SM), restrained memory (RM), and reciprocal short-term memory (RSM) microcircuits.

https://doi.org/10.7554/eLife.75611
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results in the balanced learning rate and retention time as observed in Aso and Rubin, 2016. Because 
the memories in this pair of restrained MBONs are very fragile, we predict that these MBONs store 
short-term memories.

The effects of this circuit, as shown in Figure 6C–E, are relatively subtle. During acquisition, the shock 
activates the punishment-encoding charging DAN (see Figure 6C), which decreases the synaptic weights 
of the KC onto the attraction-driving restrained MBON (see Figure 6—figure supplement 2C), but this 
cannot be seen in Figure 6D because this MBON is already strongly inhibited (i.e., by the avoidance-
driving susceptible MBON). This low response means that the opposing reward-encoding charging DAN 
Figure 6E is largely unaffected for this conditioning paradigm. In our model, the non-zero activity level of 
this DAN is a consequence of input from the LTM microcircuit which we describe next and the activation 
is similar for both odours because our network starts in a balanced state (no preference for either odour). 
The different response to the two odours seen in the experimental data might therefore represent an 
unbalanced starting state of its LTM for these odours due to previous experiences of the fly.

Figure 7. The long-term memory microcircuits of the mushroom body. (A) Image of the avoidance-encoding long-term memory microcircuit made 
of the MBON-α′1 and PPL1-γ2α′1 – created using the Virtual Fly Brain software (Milyaev et al., 2012). (B) Schematic representation of the long-term 
memory microcircuits (coloured) connected to the reciprocal short-term memory (RSM) via the charging dopaminergic neurons (DANs). (C) Image of 
the attraction-encoding long-term memory microcircuit made of the MBON-β2β′2a and PAM-β2a – created using the Virtual Fly Brain software (Milyaev 
et al., 2012). The responses of the (D) avoidance-driving long-term memory mushroom body output neuron (MBON), ‍mav‍, and (E) the attraction-driving 
long-term memory MBON, ‍mat‍, generated by experimental data (left) and the model (right) during the olfactory conditioning paradigms of Figure 4D. 
Lightest shades denote the extinction, mid shades the unpaired, and dark shades the reversal phase. For each trial, we report two consecutive time-
steps: the off-shock (i.e., odour only) followed by the on-shock (i.e., paired odour and shock) when available (i.e., odour B in acquisition and odour A in 
reversal phase); otherwise, a second off-shock time-step (i.e., all the other phases).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. The responses of the neurons of the incentive circuit using the connections introduced so far of the susceptible memory (SM), 
restrained memory (RM), reciprocal short-term memory (RSM), and long-term memory (LTM) microcircuits.

Figure supplement 2. The KC→MBON synaptic weights of the neurons of the incentive circuit using the connections introduced so far of the 
susceptible memory (SM), restrained memory (RM), reciprocal short-term memory (RSM), and long-term memory (LTM) microcircuits.

https://doi.org/10.7554/eLife.75611
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Long-term memory
Ichinose et al., 2015 describe a microcircuit where a reward-encoding DAN (PAM-α1) potentiates 
the KC→MBON synapses of MBON-α1, and MBON-α1 in turn excites PAM-α1. Using data from Li 
et al., 2020, we find numerous similar microcircuits, and in particular, MBONs that appear to have 
this recurrent arrangement of connectivity to the ‘charging’ DANs we have introduced to the circuit 
in the previous section. Specifically, we assume that the reward-encoding charging DAN (PAM-β′2a) 
can potentiate the response of the attraction-driving MBON-β2β′2a; and similarly the punishment-
encoding charging DAN (PPL1-γ2α′1) potentiates the avoidance-driving MBON-α′1 (see Figure 7A 
and B; Figure 7C shows these connections schematically, with the KCs omitted for convenience). 
Crucially, these connections form positive feedback circuits — the DAN potentiates the response of 
the MBON to the odour, which increases its excitation of the DAN. As a consequence, even when 
the reinforcement ceases, the learning momentum can continue — this is the saturation effect of the 
learning rule (see Figure 2D) and results in long-term memory consolidation and enhancement.

Figure  7D (right) demonstrates the charging of the avoidance-driving LTM MBON during the 
acquisition (for odour B) and its continued increase during the forgetting phases. However, these 
trends are not evident in the experimental data as illustrated in Figure 7D (left). We suggest this is 
because responses of LTM neurons depend on the overall experience of the animal and are thus hard 
to predict during one experiment. For example, it could be the case that the animal has already built 
some long-term avoidance memory for odour A, such that its presentation without reinforcement in 
our experiment continues its learning momentum, leading to the observed increasing response. Note 
that the decreasing response to odour A during acquisition in the model, as well as the observed 
effects in Figure 7E for the attraction-driving LTM MBON, is due to influence from additional micro-
circuits to be described in the next section. Figure 7—figure supplement 1 shows the responses of 
these neurons using only the microcircuits that have been introduced so far. In this case, the responses 
of both LTM MBONs saturate instantly, which shows that another mechanism must exist and regulate 
them in order for them to become useful for the behaviour of the animal.

Reciprocal long-term memories
As described so far, once the LTM microcircuit begins to charge, it will have a self-sustaining increase 
in the weights during odour delivery, preventing any subsequent adaptation to altered reward contin-
gencies. To allow these weights to decrease, specifically, to decrease in response to charging of the 
LTM of opposite valence, we connect the two LTM MBONs via respective ‘forgetting’ DANs (see 
Figure 8B). Note that these forgetting DANs do not receive any direct reinforcement signals. Instead, 
as long as an LTM MBON is active, its respective forgetting DAN is also active and causes synaptic 
depression for the opposite LTM MBON (forgetting the learnt memory; see Figure 8C and D). This 
counteracts any potentiation effect due to the LTM MBON’s respective charging DAN (see Figure 8—
figure supplement 1E and F). As a consequence, sustained reinforcement of one valence can grad-
ually overcome the positive feedback of the LTM circuit of opposite valence, causing the charging 
momentum to drop and eventually negate. The LTMs are thus in long-term competition.

We have identified the reciprocal LTMs microcircuit of Figure 8B in the descriptions of Aso et al., 
2014a and Li et al., 2020, where MBON-α′1 is the avoidance-driving LTM MBON, MBON-β2β′2a 
is the attraction-driving LTM MBON, PAM-β2β′2a is the avoidance-driving forgetting DAN, and 
PPL1-γ2α′1 is the attraction-driving forgetting DAN, as shown in Figure 8A. One problem with this 
identification is that there is only one PPL1-γ2α′1 per hemisphere, and we have already suggested 
that it should be identified as the punishment-encoding charging DAN in our model. However, there 
are multiple axon terminals of this neuron in the MB (e.g., MB296B1 and MB296B2) and each one 
of them seems to communicate a different response (see Figure 4—figure supplement 1, row 5, 
columns 6 and 7). Interestingly, the responses communicated by the MB296B1 terminal are close to 
the ones produced by the punishment-encoding charging DAN (see Figure 6C), and the ones of the 
MB296B2 are close to the ones produced by the attraction-driving forgetting DAN (see Figure 8D). 
This implies that different axons of the same DA neuron might create responses that depend on 
where the axon terminates and actually work as separate processing units. Figure 8C and D shows 
that the reconstructed responses of these neurons from our model are surprisingly similar to the ones 
observed in the data.

https://doi.org/10.7554/eLife.75611
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Memory assimilation mechanism
The forgetting DANs allow the developing LTM of one valence to induce forgetting of the LTM of 
the opposite valence. However, the forgetting DANs can also be used for another critical function 
to maintain flexibility for future learning, which is to erase the memory of the same valence from 
their respective restrained MBONs. We thus predict that the forgetting DANs also suppress the KC 
synaptic weights of their respective restrained MBONs, forming the ‘memory assimilation mechanism’ 
(MAM) microcircuit (see Figure 9C). This effectively allows memory transfer between the restrained 
and the LTM MBONs, enhancing both the adaptability and the capacity of the circuit. This effect can 
be observed in the difference of the responses of the same neurons in Figures 7 and 8 and Figure 8—
figure supplement 1, where the restrained memory becomes weaker as the LTM becomes stronger, 
driven by the respective forgetting and charging DANs.

The depression effect of the forgetting DANs on the KC→restrained MBON synapses of the 
same valence is supported by Aso et al., 2014a. More specifically, the avoidance-driving forgetting 
DAN we have identified as PAM-β2β′2a modulates the KC→MBON-γ5β′2a synapses, while for the 
attraction-driving forgetting DAN, PPL1-γ2α′1, modulates the KC→MBON-γ2α′1 synapses, as show in 
Figure 9A and B, respectively.

Figure 8. The reciprocal long-term memories microcircuit of the mushroom body. (A) Image of the reciprocal long-term memory microcircuit in the 
mushroom body made of the MBON-α′1, PAM-β2β′2a, MBON-β2β′2a, and PPL1-γ2α′1 – created using the Virtual Fly Brain software (Milyaev et al., 
2012). (B) Schematic representation of the reciprocal long-term memories microcircuit (coloured). The responses of (C) the punishment-encoding 
forgetting dopaminergic neuron (DAN), ‍fav‍, the (D) reward-encoding forgetting DAN, ‍fat‍, generated by experimental data (left) and the model (right) 
during the olfactory conditioning paradigms of Figure 4D. Lightest shades denote the extinction, mid shades the unpaired, and dark shades the 
reversal phase. For each trial, we report two consecutive time-steps: the off-shock (i.e., odour only) followed by the on-shock (i.e., paired odour and 
shock) when available (i.e., odour B in acquisition and odour A in reversal phase); otherwise, a second off-shock time-step (i.e., all the other phases).

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. The responses of the neurons of the incentive circuit using the connections introduced so far of the susceptible memory (SM), 
restrained memory (RM), reciprocal short-term memory (RSM), long-term memory (LTM), and reciprocal long-term memory (RLM) microcircuits.

Figure supplement 2. The KC→MBON synaptic weights of the neurons of the incentive circuit using the connections introduced so far of the 
susceptible memory (SM), restrained memory (RM), reciprocal short-term memory (RSM), long-term memory (LTM), and reciprocal long-term memory 
(RLM) microcircuits.

https://doi.org/10.7554/eLife.75611
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Modelling the behaviour
In the IC, three MBON types drive attraction and three avoidance. This results in six driving forces, for 
each available odour (see Figure 10). A simple ‘behavioural’ readout (used in many previous models) 
would be to take the sum of all attractive and aversive forces at some time point as a measure of 
the probability of animals ‘choosing’ odour A or B, and compare this to the standard two-arm maze 
choice assay used in many Drosophila studies. Following this approach and using the summarised data 
collected by Bennett et al., 2021, we have tested the performance of our model in 92 olfactory clas-
sical conditioning intervention experiments from 14 studies (Felsenberg et al., 2017; Perisse et al., 
2016; Aso and Rubin, 2016; Yamagata et al., 2016; Ichinose et al., 2015; Huetteroth et al., 2015; 
Owald et al., 2015; Aso et al., 2014b; Lin et al., 2014; Plaçais et al., 2013; Burke et al., 2012; 
Liu et al., 2012; Aso et al., 2010; Claridge-Chang et al., 2009), that is, the observed effects on fly 
learning of silencing or activating specific neurons, including positive and negative reinforcements. 

Figure 9. The memory assimilation mechanism (MAM) microcircuit of the mushroom body. (A) Image of the avoidance-specific MAM microcircuit 
in the mushroom body made of the MBON-γ5β′2a, PPL1-γ2α′1, MBON-α′1, and PAM-β2β′2a – created using the Virtual Fly Brain software (Milyaev 
et al., 2012). (B) Image of the attraction-specific MAM microcircuit in the mushroom body made of the MBON-γ2α’1, PAM-β’2a, MBON-β2β′2a, and 
PPL1-γ2α’1 – created using the Virtual Fly Brain software (Milyaev et al., 2012). (B) Schematic representation of the MAM microcircuits (coloured). The 
forgetting dopaminergic neurons (DANs) connect to the restrained mushroom body output neurons (MBONs) of the same valence, hence increasing 
long-term memory (LTM) strength reduces (assimilates) the restrained memory, constituting the MAM microcircuits.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. The KC→MBON synaptic weights of the neurons of the incentive circuit using all its connections.

Figure supplement 2. The reconstructed responses of the neurons of the incentive circuit using the reward prediction error (RPE) learning rule.

Figure supplement 3. The KC→MBON synaptic weights of the neurons of the incentive circuit using the reward prediction error (RPE) learning rule.

Figure 10. The activity of the six mushroom body output neurons (MBONs) is translated into forces that drive a simulated fly towards or away from 
odour sources. For naive flies, the forces are balanced. When electric shock is paired with an odour, the balance changes towards the avoidance-
driving MBONs, which drives the fly directly away from that odour. When sugar is paired with an odour, the balance changes to attraction, driving the 
fly towards that odour. Combining all attractive and repulsive forces for each odour source currently experienced by the fly produces an overall driving 
force, ‍v‍, which determines the fly’s behaviour.

https://doi.org/10.7554/eLife.75611
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The ‍∆f ‍ predicted from the IC correlated with the ones reported from the actual experiments with 
correlation coefficient ‍r = 0.76‍, ‍p = 2.2 × 10−18

‍ (Figure 3—figure supplement 1).
However, classical conditioning does not allow us to explore the full dynamics of the circuit as 

animals simultaneously explore, learn, express learning, and forget, while moving through a world 
with odours. Therefore, we further simulate the behaviour produced by the IC with simulated flies 
placed in a virtual arena, where they are exposed to two odour gradients, of different strengths, and 
variously paired with reinforcements. As we have full access to the neural responses, the synaptic 
weights, and the position of the simulated flies for every time-step, this allows us to identify different 
aspects of the produced behaviour and motivation, including the effect of the LTM on the behaviour 
and whether ‘choice’ occurs because the animal is attracted by one odour or repulsed by the other. 
We can then derive a behavioural preference index (PI) based on the time the simulated flies spent 
exposed in each odour during relevant time periods. Figure 11 summarises our experimental set-up 
and results, while details about how we generate the presented behaviours are given in the methods 
section ‘Modelling the behaviour’.

In Figure 11—figure supplement 4, we can see that most simulated flies do not visit any of the 
regions that an odour can be detected in the first repeats, and therefore, in Figure 11B, we start 
seeing an effect in the averaged statistics after the second repeat of the experiment. However, in the 
first couple of repeats, the individual paths already show a small tendency to the expected behaviour 
of the flies: avoid the punished region and approach the rewarded one. Due to the unpredictable 
behaviour of the individual flies, in Figure 11B we summarise only times from simulated flies that have 
visited both odours for at least 1 s. In later repeats of the experiment, the PI shows that (on average) 
flies prefer the non-punished and rewarded odours. When both of them are punished or rewarded, 
they equally prefer none or both, respectively. Note that the above result does not mean that each fly 
spends equal time in both odours, but that most probably some flies choose to spend more time with 
the one and some with the other (as shown from the individual cumulative durations in Figure 11B), 
but their population is equal. It is interesting that almost in every repeat the flies are neutral about the 
odours during pre-training (time-step before the reinforced one – marked with red or green), showing 
a relatively small effect during training and a bigger effect during post-training. This might be because 
in every repeat of the experiment they are initialised in the centre, so they spend some time randomly 
exploring before they detect an odour.

By looking at the PIs of Figure 11B, we see a strong effect when electric shock is paired with 
odour A or B, but not very strong otherwise. We also see a smaller PI for flies experiencing sugar 
than the ones that experience electric shock, which is in line with experimental data (Krashes and 
Waddell, 2011). When shock is paired with both odours, we expect that the simulated flies will try to 
minimise the time spent exposed to any of them, which is precisely what we see in the coloured lines. 
In contrast, simulated flies seem to increase the time spent in both odours when paired with sugar 
with a slight preference towards the reinforced odour. In general, our results show that (in time) the 
simulated flies seem to develop some prior knowledge about both odours when experiencing at least 
one of them with reinforcement (see Figure 11B and Figure 11—figure supplement 2A), which we 
suggest is because of their overlapping KCs associated with both odours. We believe that this leads 
to self-reinforcement, which means that when the animal experiences the non-reinforced odour it will 
automatically associate the reinforcement associated with the overlapping KCs to all the KCs associ-
ated with this odour, which is effectively a form of second-order conditioning.

From the summarised synaptic weights shown in Figure 11—figure supplement 1, we can see 
that the susceptible MBONs immediately block the simulated flies from approaching the punishing 
odours, while they allow them to approach the rewarding ones, which results in the smaller PI shown 
in sugar-related experiments compared to the shock-related ones, as discussed before. This is partially 
because of the lack of reciprocal connections between the opposing susceptible MBONs, and it can 
be verified through the appetitive conditioning, where the synaptic weights seem to change as the 
simulated flies now prefer the reinforced odour site. Susceptible MBONs convulsively break the 
balance between attraction and avoidance created by the restrained and LTM MBONs, also affecting 
their responses, and allowing STM and as a result LTM formation even without the presence of rein-
forcement. Figure 11—figure supplement 1 also shows that the restrained MBONs seem to play an 
important role during the first repeats (up to five), but then they seem to reduce their influence giving 
up the control to the LTM MBONs, which seem to increase their influence with time. This is partially 

https://doi.org/10.7554/eLife.75611
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Figure 11. The behaviour of the animal controlled by its neurons during the freely moving flies simulation. The ‍n = 100‍ simulated flies are exposed to 
a mixture of two odours, whose relative intensity depends on the position of the simulated flies in space. (A) Each experiment lasts for ‍100 s‍ where: the 
flies are placed at the centre of the arena in time-step ‍t = −20 s‍. During the first ‍20 s‍ (pre-training phase, ‍t ∈ [−20, 0]‍), the flies explore the arena without 
any reinforcement (blue tracks). In the next ‍30 s‍ (training phase, ‍t ∈ [0, 30]‍), they conditionally receive reinforcement under one of the six training cases 
shown on the right: using sugar (green) or shock (red); and reinforcing around odour A (shock + odour A), odour B (shock + odour B), or both odours 
(shock + odour A/B). During the last ‍50 s‍ (post-training phase ‍t ∈ [30, 80]‍), they continue being exposed to the odours without receiving a reinforcement 
(black tracks). We repeat this experiment (including all its phases) 10 times in order to show the effects of the long-term memory in the behaviour. 
(B) Behavioural summary of a subset of simulated flies that visited both odours at any time during the 10 repeats. Columns show the different conditions 
and the population that was recorded visiting both odours. Top row: the normalised cumulative time spent exposed in odour A (pink lines) or odour 
B (yellow lines; note that this line is reversed). For each repeat, we present three values (average over all the pre-training, training, and post-training 
time-steps, respectively) where the values associated with the training phase are marked with red or green dots when punishment or reward has been 
delivered to that odour, respectively. Thin lines show three representative samples of individual flies. Thick lines show the median over the simulated 
flies that visited both odours. Bottom row: the preference index (PI) to each odour extracted by the above cumulative times.

The online version of this article includes the following figure supplement(s) for figure 11:

Figure supplement 1. The mean KC→MBON synaptic weights over the simulated flies that visited both odours and for each neuron, phase, and repeat 
of the experiment.

Figure supplement 2. Behavioural summary of simulated flies grouped by the areas that they visited.

Figure supplement 3. Behavioural summary of simulated flies when controlled by the different types of mushroom body output neurons (MBONs).

Figure supplement 4. Paths of 100 simulated flies when using the dopaminergic plasticity rule and during all 10 repeats of the experiment.

Figure supplement 5. Behavioural summary of a subset of simulated flies that visited both odours at any time during the 10 repeats, and the plasticity 
rule of their neurons was replaced by the reward prediction error plasticity rule.

Figure supplement 6. Paths of 100 simulated flies when using the reward prediction error (RPE) plasticity rule and during all 10 repeats of the 
experiment.

Figure 11 continued on next page
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an effect of the MAM microcircuit, which verifies its function and the role of the restrained MBONs 
as storing STMs. Figure 11—figure supplement 3 shows that the different types of MBONs alone 
are also capable of controlling the behaviour. However, they seem to better work when combined as 
they complement one another in different stages, for example, during early or late repeats and crucial 
times.

Dopaminergic plasticity rule vs. reward prediction error
We have already shown that our novel dopaminergic plasticity rule and the connectome of the incen-
tive circuit build a powerful model for memory dynamics and behavioural control. In order to verify 
the importance of our DPR in the model, we run the same experiments by replacing it with the reward 
prediction error plasticity rule (Rescorla and Wagner, 1972).

The idea behind RPE is that the fly learns to predict how rewarding or punishing a stimulus is 
by altering its prediction when this does not match the actual reward or punishment experienced 
(Zhao et al., 2021). This can be adapted to the mushroom body circuit by assuming for a given stim-
ulus represented by KC activation, the MBON output is the prediction, and the KC→MBON synaptic 
weights should be altered (for the active KC) proportionally to the difference between the MBON 
output and the actual reinforcement signalled by the DAN. In Equation 30, we show how our DPR 
can be replaced with the RPE (as described above) in our model. Note that this rule allows updates to 
happen only when the involved KC is active, implying synaptic plasticity even without DAN activation 
but not without KC activation, which is in contrast with our DPR and recent findings (Berry et al., 
2018; Hige et al., 2015) (also in larva; Schleyer et al., 2018; Schleyer et al., 2020).

This effect, that is, learning when the KC is active even without DAN activation, is visible in 
Figure 9—figure supplement 2 and Figure 9—figure supplement 3, where we can see that, for 
the susceptible MBONs, the synaptic weights recover every time before the shock delivery, when the 
odour is presented alone, resulting in no meaningful learning and cancelling their susceptible prop-
erty. Restrained MBONs look less affected (at least in this experimental set-up), while the LTM MBONs 
lose their charging momentum obtained by the saturation effect, resulting in more fragile memories. 
Furthermore, due to the KC (instead of dopamine) gating of this plasticity rule, the responses during 
the unpaired and extinction conditions look identical in all neurons, while the reversal makes a differ-
ence only on the responses to odour A. In general, the responses reproduced using the RPE plasticity 
rule have none of the properties of our model that have been shown earlier and also they cannot 
explain the dynamics of the responses recorded from animals.

In contrast to the responses, the behaviour of the simulated flies (as shown in Figure 11—figure 
supplement 5 and Figure 11—figure supplement 6) is less affected by the plasticity rule: we still 
see a preference to the non-punished or rewarded odours. However, there are some details in the 
behaviour that are different and some properties of the model that need to be mentioned. First, we 
see that the simulated flies now spend more time in the punished odours (compared to the non-
punished ones), which might look like adaptation (in PI level), but it is actually forgetting about the 
odour. Figure 11—figure supplement 7 shows that synaptic weights targeting the restrained and 
LTM MBONs are dramatically depressed during the first three repeats and are unable to recover 
whatsoever, which means that this part of the circuit is knocked out by then. Hence, the behaviour 
is controlled solely by the susceptible MBONs, which now look more like LTM MBONs that are not 
reciprocally connected. Furthermore, the synaptic weights associating the odours to both motivations 
seem to constantly decrease, which makes us believe that both susceptible MBONs will have the same 
future as the restrained and LTM ones, but it will just take longer. Therefore, we see that although the 
RPE predicts a reasonable behaviour for inexperienced (or minor experienced) simulated flies, it could 
gradually result in a meaningless behaviour for experienced flies.

Figure supplement 7. The mean KC→MBON synaptic weights when using the reward prediction error (RPE) plasticity rule over the simulated flies that 
visited both odours and for each neuron, phase, and repeat of the experiment.

Figure 11 continued
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Discussion
We have shown that the combination of our novel dopaminergic plasticity rule (DPR) with the incen-
tive circuit (IC) of the mushroom body is able to generate similar neural responses and behaviours 
to flies in associative learning and forgetting paradigms. Regarding our model, we provide evidence 
for the existence of all hypothesised connections and suggest that at least three types of MB output 
(susceptible, restrained, and LTM) and three types of DA neurons (discharging, charging, and forget-
ting) exist in the fruit fly brain, discriminated by their functionality. As we show, this forms a unified 
system for rapid memory acquisition and transfer from STM to LTM, which could underlie the ability 
to make exploration/exploitation trade-offs. Box 1 summarises a number of prediction yielded by this 
computational modelling study.

Box 1. Summary of predictions.

The model yields predictions that can be tested using established experimental protocols:

1.	 MBON-γ2α’1 and MBON-γ5β′2a should exhibit short-term memories (STMs), while 
MBON-α′1 and MBON-β2β′2a long-term memories (LTMs). MBON-γ1pedc>α/β and 
MBON-γ4>γ1γ2 should exhibit susceptible memories. Restrained and susceptible 
mushroom body output neurons (MBONs) should show more consistent responses across 
flies. LTM MBONs should have more variable responses because they encode all previous 
experiences of the animal.

2.	 Activating MBON-γ2α′1 or MBON-β2β′2a should increase the responses rate 
of PAM-β′2a, and similarly activating MBON-γ2β′2a or MBON-α′1 should excite 
PPL1-γ2α′1. This would verify the excitatory STM reciprocal and LTM feedback connec-
tions of the circuit. By activating the LTM MBONs (e.g., MBON-α′1 and MBON-β2β′2a) 
should also excite the forgetting dopaminergic neurons (DANs) (e.g., PAM-β2β′2a and 
PPL1-γ2α′1, respectively). This would verify the excitatory LTM reciprocal connections 
of the circuit.

3.	 By consistently activating one of the LTM MBONs while delivering a specific odour, the 
LTM MBON should show an increased response to that odour even without the use of 
a reinforcement. This would verify the saturation effect of the DPR and the charging 
momentum hypothesis. On the other hand, if we observe a reduced response rate, this 
would show that MBON-DAN feedback connection is inhibitory and that RPE is imple-
mented by the circuit.

4.	 Blocking the output of charging DANs (i.e., PPL1-γ2α′1 and PAM-β′2a) could reduce 
the acquisition rate of LTM MBONs, while blocking the output of LTM MBONs would 
prevent memory consolidation. Blocking the reciprocal connections of the circuit should 
prevent generalising amongst opposing motivations (unable to make short- or long-
term alteration of responses to odours once memories have formed). Blocking the 
output of forgetting DANs would additionally lead to hypersaturation of LTMs, which 
could cause inflexible behaviour.

5.	 Activation of the forgetting DANs should depress the Kenyon cell (KC)-MBON synaptic 
weights of the restrained and LTM MBONs of the same and opposite valence, respec-
tively, and as a result suppress their response to KC activation. Activation of the same 
DANs should cause increased activity of these MBONs for silenced KCs at the time.

6.	 Unpaired conditioning should involve the LTM circuit (or at least some microcircuit 
within the MB where the MBON excites a DAN). Second-order conditioning should 
involve the LTM circuit and might not require the susceptible and restrained memory 
circuits. Backward conditioning might not occur in all compartments as in our model it is 
required that the target MBON inhibits its respective DAN (susceptible memory micro-
circuit) and to date has only been demonstrated for microcircuits with this property.

7.	 DANs that innervate more than one compartment may have different functional roles in 
each compartment.

https://doi.org/10.7554/eLife.75611
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Advantages of the dopaminergic plasticity rule
The proposed DPR, while remaining very simple, allows the animal to express a variety of behaviours 
depending on their experience. The rule remains local to the synapse, that is, it depends only on infor-
mation that is plausibly available in the presynaptic area of the KC axon (Equation 1): the activity of 
the KC, the level of DA, and the deviation of the current ‘weight’ from a set-point ‘resting weight’. We 
note that it was not possible to obtain good results without this third component to the rule, although 
the underlying biophysical mechanism is unknown; we speculate that it could involve synapsin as it has 
a direct role in regulating the balance of reserve and release vesicle pools, and is required in the MB 
for associative learning (Michels et al., 2011). The rule also introduces a bidirectional ‘dopaminergic 
factor’ based on the results of Handler et al., 2019, who showed the combination of DopR1 and 
DopR2 receptor activity can result in depression or potentiation of the synapse. In our plasticity rule, a 
positive or negative dopaminergic factor combined with active or inactive KCs leads to four possible 
effects on the synapse: depression, potentiation, recovery, and saturation. This allows substantial flex-
ibility in the dynamics of learning in different MB compartments.

In particular, the saturation allows LTM MBONs to consolidate their memories and makes it very 
hard to forget. This only occurs for consistently experienced associations, which then become strongly 
embedded. Only a persistent change in the valence of reinforcement experienced with a given stimuli 
can reset the activity of LTM MBONs through the reciprocal LTMs microcircuit, which equips the circuit 
with flexibility even in the LTMs. Further, the fact that the DPR allows STMs (restrained) and LTMs to 
interact through the memory assimilation mechanism (MAM) increases the capacity of the circuit. 
Whatever the restrained MBONs learn is eventually assimilated by the LTM MBONs, opening up space 
for the formation of new memories in the restrained MBONs. When combined with sparse coding of 
odours in a large number of KCs, the LTM MBONs can store multiple memories for different odours. 
Short-term experience might occasionally affect the behaviour when the susceptible and restrained 
MBONs learn something new, and hence mask the LTM output, but eventually this will be smoothly 
integrated with the previous experience in the LTM MBONs. The DPR plays an important role in this 
mechanism, as we saw earlier, and the connectivity alone is not enough for it to work properly.

By contrast, the RPE plasticity rule lacks this flexibility and fails to maintain useful LTMs when 
applied to the same circuit architecture. A literal interpretation of RPE for the MB would require that 
the difference (error) between the postsynaptic MBON activity and the DA level is somehow calcu-
lated in the presynaptic KC axon. This seems inconsistent with the observation that learning is gener-
ally unaffected by silencing the MBONs during acquisition (Hige et al., 2015; Krashes et al., 2007; 
Dubnau et al., 2001; McGuire et al., 2001). Alternatively (and not directly requiring MBON activity 
in the KC plasticity rule) the RPE could be implemented by circuits (Bennett et al., 2021; Springer 
and Nawrot, 2021; Eschbach et  al., 2020) in which DANs transmit an error signal computed by 
their input reinforcement plus the opposing feedback from MBONs (i.e., MBONs inhibit DANs that 
increase the KC→MBON synaptic weights, or they excite those that suppress the synaptic weights). 
However, although the evidence for MBON-DAN feedback connections is well-grounded, it is less 
clear that they are consistently opposing. For example, in the microcircuits we have described, based 
on neurophysiological evidence, some DANs that depress synaptic weights receive inhibitory feed-
back from MBONs (Pavlowsky et al., 2018) and some DANs that potentiate synaptic weights receive 
excitatory feedback from DANs (Ichinose et al., 2015). As we have shown, the DPR is able to operate 
with this variety of MBON-DAN connections. Note that, by using the appropriate circuit, that is, posi-
tive MBON-DAN feedback to depressing DANs, our DPR could also have an RPE effect. Although the 
proposed IC does not include such connections, it is still possible that they exist.

The conditioning effects of the model
During the past decades, a variety of learning effects have been investigated in flies, including forward 
and backward (relief) conditioning, first- and second-order conditioning and blocking, which we could 
potentially use to challenge our model. In the methods section ‘Derivation of the dopaminergic plas-
ticity rule’, we demonstrate that our model supports the backward (or relief) conditioning results 
presented in Handler et  al., 2019. Backward conditioning is when the reinforcement is delivered 
just before the odour presentation and it is based on the time dependency between the two stimuli. 
Handler et al., 2019 suggest that the backward conditioning is a mechanism driven by ER-Ca2+ and 
cAMP in a KC→MBON synapse, when a single DAN releases DA on it. In our model, we assume that 

https://doi.org/10.7554/eLife.75611
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Figure 12. The preference index (PI) of the agent 
during the classic unpaired conditioning paradigm. 
During the training phase, we deliver electric shock or 
odour A alternately. During the test phase, we deliver 
odours A and B alternately. The PI is calculated by 
using the mushroom body output neuron (MBON) 
responses for each odour.

different time courses in the response of DopR1 
and DopR2 receptors cause the different patterns 
of ER-Ca2+ and cAMP, resulting in the formation of 
opposite associations for forward and backward 
conditioning. We note however that in our model 
the effect also requires that the target MBON 
inhibits the respective DAN (as in our susceptible 
memory microcircuits) altering the time course of 
neurotransmitter release. This may suggest that 
backward conditioning does not occur in all MB 
compartments. We believe that this mechanism 
for backward conditioning is better supported 
than the hypothesised mechanism of post-
inhibitory rebound in opposing valence DANs 
presented in Adel and Griffith, 2021, although 
some role for both mechanisms is possible.

Backward conditioning can be distinguished 
from the unpaired conditioning effect; the latter 
involves the presentation of reinforcement and a 

specific odour in alternation with less temporal proximity. It has been observed (Jacob and Waddell, 
2020; Schleyer et al., 2018) that this procedure will produce a change in response to the odour that 
is opposite in valence to the reinforcement, for example, approach to an odour that is ‘unpaired’ with 
shock. Note that this effect can be observed both in standard two-odour CS+/CS- training paradigms 
(where an altered response to CS-, in the opposite direction to CS+, is often observed) but also 
in single-odour unpaired paradigms. Surprisingly, our model also produces unpaired conditioning, 
notably through a different mechanism than backward conditioning. When DANs are activated by 
a reinforcement without KC activation, the weights of all KCs are potentially altered, for example, 
restored towards their resting weight or slightly potentiated. This alteration means that subsequent 
presentation of odour alone can be accompanied by MBON-driven activation of DANs, resulting in 
specific alteration of the weights for the presented odour. In the example of Figure 12, odour A starts 
to self-reinforce its attractive LTM when presented in alternation with shock and will be preferred 
to an alternative odour B in subsequent testing. However, repeated presentation of other odours 
during testing, without further shock, might lead to generalisation (equal preference to all experi-
enced odours).

The self-reinforcing property of the positive feedback in the LTM microcircuit can also account for 
second-order conditioning. If a motivation has been associated to an odour, MBONs related to that 
motivation will have increased activity when the odour is delivered, even in the absence of reinforce-
ment. In the LTM microcircuit, the positive MBON-DAN connection will consequently activate the 
charging DAN, so any additional cue (or KC activity) presented alongside the learned odour will also 
experience an increase in the respective KC→MBON weights, creating a similar charging momentum 
and resulting in a second-order association. Perhaps surprisingly, this predicts that second-order 
conditioning might happen directly in the LTM microcircuit without being filtered by the susceptible 
and restrained memories first. This would be consistent with the observation that second-order condi-
tioning in flies requires strong induction of the first-order memory and that first-order memory does 
not appear to be extinguished by the absence of reinforcement during second-order training (Tabone 
and de Belle, 2011).

Finally, although we have not tested it explicitly here, it is clear that our plasticity rule (unlike RPE) 
would not produce blocking. The blocking effect, as described by Kamin, 1967, is when the condi-
tioning to one stimulus subsequently blocks any conditioning to other elements of a mixture including 
that stimulus. Under RPE learning, this is explained by the first stimulus already correctly predicting 
the reinforcer, so there is no error to drive a change in the weights. Using the DPR, the updates are 
local to the synapse and do not depend on a calculation of errors summarised across different odour 
identities, so blocking does not happen, which is consistent with the observed behaviour of fruit 
flies (Young et al., 2011; Brembs and Heisenberg, 2001). Although the presentation of a learned 
odour along with a novel odour might, through feedback from the MBONs, alter the DAN responses 
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to the reinforcement, in our circuit this is not generally an opponent feedback so will not cancel the 
reinforcing effects for the novel odour. This also highlights the difference between our susceptible, 
restrained, and long-term memory microcircuits from the RPE circuits described in Bennett et al., 
2021, Springer and Nawrot, 2021, Eschbach et al., 2020, and Zhao et al., 2021. Nevertheless, as 
Wessnitzer et al., 2012 and later Bennett et al., 2021 suggest, the fact that blocking has not been 
observed in fruit flies could also be explained by the way that the mixture of odours is represented by 
the KCs, that is, that it might not be simply the superposition of the activity patterns of the individual 
odours.

Additional mushroom body connections
Our model suggests that only KC→MBON, MBON⊣DAN, MBON→DAN, and DAN⊸MBON connec-
tions are essential for successful learning in the MBs. However, there are a number of additional known 
connections in the MBs, such as KC→APL, APL⊣KC, DAN→MBON, axoaxonic KC→KC and KC→DAN 
connections that have been neglected in this model, and need further consideration.

In the larval brain, there are two anterior paired lateral (APL) neurons, one for each MB. They 
extend their dendrites to the lobes of the MBs and terminate their axons in the calyxes releasing the 
inhibitory GABA neurotransmitter (Tanaka et al., 2008). Although there are still two of them, in the 
adult brain both their dendrites and axons are innervating the calyx and the lobes (Wu et al., 2013), 
suggesting that they function as both global and local inhibitory circuits. Moreover, DAN⊣APL (Liu 
and Davis, 2009) and APL⊣DAN (Wu et al., 2012) connections have been proposed, but there is no 
clear description of what their function is. Several previous models (Peng and Chittka, 2017; Dela-
hunt et al., 2018) have demonstrated that a potential function for this global/local inhibition network 
is gain control such that the total number of KCs firing to different stimuli remains similar, and indeed 
that the same effect can be implemented using a flexible threshold for KC firing (Saumweber et al., 
2018; Zhu et al., 2020; Zhao et al., 2020). In our model, we have simplified the KC input, repre-
senting just two odours as different patterns across a small number of KCs with a fixed number of 
them being active at all times, so the hypothesised gain control function of the APL is not useful here. 
However, it remains an interesting question whether there is learning between the KC and APL in the 
lobes (Zhou et al., 2019), or between the APL and KC in the calyx, and what role this might play in 
the overall dynamics of memory acquisition.

In addition, Eichler et al., 2017 suggest that most of the KCs input, that is, 60%, is from other KCs. 
We suggest that these connections (together with the ones from the APL) might create local winner-
takes-all (WTA) networks that force a limited number of KCs per compartment to be active at one 
time. This predicts that it is possible for the same KC axon to be active in one compartment but inac-
tive in another (consistent with recent data from Bilz et al., 2020), and that an almost fixed number 
of KCs might be active at all times, even when no odour is delivered (e.g., fresh air only) enabling 
the acquisition and forgetting at all times. Ito et al., 2008 show that KCs can be active even in the 
absence of odours but with no consistent spiking, which is a characteristic of WTA networks when the 
underlying distribution of spikes across the neurons is almost uniform.

Eichler et al., 2017 also observed (from electron microscopy reconstruction in larva) that within 
a compartment, in a ‘canonical microcircuit’, KCs make direct synapses to the axons of DANs, and 
that DAN pre-synapses often simultaneously contact KCs and MBONs. The same connections have 
been observed in adult Drosophila by Takemura et al., 2017. The extent to which KCs (and thus 
odour inputs) might be directly exciting DANs remains unclear. Cervantes-Sandoval et  al., 2017 
show that stimulating KCs results in increased DAN responses and that DANs are activated through 
the ACh neurotransmitter. However, we note that in our model such an effect could be explained 
without assuming a direct connection. For example, in the LTM microcircuit, activating the KCs 
results in increased activity of the LTM MBON, which excites the respective charging DAN. The DAN 
that Cervantes-Sandoval et al., 2017 provide evidence from is PPL1-α2α′2, which gets excited by 
MBON-α2α′2 neurons as it is characterised by the ACh neurotransmitter (Aso et al., 2014a). In our 
terms, this could be an LTM MBON that excites its respective charging DAN, PPL1-α2α′2 (Li et al., 
2020), and provide the source of ACh detected on it. More generally, the altered activity of DANs 
in response to odours that have been observed during learning can be also observed in our model, 
without requiring direct KC→DAN connections or their modification. Nevertheless, such connections 
may possibly play a role in enhancing the specificity of dopamine-induced changes in KC→MBON 
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Figure 13. The mammalian limbic system as described by Papez, 1937 and Maclean, 1949 and the suggested parallels in the proposed incentive 
circuit. On the left, we show the mushroom body microcircuits that correspond to the different structures in the mammalian limbic system. In the centre, 
we have the connections among the different structures of the limbic system. On the right, we show the groups of mushroom body neurons we suggest 
that have a similar function to the ones in the limbic system.

connectivity. Interestingly, the depression of KC→DAN synapses, in parallel with KC→MBON synapses, 
could provide an alternative mechanism for implementing RPE learning (Takemura et al., 2017).

Takemura et al., 2017 demonstrate that the direct synapses observed from DANs to MBONs are 
functional in altering the MBON postsynaptic current to DAN activation, independently of KCs. This 
could be a mechanism by which learnt responses to reinforcements are coordinated with the current 
presence or absence of the reinforcement (Schleyer et  al., 2020; Schleyer et  al., 2011; Gerber 
and Hendel, 2006). Another possibility is that postsynaptic as well as presynaptic changes might be 
involved in learning at the KC→MBON synapse (Pribbenow et al., 2021).

Beyond attraction and aversion
The IC consists of six MBONs and six DANs that link a pair of antagonistic motivations, attraction, 
and avoidance. However, there are ∼34 MBONs and ∼130 DANs in the MB of the adult fruit fly 
brain, within which the IC is an identifiable motif. We suggest the possibility that this motif could be 
repeated, representing additional opposing motivations, with some neurons having multiple roles 
depending on the motivational context as proposed by Cohn et al., 2015, working either as restrained 
MBONs and discharging DANs, or as LTM MBONs and forgetting DANs depending on the reinforcer 
identity. We have illustrated this concept of a unified system of motivations as the ‘incentive wheel’ 
(see Appendix 1—figure 1). This could explain how PAM-β2β′2a (i.e., MB301B; May et al., 2020) 
is a sugar-encoding discharging DAN in the appetitive olfactory conditioning context, but it also is 
an avoidance-driving forgetting DAN in a different context (e.g., aversive olfactory conditioning). In 
addition, two MBONs of the IC do not interact with the α′/β′ KCs of the MB. MBON-γ4>γ1γ2 and 
MBON-γ1pedc>α/β are part of two autonomous microcircuits, that is, the SMs, and are working under 
the context provided by the ∼675 γ-KCs relative to the task. This makes it possible that the KCs from 
the γ lobe connect to all the SMs of the flies for the approximately eight available motivations illus-
trated in Appendix 1—figure 1.

From a functional point of view, the MBs seem to be involved in the motivation and behaviour of 
the animal, especially when it comes to behaviours essential for survival. In the mammalian brain, this 
function is subserved by the limbic system, which is composed of a set of complicated structures, such 
as the thalamus, hypothalamus, hippocampus, and amygdala (Dalgleish, 2004; Roxo et al., 2011). 
According to Papez, 1937, sensory (and mostly olfactory) input comes in the limbic system through 
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the thalamus, which connects to both the cingulate cortex (through the sensory cortex) and the hypo-
thalamus (Roxo et al., 2011; Dalgleish, 2004). Responses in the cingulate cortex are guiding the 
emotions, while the ones in the hypothalamus are guiding the behaviour (bodily responses). Finally, 
the hypothalamus connects with the cingulate cortex through the anterior thalamus (forward) and the 
hippocampus (backward stream). Maclean, 1949 augmented this model by adding the amygdala and 
PFC structures that encode primitive emotions (e.g., anger and fear) and connect to the hypothalamus 
(Roxo et al., 2011; Dalgleish, 2004). We suggest that some of the functions we have identified in the 
MB IC could be mapped to limbic system structures (see Figure 13).

More specifically, the α′/β′-KCs could have a similar role to the neurons in the thalamus, α/β-KCs 
represent a higher abstraction of the input stimuli and have a similar role to the ones in the sensory 
cortex, while the γ-KCs represent relatively unprocessed stimuli. This would make the susceptible 
MBONs parallel to neurons in the amygdala, creating responses related to primitive motivations and 
connecting to (inhibiting) the restrained MBONs, which we would compare to the hypothalamus as 
providing the main control of behaviour. As we suggest that the same MBONs could fulfil a role as 
LTM or restrained in different circuits (see Appendix 1—figure 1), the LTM would also correspond to 
hypothalamus, with input from the α′/β′-KCs, and thus the RSM, RLM, LTM, and MAM microcircuits 
are assumed to correspond to hypothalamus functions. Following this analogy, we predict that the 
function of the cingulate cortex then is represented by the α/β MBONs, encoding the ‘emotions’ of 
the animal towards reinforced stimuli, potentially controlling more sophisticated decision-making. 
This mapping would suggest the connections amongst the restrained/LTM (α′/β′) MBONs and the 
‘emotional’ (α/β) MBONs are similar to the hippocampus and anterior thalamus pathways.

While it might seem startling to suggest that a compact circuit of single identified neurons in the 
insect MB mimics in miniature these far larger and more complex structures in the mammalian brain, 
the justification comes from the similarity in the behavioural demands common to all animals: surviving 
and adapting in a changing world.

Materials and methods
Implementation of the incentive circuit
We represent the connections between neurons by using synaptic weight matrices and non-linearly 
transform the information passing from one neuron to another by using an activation function. Next, 
we define these parameters and some properties of our computational model, which are not a result 
of unconstrained optimisation and are consistent throughout all our experiments.

Parameters of the model
We assume that the odour identity passes through the projection neurons (PNs) into the mushroom 
body and its Kenyon cells (KCs). It is not in the scope of this work to create a realistic encoding of 
the odour in the PNs, so we assume that the odour signal is represented by ‍np = 2‍ PNs, one for each 
odour, and that these project to form distinct activations in a set of ‍nk = 10‍ KCs in the MB, that is, 
a subset of KCs that respond to the specific odours used in the experiments. Therefore, the vector 

‍pA = [1, 0]‍ represents the activity of the PNs when odour A is detected, ‍pB = [0, 1]‍ when odour B, 

‍pAB = [1, 1]‍ when both odours, and ‍p∅ = [0, 0]‍ when none of them is detected. The responses of the 
KCs are calculated by

	﻿‍ k(t) = WAT0.5[kT(t) · Wp2k + η] where η ∼ N (0, 0.001)‍� (2)

‍η‍ is some Gaussian noise, ‍Wp2k ∈ R2×10
+ ‍ is the weights matrix that allows the transformation of the 

two-dimensional odour signal into the ten-dimensional KC responses, and t is the current time-step. 
The WTA0.5 [x] is an activation function that keeps the top 50% of KCs active, based on the strength 
of their activity. Note that the number of neurons we are using for PNs and KCs is not very important, 
and we could use any combination of PN and KC populations. However, the bigger the KC population 
the smaller percentage of them should be active. The PN→KC synaptic weights used are shown as

	﻿‍

Wp2k =


0.8 0.8 0.8 0.8 0.8 0.8 0.8 0 0 0

0 0 0 0 0.8 0.8 0.8 0.8 0.8 0.8


 .

‍�
(3)

https://doi.org/10.7554/eLife.75611
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The odours are represented by different firing patterns across 10 KCs: 4 fire only for A, and 3 fire 
only for B, while the remaining 3 fire to either odour. This is to show the effects of the DPR when 
we have overlap in the KCs that respond to the two odours used in the conditioning paradigm. This 
assumption also created the best fit with the data, suggesting that there might be overlapping KCs 
encoding the real odours tested in the fly experiments.

We transform the reinforcement (US), ‍u(t) ∈ {0, 1}2
‍, delivery into an input for the DANs by using the 

weights matrix ‍Wu2d ∈ R2×nd
+ ‍. We represent the activity of the DANs, ‍d(t) ∈ R6

‍, with a six-dimensional 
vector, where each dimension represents a different neuron in our model. Specifically,

	﻿‍
d(t)=

[
dat(t) dav(t) cat(t) cav(t) fat(t) fav(t)

]
.
‍� (4)

The US is represented by a two-dimensional vector where the first dimension denotes rewarding 
signal and the second dimension denotes punishment: ‍usugar = [1, 0]‍ and ‍ushock = [0, 1]‍; and the contri-
bution of this vector to the responses of the DANs is given by

	﻿‍

Wu2d =


2 0 2 0 0 0

0 2 0 2 0 0


 .

‍�
(5)

In line with the DANs vector representation, we have a similar vector for MBONs, ‍m(t) ∈ R6
‍, where 

each dimension represents the response of a specific neuron in time ‍t‍ as is shown in the following 
equation:

	﻿‍
m(t)=

[
sat(t) sav(t) rat(t) rav(t) mat(t) mav(t)

]
.
‍� (6)

The weight matrix that encodes the contribution of KCs to the MBON responses, ‍Wk2m(t) ∈ R10×6
‍, 

is initialised as

	﻿‍ Wk2m(t = 0) = 1(nk, nm) = 1(10, 6),‍� (7)

which effectively is a ‍10 × 6‍ matrix of ones. In other words, all KCs connect to all MBONs, and 
their initial weight is positive and the same for all connections. As these are plastic weights, their 
value depends on the time-step, and therefore we provide time, ‍t‍, as a parameter. Note that also 
‍wrest = 1‍, which initially results in the absence of memory, ‍W

ij
k2m(t = 0) − wrest = 0‍. Thus, any devia-

tion of the synaptic weights from their resting value represents a stored memory with strength 

‍v
ij
mem(t) = ||Wij

k2m(t) − wrest||‍.
There are also MBON→DAN, ‍Wm2d ∈ R6×6

‍, and MBON→MBON connections, ‍Wm2m ∈ R6×6
‍, 

which are given by

	﻿‍

Wm2d =




0 −0.3 0 0 0 0

−0.3 0 0 0 0 0

0 0 0.5 0 0 0

0 0 0 0.5 0 0

0 0 0.3 0 0.5 0

0 0 0 0.3 0 0.5



‍�

(8)

and

	﻿‍

Wm2m =




0 0 0 −1 0 0

0 0 −1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




.

‍�

(9)

https://doi.org/10.7554/eLife.75611
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Figure 14. The synaptic weights and connections among the neurons of the incentive circuit (IC). Each panel corresponds to a different synaptic weights 
matrix of the circuit. The size of the circles when the presynaptic axon crosses the postsynaptic dendrite shows how strong a connection is, and the 
colour shows the sign (blue for inhibition, red for excitation). Light-green stars show where the synaptic plasticity takes place and how the dopaminergic 
neurons (DANs) modulate the synaptic weights between Kenyon cells (KCs) and mushroom body output neurons (MBONs).

The online version of this article includes the following figure supplement(s) for figure 14:

Figure supplement 1. The responses of the dopaminergic neurons (DANs) and mushroom body output neuron (MBONs) of the circuit when altering 
the presynaptic strengths of MBONs during the reversal condition.

Figure supplement 2. The responses of the dopaminergic neurons (DANs) and mushroom body output neurons (MBONs) of the circuit when altering 
the DA modulation strengths during the reversal condition.

Figure supplement 3. The responses of the dopaminergic neurons (DANs) and mushroom body output neurons (MBONs) of the circuit when altering 
the DAN and MBON biases during the reversal condition.

The above matrices summarise the excitatory (positive) and inhibitory (negative) connections 
between MBONs and DANs or other MBONs as defined in the IC (Figure 3, see also Figure 14). The 
sign of the weights was fixed but the magnitude of the weights was hand-tuned in order to get the 
desired result, given the constraint that equivalent types of connections should be the same weight 
(e.g., in the reciprocal microcircuits). The magnitude of the synaptic weights specifies the effective 

https://doi.org/10.7554/eLife.75611
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strength of each of the described microcircuits in the overall circuit. We also add some bias to the 
responses of DANs, ‍bd‍, and MBONs, ‍bm‍, which is fixed as

	﻿‍
bd =

[
−0.5 −0.5 −0.15 −0.15 −0.15 −0.15

]
‍� (10)

	﻿‍
bm =

[
−2 −2 −0.5 −0.5 −0.5 −0.5

]
.
‍� (11)

This bias can be interpreted as the resting value of the neurons or some external input from other 
neurons that are not included in our model.

Finally, we define the DAN function matrix, ‍Wd2km ∈ Rnd×nm‍, which transforms the responses of the 
DANs into the dopamine factor that modulates the ‍Wk2m(t)‍ synaptic weights, and it is given as

	﻿‍

Wd2km =




0 −1 0 0 0 0

−1 0 0 0 0 0

0 0 0 −1 0.3 0

0 0 −1 0 0 0.3

0 0 −0.3 0 0 −1

0 0 0 −0.3 −1 0




.

‍�

(12)

All the parameters described above are illustrated in Figure 14. Figure 14—figure supplement 
1, Figure 14—figure supplement 2, and Figure 14—figure supplement 3 show how each of these 
parameters affects the responses of the neurons in the IC. The last thing left to describe is the activa-
tion function, which is used in order to generate the DAN and MBON responses. This is

	﻿‍

ϱ(x) =





2 if x ≥ 2,

x if 0 < x < 2,

0 if x ≤ 0, ‍�

(13)

which is the rectified linear unit (ReLU) function, bounded in ‍ϱ(x) ∈ [0, 2]‍. The reason why we bound 
the activity is to avoid having extremely high values that explode during the charging of the LTM.

Forward propagation
For each time-step, ‍t‍, we read the environment and propagate the information through the model in 
order to update the responses of the neurons and the synaptic weights. This process is called forward 
propagation, and we repeat it as long as the experiment runs.

First, we read the CS, ‍p(t)‍, and US, ‍u(t)‍, from the environment and calculate the KC responses 
by using Equation 2. In order to calculate the DANs and MBONs update, we define the differential 
equations as follows:

	﻿‍
τ

dd
dt

= −d + uT(t) · Wu2d + mT(t) · Wm2d + bd‍�
(14)

	﻿‍
τ

dm
dt

= −m + kT(t) · Wk2m(t) + mT(t) · Wm2m + bm‍�
(15)

where ‍τ = 3‍ is a time-constant that is defined by the number of time-steps associated in each trial, 
‍T ‍ denotes the transpose operation of the matrix or vector, and ‍m = m(t)‍ and ‍d = d(t)‍ are functions of 
time. Using the above differential equations, we calculate the updated responses (i.e., responses in 
the next time-step, ‍t‍) as

	﻿‍
d(t) = ϱ[ 1

τ
d + dd

dt
]
‍�

(16)

	﻿‍
m(t) = ϱ[ 1

τ
m + dm

dt
].

‍�
(17)

https://doi.org/10.7554/eLife.75611
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Figure 15. Description of the simulation process from our experiments. A single trial is composed of three in-trial time-steps and each time-step by 
four repeats. Odour is provided only during the second and third in-trial time-steps, while shock delivery is optional. (A) In an extinction trial, only odour 
(CS) is delivered. (B) During an unpaired trial, shock is delivered during in-trail time-step 1. (C) During a paired trial, shock is delivered along with odour 
delivery and during in-trial time-step 3. (D) The acquisition phase has five odour A-only trials and five paired odour B trials alternating. (E) The extinction 
phase has five odour A-only trials and five odour B-only trials alternating. (F) The unpaired phase has five odour A unpaired trials and five odour B-only 
trials alternating. (G) The reversal phase has five odour A paired trials and five odour B-only trials alternating. The colours used in this figure match the 
ones in Figure 4.

Finally, we calculate the dopaminergic factor, ‍δ(t) ∈ R6
‍, and update the KC→MBON synaptic 

weights as

	﻿‍ δ(t) = dT(t) · Wd2km‍� (18)

	﻿‍
τ

dWk2m
dt

= δ(t) ∗ [kT(t) + Wk2m − w rest]‍� (19)

	﻿‍
Wk2m(t) = max[Wk2m + dWk2m

dt
, 0]

‍�
(20)

where ‘*’ denotes the element-wise multiplication, ‍wrest = 1‍ is the resting value of the weights, and 

‍Wk2m = Wk2m(t)‍ is a function of time. Note that element-wise multiplication means that each element 
of the ‍δ(t)‍ vector will be multiplied with each column of the ‍Wk2m(t)‍ matrix. Also, the element-wise 
addition of the transposed vector, ‍kT(t)‍, to the ‍Wk2m(t)‍ matrix, means that we add each element of ‍k(t)‍ 
to the corresponding row of ‍Wk2m(t)‍. We repeat the above procedure as many times as it is required 
in order to complete the running experimental paradigm routine.

Modelling the neural responses
To emulate the acquisition and forgetting paradigms used for flies, we run the simulated circuit in an 
experiment that consists of ‍T = 73‍ time-steps. Each time-step actually comprises four repeats of the 
forward propagation update described above to smooth out any bias due to the order of computa-
tions (value vs. weights update). After the initialisation time-step at ‍t = 0‍, there are 24 trials where 
each trial consists of 3 in-trial time-steps.

Within each trial, the first time-step has no odour, and in the second and third time-steps, odour is 
presented: odour A on even trials and odour B on odd trials. A trial can have no shock (Figure 15A), 
unpaired shock presented in the first time-step (Figure 15B), or paired shock presented in the third 

https://doi.org/10.7554/eLife.75611
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time-step (Figure 15C). The first two trials compose the ‘pre-training phase’, where we expose the 
model to the two odours alternately (i.e., odour A in trial 1 and odour B in trial 2) without shock 
delivery. Then we have the acquisition phase, where we deliver shock paired with odour B for 10 
trials (five trials per odour; Figure 15D). Before we proceed to the forgetting phases, we leave two 
empty trials (one per odour), which we call the resting trials. The forgetting phases last for another 10 
trials (five trials per odour; Figure 15E–G). During the extinction phase, no shock is delivered while 
we continue alternating the odours (see Figure 15E); during the unpaired phase, shock is delivered 
unpaired from odour A (see Figure 15F); while at the reversal phase shock is paired with odour A 
(Figure 15G).

The classic unpaired conditioning paradigm
In this case, during the acquisition phase we deliver only electric shock in odd trials (omission of odour 
B), followed by an extinction phase as described above.

Modelling the behaviour
The experiments last for ‍100 s‍ each, and they are split into three phases as shown in Figure 11A. In 
pre-training, the flies are placed in the centre of arena and explore freely for ‍20 s‍. In training, either 
shock or sugar is associated with the region ‍30 cm‍ around odour A, odour B, or around both sources for 
‍30 s‍. In post-training, we remove the reinforcement and let the flies express their learnt behaviour for 
another ‍50 s‍, creating an extinction forgetting condition. Figure 11B shows the normalised cumulative 
time spent experiencing each odour and the odour preference of the flies during the different phases 
for each of the six training conditions, and for 10 repeats of the experiment, when their behaviour is 
controlled by a combination of the attractive and repulsive forces on the two odours. The actual paths 
of the flies for all the 10 repeats are illustrated in Figure 11—figure supplement 4.

In practice, in order to create the experiences of ‍nfly = 100‍ flies, we have created another routine 
that embeds the simulation of their motion and environment. We represent the position of each fly, 

‍a(t) ∈ C‍, and the sources of the odours in the arena, ‍µA ∈ C‍ and ‍µB ∈ C‍ for odours A and B, respec-
tively, in the 2D space as complex numbers in the form ‍x + iy‍. Therefore, the flies are initialised in 

‍a(t = 0) = 0‍ and the sources of the odours are placed in ‍µA = −0.6‍ and ‍µB = 0.6‍. The standard devia-
tion of the odour distributions is ‍σA = σB = 0.3‍.

We get the odour intensity in each time-step by using the Gaussian density functions of the two 
odours and the position of the fly in the arena

	﻿‍

p(t)=





pAB, if N (a(t)|µA,σA) > θCS and N (a(t)|µB,σB) > θCS,

pA, if N (a(t)|µA,σA) > θCS,

pB, if N (a(t)|µB,σB) > θCS,

p∅, otherwise ‍�

(21)

where ‍pA‍, ‍pB‍, ‍pAB‍, and ‍p∅‍ are the identities of odours A, B, ‘A and B’, and none of them, respectively, 
in the PNs as described in the ‘Parameters of the model’, and ‍θCS = 0.2‍ is the detection threshold for 
the odour. Note that PN responses depend only on the fact that an odour has been detected or not 
and it is not proportional to the detected intensity. The reinforcement is applied to the simulated fly 
when the position of the agent is inside a predefined area around the odour, that is, ‍||µCS − a(t)|| < ρUS‍, 
where ‍ρUS = 0.3‍ is the radius of the reinforced area. Note that the radius of the area where the odour 
is detectable is roughly ‍ρCS ≃ 0.58‍, which is larger than the reinforced area. Then we run a forward 
propagation using the above inputs.

From the updated responses of the MBONs, we calculate the attraction force, ‍v(t)‍, for the mixture 
of odours which modulates the velocity of the fly. This force is calculated by taking the difference 
between the responses of the MBONs that drive the behaviour:

	﻿‍
vat(CS|t) = 1

3
[sat(t) + rat(t) + mat(t)] ·

µCS − a(t)
||µCS − a(t)||

where CS ∈
{

odour A, odour B
}
‍�

(22)

	﻿‍
vav(CS|t) = 1

3
[sav(t) + rav(t) + mav(t)] · µCS − a(t)

||µCS − a(t)||
where CS ∈

{
odour A, odour B

}
‍�

(23)

https://doi.org/10.7554/eLife.75611
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	﻿‍
v(t) =

{A,B}∑
CS

PCS(t) · vat(CS|t) −
{A,B}∑

CS
PCS(t) · vav(CS|t)

‍
.
�

(24)

where ‍µCS‍ is the position of the odour source and ‍PCS(t)‍ is the probability of being closer to the 
specific CS source calculated using the Gaussian distribution function and the Bayesian theorem. For 
example, given that the prior probability of being closer to odours A and B is equal at any time, that 
is, ‍P(A) = P(B) = 0.5‍, the probability of being closer to odour A is given by

	﻿‍ PA(t) = N (a(t)|µA,σA)
N (a(t)|µA,σA)+N (a(t)|µB,σB) .‍� (25)

The velocity of the simulated fly is updated as follows

	﻿‍ v(t) = v(t − 1) + v(t) + εx + iεy where εx, εy ∼ N (µ = 0,σ = 0.1)‍� (26)

	﻿‍
v̂(t) = 0.05 · v(t)

||v(t)||
.
‍�

(27)

We normalise the velocity so that we keep the direction but replace the step size with ‍0.05 m/s‍. The 
noise added to the velocity is introduced in order to enable the flies to move in two dimensions and 
not just between the two odour sources. Also, when the attraction force is ‍v(t) = 0‍, then the noise 
along with the previous velocity is the one that drives the flies.

We repeat the above process for ‍T = 100‍ time-steps with ‍1 Hz‍ (one time-step per second), and we 
provide shock or sugar (when appropriate) between time-steps 20 and 50, otherwise we use a zero-
vector as US input to the DANs.

Calculating the normalised cumulative exposure and the preference Index
In Figure 11B, for each phase (i.e., pre-training, training, and post-training), we report the normalised 
cumulative exposure of the flies in each odour and their PI between them. The normalised cumulative 
exposure is calculated by

	﻿‍ CR
CS, phase =

∑R
i=1

tiCS, phase
Tphase ‍� (28)

where ‍R‍ is the repeat of the experiment, i is the iterative repeat, ‍Tphase‍ is the number of time-steps 
for the specific phase, and ‍t

i
CS,phase‍ is the number of time-steps spent exposed in the specific CS 

‍∈ {A, B}‍, phase, and repeat.
The preferences index for every repeat is calculated using the above quantities

	﻿‍
PIR

phase(t) = CR
A, phase−CR

B, phase
CR

A, phase+CR
B, phase

.
‍�

(29)

The reward prediction error plasticity rule
In Figure 9—figure supplement 2, Figure 9—figure supplement 3, Figure 11—figure supplement 
5, and Figure 11—figure supplement 6, we present the responses and synaptic weights of the IC 
neurons, and the behaviour of the simulated flies using the RPE plasticity rule. This was done by 
replacing our plasticity rule in Equation 19 with the one below:

	﻿‍ τ dWk2m
dt = k(t) ∗ [δ(t) − m(t) + wrest].‍� (30)

Derivation of the dopaminergic plasticity rule
Handler et al., 2019 suggest that ER-Ca2+ and cAMP play a decisive role in the dynamics of forward 
and backward conditioning. More specifically, they suggest that the KC→MBON synaptic change, 

‍∆Wij
k2m‍, is proportional to the combined ER-Ca2+ and cAMP levels, which can be written formally as

	﻿‍ ∆Wij
k2m(t) ∝ −(ER-Ca2+)ij(t) − (cAMP)ij(t).‍� (31)

We assume that ER-Ca2+ and cAMP levels are determined by information available in the local area 
of the target KC axon (presynaptic terminal): the dopamine (DA) level emitted by the DANs to the KC 

https://doi.org/10.7554/eLife.75611
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Figure 16. The effect of the ER-Ca2+ and cAMP based on the order of the conditional stimuli (CS) and unconditional stimuli (US). (A) Normalised mean 
change of the synaptic weight plotted as a function of the ‍∆s‍ (US start – CS start), similar to Handler et al., 2019, Figure 5F (blue line). For ease of 
comparison, the predicted mean values are drawn on the top of the data (mean ± SEM) from the original paper (Handler et al., 2019); grey lines and 
error bars. (B) Detailed ER-Ca2+ and cAMP responses reproduced for the different ‍∆s‍, and their result synaptic weight change. Black arrowhead marks 
the time of the CS (duration ‍0.5 s‍); red arrowhead marks the time of the US (duration ‍0.6 s‍), similar to Handler et al., 2019, Figure 5D. For ease of 
comparison, the predicted responses are drawn on the top of the data from the original paper (Handler et al., 2019); grey lines.

The online version of this article includes the following figure supplement(s) for figure 16:

Figure supplement 1. All the chemical levels and neural activities calculated based on the order of the conditional stimuli (CS) and unconditional 
stimuli (US).

Figure supplement 2. Parameter exploration of the ‍τshort‍ and ‍τlong‍ in Equation 35 and Equation 36.

synapses of the respective (jth) MBON, ‍Dj(t) ≥ 0‍; the activity of the (ith) presynaptic KC, ‍ki(t) ≥ 0‍; the 
respective KC→MBON synaptic weight; ‍W

ij
k2m(t) ≥ 0‍ (assumed always positive, exciting the MBON), 

and the resting synaptic weights, ‍wrest ∈ R‍, which we assume are a constant parameter of the synapse. 
Tuning the above quantities in order to reproduce the ER-Ca2+ and cAMP levels, we postulate a math-
ematical formulation of the latter as a function of the available information

	﻿‍ (ER-Ca2+)ij ∝ −Dj
△(t) · [ki(t) − wrest] − [Dj

△(t) − Dj
▽(t)] · Wij

k2m(t)‍� (32)

	﻿‍ (cAMP)ij ∝ Dj
▽(t) · [ki(t) − wrest]‍� (33)

where ‍D
j
▽(t)‍ and ‍D

j
△(t)‍ are the depression and potentiation components of the DA, respectively 

(assumed to correspond to DopR1 and DopR2 receptors [Handler et  al., 2019] or potentially to 
involve co-transmitters released by the DAN such as nitric oxide [Aso et  al., 2019]). We assume 
two types of DAN terminals: the depressing and potentiating terminals. In depressing terminals 
(arrow down), ‍D

j
▽(t)‍ makes a higher peak in its activity followed by a faster diffusion than ‍D

j
△(t)‍, which 

seems to be the key for the backward conditioning. The opposite happens in potentiating DAN 
terminals. Figure 16 shows the ER-Ca2+ and cAMP levels during forward and backward conditioning 
for a depressing DAN [see Figure 16—figure supplement 1 for the responses of all the terms used 
including ‍D

j
▽(t)‍ and ‍D

j
△(t)‍], which are comparable to the data shown in Handler et al., 2019 (also 

Figure 16, shown in grey). Note that here we are more interested in the overall effects of learning 
shown in Figure 16A rather than the detailed responses of Figure 16B.

By replacing Equation 32 and Equation 33 in Equation 31, we can rewrite the update rule as a 
function of known quantities, forming our DPR of Equation 1, which we rewrite for convenience

	﻿‍ ∆Wij
k2m(t) = δi(t)[kj(t) + Wij

k2m(t) − wrest] where δj(t) = Dj
△(t) − Dj

▽(t)‍�

The dopaminergic factor, ‍δj(t)‍, is the difference between the ‍D
j
▽(t)‍ and ‍D

j
△(t)‍ levels, and it can be 

positive [‍D
j
△(t) > Dj

▽(t)‍] or negative [‍D
j
▽(t) < Dj

△(t)‍]. Combined with the state of the KC activity results 
in the four different weight modulation effects: depression, potentiation, recovery, and saturation.

https://doi.org/10.7554/eLife.75611
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In Figure 16B (where we assume a depressing DAN terminal), all four effects occur in four out of 
the six cases, creating complicated dynamics that allow forward and backward learning. Similarly, a 
potentiating terminal might trigger all the effects in a row but in different order and duration. Note 
that in the simulations run for the results of this paper, we simplify the dopaminergic factor to have a 
net positive or negative value for the time-step in which it influences the synaptic weight change as 
the time-steps used are long enough (e.g., around ‍5 s‍; see ‘Implementation of the incentive circuit’ 
section), and we assume less complicated interchange among the effects.

In Figure 16A, we report the normalised mean change of the synaptic weight calculated using the 
computed ER-Ca2+ and cAMP levels and the following formula:

	﻿‍ ⟨∆Wij
k2m⟩ ∝

1
T
∑T−1

t=0 −(ER-Ca2+)ij(t) − (cAMP)ij(t).‍� (34)

Decomposing the dopaminergic factor
In Equation 18, the dopaminergic factor, ‍δ(t)‍, is derived from the matrix Equation 12 which captures 
in abstracted and time-independent form the effects of dopamine release. To model these more 
explicitly, as described in the ‘Derivation of the dopaminergic plasticity rule’, the dopaminergic factor 
can be decomposed as ‍δ(t) = D△(t) − D▽(t)‍ where each component has a time-dependent form given 
by the differential equations

	﻿‍

dD▽
dt

= 1
τlong

dT(t) · W+
d2km − 1

τshort
dT(t) · W−

d2km −
(

2 − 1
τshort

− 1
τlong

)
D▽

‍�
(35)

	﻿‍

dD△
dt

= 1
τshort

dT(t) · W+
d2km − 1

τlong
dT(t) · W−

d2km −
(

2 − 1
τshort

− 1
τlong

)
D△

‍�
(36)

where ‍W
+
d2km‍ and ‍W

−
d2km‍ represent the positive-only (potentiation/saturation) and negative-only 

(depression/recovery) dopaminergic effects; ‍d(t)‍ is a vector of the responses of all DANs as a function 
of time, t; ‍D▽ = D▽(t)‍ nd ‍D△ = D△(t)‍ are the depression and potentiation components of the DA as 
functions of time, t; and ‍τshort‍ and ‍τlong‍ are the exponential decay time-constants that define the short 
(main) and long (secondary) durations of the dopamine effect. The longer the time constant, the 
slower the diffusion but also the lower the peak of the effect. Note that the two time constants must 
satisfy the constraint ‍0 < 1

τshort
+ 1

τlong
≤ 2‍ in order for the above differential equations to work properly.

In Figure 16, where we are interested in more detailed dynamics of the plasticity rule, and the 
sampling frequency is high, that is, ‍100 Hz‍, we use ‍τshort = 60‍ and ‍τlong = 104‍, which we choose after 
a parameter exploration available in Figure 16—figure supplement 2. This essentially means that 

‍D▽(t)‍ and ‍D△(t)‍ are expressed as time-varying functions following DAN spike activity. Note that for 
the specific (susceptible) type of MBON examined there, the DAN causes depression of the synapse, 
so there is no positive dopaminergic effect, that is, ‍W

+
k2dm = 0‍. By setting ‍W

+
k2dm = 0‍ in Equation 35 

and Equation 36, we have the fast update with the high peak for ‍D▽(t)‍ (‍0.5 s‍ for a full update) and a 
slower update with lower peak for ‍D△(t)‍ (‍1 s‍ for a full update), as described in the ‘Derivation of the 
dopaminergic plasticity rule’ section.

For the experiments in Figures 4 and 11, we use ‍τshort = 1‍ and ‍τlong = +∞‍, which removes the 
dynamics induced by the relation between ‍D▽(t)‍ and ‍D△(t)‍, and Equation 18 emerges from:

	﻿‍

δ(t) = D△(t) − D▽(t)

= dT(t) · W+
d2km + dT(t) · W−

d2km, for τshort = 1 and τlong = +∞

= dT · Wd2km ‍�

(37)

This essentially means that each update represents a time-step that is longer than the effective 
period of backward conditioning for the responses of the ‘Microcircuits of the mushroom body’ and 
‘Modelling the behaviour’ sections (where sampling frequency is low, i.e., ≤‍0.5 Hz‍ and ‍1 Hz‍, respec-
tively), and therefore, we use the same time constants that result in the simplified Equation 18.

Data collection
In order to verify the plausibility of the IC, we recorded the neural activity in genetically targeted 
neurons during aversive olfactory conditioning which is described in more detail in McCurdy et al., 
2021. We simultaneously expressed the green GCaMP6f Ca2+ indicator and red Ca2+-insensitive 

https://doi.org/10.7554/eLife.75611
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tdTomato in neurons of interest to visualise the Ca2+ changes which reflect the neural activity. We 
collected data from 357 five-to-eight-day-old female flies (2–14 per neuron; eight flies on average) 
and for 43 neurons, which can be found in Figure 4—source data 1 (also illustrated in Figure 4—
figure supplement 1).

Each fly was head-fixed for simultaneous delivery of odours and electric shock while recording 
the neural activity. Their proboscis was also glued, while their body and legs were free to move (see 
Figure 4A). The flies were allowed to recover from the gluing process for ‍15 min‍ before placing them 
under the microscope. We used green (‍555 nm‍) and blue (‍470 nm‍) lights to record GCaMP and Tomato 
signals. We also used 0.1% 3-octanol (OCT) and 0.1% 4-methylcyclohexanol (MCH) for odours A and 
B, respectively, and the flow rate was kept constant at 500 mL/min for each odour. The flies were 
allowed to acclimate to the airflow for at least 1 min before starting of the experiment.

During the experiments, we alternate trials where ‍5 s‍ of each odour is presented ‍5 s‍ after the (green 
or red) light is on. We start with two pre-training trials (one per odour) followed by five acquisition 
trials per odour. During acquisition, flies receive alternating ‍5 s‍ pulses of OCT (odour A) and MCH 
(odour B) paired with electric shock, repeated for five trials. During reversal, OCT is presented with 
shock and MCH without, repeated for two trials. On trials where electric shock was delivered, it was 
presented ‍4 s‍ after odour onset for ‍100 ms‍ at ‍120 V‍.

Calculating off- and on-shock values
From the data collection process described above, we get trials of 100 time-steps and at ‍5 Hz‍ (‍20 s‍ 
each). Odour is delivered between time-steps 25 and 50 (between ‍5 s‍ and ‍10 s‍), and shock is deliv-
ered during time-step 45 (at ‍9 s‍). In this work, we report two values for each trial: the off-shock and 
on-shock values, which represent the average response to the odour before and during the period in 
which shock delivery could have occurred (even if shock is not delivered).

For the off-shock value, from each datastream of activity from the target neuron, we collect the 
values from time-steps between 28 (‍5.6 s‍) and 42 (‍8.4 s‍). This gives us a matrix of ‍nfly × 15‍ values, whose 
average and standard deviation are the reported off-shock values. Similarly, for the on-shock values, 
we collect the values in time-steps between 44 (‍8.6 s‍) and 48 (‍9.6 s‍), which gives a matrix of ‍nfly × 5‍ 
values, whose average and standard deviation are the on-shock values. We define ‘on-shock’ as the 
time window from ‍8.6 s‍ to ‍9.6 s‍, where shock onset occurs at ‍t = 9 s‍.
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Appendix 1
The incentive wheel
We have shown that the incentive circuit is able to explain classical conditioning experiments that 
have been done with adult fruit flies, and its neurons can replicate the responses of the mushroom 
bodies in the flies’ brain. We have also seen that three types of memories are stored in this model 
(i.e., susceptible, restrained, and long-term) for each of the two represented motivations of the 
animal (i.e., attraction or avoidance) guided by reinforcements (i.e., reward or punishment). Although 
this model is sufficient to explain the behaviour of the animals in the laboratory, where the animal is 
exposed to controlled portions of chemicals and the results are translated into a simple attraction 
to or avoidance from a source, in the wild there are more than two motivations that modulate the 
behaviour of the animal either synergistically or opponently.

Real-life experiences are complicated and rich in information. This could produce a whole 
spectrum of reinforcements and motivations that guide the behaviour of animals. Data show that 
animals respond differently in different reinforcements, which cannot be represented just by the 
magnitude of a single variable, for example, more/less rewarding/punishing. For example, different 
concentrations of salt (Zhang et al., 2013) or sugar (Colomb et al., 2009) might be combined with 
the sated state of the animal, activate different subsets of DANs, and trigger different behaviours, 
such as feeding or escaping. When the male fruit fly is exposed to female pheromones, courtship 
behaviour is triggered through P1 neurons (Kallman et al., 2015; Sten et al., 2020), which can be 
translated to attraction, but has nothing to do with the appetite of the animal. On the other hand, 
other male pheromones trigger avoidance which suggests a similarity to the IC could explain this 
behaviour. The MB has been proved to contribute to many behaviours other than olfactory classical 
conditioning, including visual navigation, and its output neurons encode richer information that is 
very close to humans’ decision-making (Heisenberg, 2003).

It is reasonable to think that the ‍∼ 34‍ output and ‍∼ 130‍ dopaminergic neurons interacting with 
the MBs in the brain of fruit flies are not all used in order to discriminate odours and assign a 
positive or negative reinforcement to them driving attraction and avoidance. For this reason, we 
believe that the different MBONs do not represent different odours like it has been proposed before 
(Huerta et al., 2004) neither are split into two groups (e.g., attraction or avoidance; Schwaerzel 
et al., 2003; Schroll et  al., 2006; Waddell, 2010), but rather represent different motivations of 
the animal that altogether guide its overall behaviour (Heisenberg, 2003; Krashes et al., 2009). 
These motivations are associated to different contexts, which are represented by the responses of 
the KCs as it has been proposed by Cohn et al., 2015, who showed that the same output neurons 
in the γ compartment respond differently when a different context is given. This context enables 
or disables different microcircuits of the MB — similar to the ones described in the ‘Microcircuits 
of the mushroom body’ section, which result in the activation of a subset of MBONs that represent 
different motivations, while the overlapping microcircuits result in what we sometimes call “noisy” 
or “insignificant” changes in the behaviour.

Appendix 1—figure 1 illustrates such a model, which we call the ‘incentive wheel’ (IW). In this 
model, we use four identical incentive memories (C0/4, C1/5, C2/6, and C3/7), where the reciprocal 
STMs microcircuit of the one is the reciprocal LTMs microcircuit of another. As the structure of the 
RLM microcircuit is identical to the RSM one, we assume that the RLM of circuit C0/4 is the RSM of 
circuit C1/5, and the RLM of circuit C1/5 is the RSM of circuit C2/6, and so on. This way, we weave 
the different circuits into an incentive wheel with opposing motivations. The reinforcements that 
trigger the DANs in this model are drawn from a spectrum, and the output of the MBONs of the 
model triggers different motivations. The LTMs and restrained memories can both exist in the same 
neurons of the core of the model, representing different motivations in different contexts. This might 
cause changes in the behaviour of the circuits that are irrelevant to the associated reinforcement, but 
relevant to a neighbouring reinforcement of the spectrum.

https://doi.org/10.7554/eLife.75611
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Appendix 1—figure 1. The ‘incentives wheel’ model. This model supports that reinforcement is not binary but it 
draws its values from a spectrum. Different types of reinforcements trigger different dopaminergic neurons (DANs) 
that enable learning in different parts of the mushroom body. Colours show the variety of motivations that the 
model can encode associated with humans’ ‘wheel of emotions’ (Plutchik, 2001); e.g., light green: trust; green: 
fear; light blue: surprise; blue: sadness; pink: disgust; red: anger; orange: anticipation; yellow: joy. Neurons of more 
than one colours are part of multiple circuits that contribute to different motivations.

The incentive wheel is an example of how the IC can be a part of a bigger circuit that can 
provide a variety of motivations to the animal. An extension of it could have susceptible MBONs, 
si, connecting to other susceptible MBONs from a parallel IW model with higher-order motivations. 
In Appendix 1—figure 1, we have associated the different motivations with the primary human 
emotions from the ‘wheel of emotions’ (Plutchik, 2001). Higher-order motivations could exist by 
combining primary motivations as if they were emotions and result in more complicated behaviours 
for the animal.

https://doi.org/10.7554/eLife.75611
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Appendix 2

Appendix 2—table 1. Additional information on the mushroom body neurons used for the incentive 
circuit, sorted by their short name.
Information about the neurons has been collected from McCurdy et al., 2021 and Aso et al., 
2014a.

Driver Cluster Neuron name # cells Short name Alternative names

MB011B M4/M6 MBON-γ5β’2a 1 MBON-01 MB-M6

MB399B M4/M6 MBON-β2β′2a 1 MBON-02

MB298B MV2 MBON-γ4>γ1γ2 1 MBON-05

MB112C MBON-γ1pedc>α/β 1 MBON-11 MB-MVP2

MB077B V3/V4 MBON-γ2α’1 2 MBON-12

MB050B V2 MBON-α’1 3 MBON-15

MB109B PAM PAM-β’2a 6–9 PAM-02

MB301B PAM PAM-β2β′2a > 3 PAM-04 Subset of MB-M8

MB312B PAM PAM-γ4<γ1γ2 13–17 PAM-07 Subset of MB-AIM?

MB320C PPL1 PPL1-γ1ped 1 PPL1-01 MB-MP1, MP

MB296B1 PPL1 PPL1-γ2α′11 1 PPL1-03 MB-MV1

MB296B2 PPL1 PPL1-γ2α′12 1 PPL1-03 MB-MV1

https://doi.org/10.7554/eLife.75611
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