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Abstract
Background: Fibrin polymerization, following fibrinopeptides A and B (FpA, FpB) 
cleavage, relies on newly exposed α- and β-chains N-termini (GPR, GHR; A-, B-knobs, 
respectively) engaging preexistent a and b pockets in other fibrin(ogen) molecules' 
γ- and (B)β-chains C-terminal regions. A role for mostly disordered (A)α-chains 
C-terminal regions “bridging” between fibrin molecules/fibrils has been proposed.
Objectives: Fibrinogen Detroit is a clinically observed mutation (AαR19 → S) with 
nonengaging GPS A-knobs. By analogy, a similar Bβ-chain mutation, BβR17 → S, 
should produce nonengaging GHS B-knobs. A homozygous “Double-Detroit” mutant 
(AαR19 → S, BβR17 → S; DD-FG) was developed: with A-a and B-b engagements 
endogenously blocked, other interactions would become apparent.
Methods: DD-FG, wild-type recombinant (WT-FG), and human plasma (hp-FG) fi-
brinogen self-association was studied by turbidimetry coupled with fibrinopeptides 
release high-performance liquid chromatography (HPLC)/mass spectrometry analy-
ses, and by light-scattering following size-exclusion chromatography (SE-HPLC).
Results: In contrast to WT-FG and hp-FG, DD-FG produced no turbidity increase, 
irrespective of thrombin concentration. The SE-HPLC profile of concentrated 
DD-FG was unaffected by thrombin treatment, and light-scattering, at lower con-
centration, showed no intensity and hydrodynamic radius changes. Compared with 
hp-FG, both WT-FG and DD-FG showed no FpA cleavage difference, while ~50% 
FpB was not recovered. Correspondingly, SDS-PAGE/Western-blots revealed par-
tial Bβ-chain N-terminal and Aα-chain C-terminal degradation. Nevertheless, ~70% 
DD-FG molecules bearing (A)αC-regions potentially able to associate were available. 
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1  | INTRODUC TION

Fibrinogen is a central player in blood coagulation, with impor-
tant roles in pathological situations such as thrombosis,1,2 athero-
sclerosis,3,4 and cancer metastasis.5 It is a high-molecular-weight 
(~340 000 Da), elongated (~45 nm) glycoprotein circulating as an 
inactive precursor in the blood at ~3 to 5 mg/mL.6 Fibrinogen is 
composed of two pairs of three polypeptide chains, Aα, Bβ, and γ 
(Aα2Bβ2γ2; in human form 610, 461, and 411 amino acids, respec-
tively7). All chains' N-terminal ends are bundled together by S-S 
bridges in a central “E-region,” from which two triple coiled-coil 
connectors depart in opposite directions, each held in register by 
two disulfide rings between the Aα-, Bβ-, and γ-chains.8 At the end 
of the connectors, the Bβ- and γ-chain C-terminal parts form two 
outer D-regions, within which each chain folds independently.9 
Instead, the >400 C-terminal residues of the Aα chains first re-
verse direction forming a fourth strand up to about halfway on 
the coiled-coils connectors,10 and then protrude as mainly disor-
dered appendages (“AαC-regions”),11 within which a small partially 
ordered subdomain (Aα425-503 in the human sequence) has been 
identified.12-14

Thrombin converts fibrinogen into a reactive species by 
cleaving two pairs of short peptides, called fibrinopeptides A 
and B (FpA and FpB, 16 and 14 residues, respectively), from the 
N-termini of the Aα and Bβ chains in the central E-region, generat-
ing the α2β2γ2 fibrin monomer.15-17 The resulting N-termini in the 
α- and β-chains, with initial sequence GPR and GHR, are called the 
A and B “knobs,” respectively.18 They engage very tightly, mainly 
by electrostatic interactions, into pre-existing and readily avail-
able a and b “holes” in the D-region's C-terminal parts of the γ- and 
(B)β-chains, respectively, in other fibrin(ogen) molecules.18 Rapid 
polymerization ensues, first forming elongated (proto)fibrils,19,20 
which by subsequent branching and lateral aggregation give rise to 
a three-dimensional network, the clot scaffold that stabilizes the 
initial platelet plug during blood coagulation (see7,17). FpA release 
is the key initial event, with A-a interactions governing (proto)fi-
bril formation in a final half-staggered, double-stranded arrange-
ment.20,21 FpB is released by thrombin later in the process, and the 
B-b engagement enhances the lateral thickening of the fibers.22,23 
There is also evidence of promiscuity between the A and B knobs 
toward the a and b holes, probably derived from the common evo-
lutionary origin of the fibrinogen chains.24

Several important aspects of fibrin polymerization have been elu-
cidated over the years, but some key questions still remain. In partic-
ular, it has been proposed that the (A) αC-regions interact with each 
other, and with the central E-region in the fibrinogen molecule, and 
that they are released following fibrinopeptide cleavage, more likely 
after FpB removal.11,23 The released αC-regions have been postulated 
to assist fiber assembly by intermolecular binding between parallel 
protofibrils.25,26 However, proving this αC-regions release mechanism 
at the level of individual fibrin molecules is difficult, as they rapidly 
polymerize, and only large amounts of knobs-mimic peptides inhibi-
tors such as GPRP-NH2 and GHRP-NH2 (at ≥500-fold molar ratio) can 
block this process.27 Because the B-b engagement induces changes 
in the relative orientation of the β- and γ-chains C-terminal subdo-
mains,28 binding of knobs-mimics can have difficult to evaluate con-
sequences at a structural level. However, they could still be employed 
to reveal other potential interactions between fibrin(ogen) molecules.

Among the many clinically observed fibrinogen mutations affect-
ing fibrin formation (http://site.geht.org/base-fibri nogene29), fibrin-
ogen Detroit (AαR19 → S)30 is of particular interest. In this mutant, 
FpA can be cleaved by thrombin, but the resulting mutated A-knob, 
GPS, is unable to bind either the a or b holes, leading to severely 
impaired fibrin formation, only partially rescued by the GHR normal 
B-knobs binding to their cognate b holes.31 On this basis, we hypoth-
esized that a similar mutation in the B-knob, BβR17 → S, would stop 
it binding to either holes b or a. A mutant carrying both AαR19 → S 
and BβR17 → S substitutions should therefore reveal any other po-
tential interaction between fibrin monomers following cleavage of 
both fibrinopeptides.

Higher-concentration, nearly intact hp-FG with 500-fold molar excess GPRP-NH2/
GHRP-NH2 knobs-mimics experiments confirmed these no-association findings.
Conclusions: (A)αC-regions interactions appear too weak to assist native fibrin po-
lymerization, at least without knobs engagement. Their role in all stages should be 
carefully reconsidered.

K E Y W O R D S

fibrin, fibrinogen, mutation, polymerization, thrombin

Essentials

• αC-regions are thought to actively complement knob-
hole interactions during fibrin assembly.

• Defective knobs in a recombinant “Double Detroit” mu-
tant (DD-FG) should impede fibril formation.

• Thrombin-treated DD-FG alone or fibrinogen with 
knobs-mimics showed a total lack of associations.

• A more passive role of the α-chains C-terminal regions in 
fibrin assembly is proposed.

http://site.geht.org/base-fibrinogene
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Here we report the development of this recombinant human fi-
brinogen mutant, that we have termed Double-Detroit fibrinogen 
(DD-FG), and its characterization before and after thrombin treat-
ment. As it unfortunately sometimes happens with recombinant 
fibrinogen production in mammalian cells, we have encountered 
degradation issues with the DD-FG mutant and wild-type fibrinogen 
(WT-FG), despite the addition of protease inhibitors during the puri-
fication procedures. This resulted in cleavage of portions of the AαC-
regions and of the first ~50N-terminal amino acids of the Bβ-chain, 
in a manner reminiscent of the formation of the so-called fragment 
X by plasmin action.32 Nevertheless, the amount of intact or just 
slightly degraded species was sufficient to allow clear-cut results to 
be obtained. Namely, we found that, despite thrombin cleavage of the 
fibrinopeptides, DD-fibrin monomers showed no signs of polymeriza-
tion whatsoever, neither by turbidity analysis, nor by time-resolved 
static and dynamic light scattering. Similar results were obtained with 
a fibrinogen fraction with mostly intact AαC-regions and in the pres-
ence of a large excess of both GPRP-NH2 and GHRP-NH2. Overall, 
these data failed to reveal any contribution of the αC-regions, while 
confirming the fundamental role of knob-hole interactions in power-
ing fibrin polymerization. DD-FG will also provide an essential new 
tool for the study of the molecular properties of fibrin monomers 
after their generation from fibrinogen by thrombin, without the in-
terference of polymerization or the formation of a clot.

2  | MATERIAL S AND METHODS

2.1 | DD-FG and WT-FG expression, purification, 
and quality control

Recombinant human AαR19S/BβR17S fibrinogen (DD-FG) and 
WT-FG were prepared as previously described.33 Detailed 
protocols, including for the enzyme-linked immunosorbent 
assay tests, can be found in the Appendix S1. Final concentra-
tions were determined spectrophotometrically at λ = 280 nm 
(ε280 = 1.51 mL mg−1 cm−1)34 and the purity of each recombinant 
fibrinogen batch was assessed by SDS-PAGE under reducing 
conditions using 10% polyacrylamide (PAA) gels.35 Further char-
acterization was conducted by Western-blot analysis after SDS-
PAGE, using the mouse monoclonal antibody Y18 specific for 
the N-terminal end of the Aα-chains,36 and a rabbit polyclonal 
antibody against the C-terminal 250-491 region of the Bβ-chains 
(Ab137830, Abcam, Prodotti Gianni). Color was developed with 
horseradish peroxidase-conjugated goat anti-mouse IgM (A-
8766, Sigma-Aldrich) and anti-rabbit IgG (7074S, Cell Signaling 
Technology, EuroClone) secondary antibodies, respectively, and 
4-chloro-1-naphthol (Sigma-Aldrich) as a substrate. Dual color, 
Precision Plus recombinant molecular weight standards (161-
0374, Bio-Rad) were used as markers. Quantification of the rela-
tive amounts of the Aα- and Bβ-chains in the Western blots was 
done essentially as previously reported35 (for details, see the 
Appendix S1).

2.2 | Turbidity coupled to fibrinopeptides 
release assays

These experiments were conceived to simultaneously moni-
tor turbidity in a spectrophotometer and fibrinopeptide release 
by HPLC on the same sample, the latter at long time-points. In 
 addition to WT-FG and DD-FG, fibrinogen purified from human 
plasma (hp-FG; type FIB3, Enzyme Research Laboratories) 
was used. An hp-FG fraction with mostly intact AαC-regions 
(HMW-FG) was prepared as previously described,35,37,38 and used 
to perform experiments in the absence/presence of knobs-mimic 
peptides GPRP-NH2 (H-1998, Bachem) and GHRP-NH2 (synthe-
sized in-house, see Appendix S1). All experiments were performed 
in TBS buffer [tris(hydroxymethyl)aminomethane 50 mmol/L, 
NaCl 100 mmol/L, aprotinin 1 KIU/L, pH 7.4]. Human α-thrombin 
was from Enzyme Research Laboratories (3081 NIHu/mg).  
One vial containing nominal 1000 NIHu was reconstituted  
with 1 mL of MilliQ water, and vials containing 20-μL aliquots 
were quick-frozen in liquid N2 and stored at −80°C. Each time 
an aliquot was used, its activity was carefully determined as de-
tailed in the Appendix S1. A DU-640 spectrophotometer with 
a thermostatted 6-position sample changer (Beckman Coulter) 
and a thermostatting block (Thermomixer Comfort; Eppendorf) 
were used for the turbidity experiments and for the parallel  
sample incubation, followed by reverse-phase HPLC (RP-HPLC) 
and mass spectroscopy (MS) analyses. Quantitative analyses  
were performed, determining the areas for each fibrinopep-
tide peak using a skewed Gaussian function (EMG + GMG).  
Samples were checked by SDS-PAGE before and after these 
turbidity experiments. Detailed protocols are provided in the 
Appendix S1.

2.3 | Size-exclusion chromatography

Size-exclusion chromatography (SE-HPLC) was performed both 
analytically, to check for the presence of high- and low-molec-
ular weight components in the fibrinogen preparations, and in a 
 semipreparative way to isolate sufficient monomeric fractions  
for the static and dynamic light scattering experiments (see 
Appendix S1).

2.4 | Static and dynamic light scattering

A 1999 static/dynamic light scattering (SLS/DLS) instrument (Protein 
Solutions DynaPro model 99E; Rheometric Scientific), equipped with 
a square 3-mm path length, 40-μL minimum volume quartz cuvette, 
was used. The DynaPro has a 50-mW, λ = 824.8 nm solid-state diode 
laser, and LS collection at a single 90° scattering angle is done in 
photon-counting mode. Basic LS theory, data analysis, and a detailed 
protocol for all steps used in the preparation of working solutions are 
reported in the Appendix S1.
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3  | RESULTS

3.1 | Characterization of recombinant and plasma-
derived fibrinogens

Reduced samples of the proteins were run on SDS-PAGE, and were 
found to be consistent with apparently pure preparations, with 
bands corresponding to the standard Aα, Bβ, and γA chains (Figure 
S1A). However, a more detailed Western blot analysis using a mono-
clonal antibody specific for the N-terminal end of the Aα-chain re-
vealed that in both WT- and DD-FG, up to ~70% of the Aα chains 
presented varying levels of degradation in the AαC region (Figure 
S2 and Table S2). Furthermore, from the analyses of a Western-blot 
stained with a polyclonal antibody against the C-terminal region of 
the Bβ-chain, two groups of bands could be discerned (Figure S3 and 
Table S3). The constituents of the first group had approximate mo-
lecular weights close to that of intact Bβ chains with up to two sialic 
acids in its single carbohydrate chain (theoretical 53 900-54 450), 
whereas the second group could result in the hp-FG sample by the 
loss of the N-terminal 1-42 residues (mol. wt. ~4600), a classic plas-
min-degradation event.39 The corresponding DD-FG and WT-FG 
bands in this second group appeared to have slightly higher molecu-
lar weights (Table S3), suggesting that a different process might have 
generated a similar N-terminal degradation of the Bβ chains. In these 
particular batches analyzed, about 25% (DD-FG) and 30% (WT-FG) 
of the Bβ chains appeared missing the N-terminal residues (Table 
S3), which include the FpB and the B-knob residues. Given the size 
shift, it is unlikely that the proteolysis took place at the C-terminal 
end. Attempts to prevent this degradation with additional protease 
inhibitors have so far been unsuccessful, suggesting that a different 

cell line or expression system might be necessary in the long run to 
obtain more pristine products. However, the main self-interaction 
domain within the (A)αC-regions has been identified within residues 
Aα425-503.14 Because the Aα1-503 stretch has a predicted molecu-
lar weight of 54 589, this value was used as a cutoff to conserva-
tively calculate from the SDS-PAGE/Western blot data (Table S2) 
the percentage of molecules bearing AαC regions potentially able to 
interact. About 70% of DD-FG molecules (and ~50% of both hp-FG 
and WT-FG) were found to contain the AαC self-interaction region, 
allowing us to perform meaningful polymerization studies. Indeed, in 
initial assays at both low and high thrombin concentrations, WT-FG 
behaved as a typical fibrinogen sample, whereas DD-FG did not 
show any increase in turbidity (Figure S1B). In addition, preliminary 
fibrinopeptide release experiments indicated cleavage of both FpA 
and FpB from the recombinant FGs (data not shown).

3.2 | Turbidity coupled to Fps release studies

After prolonged treatment with thrombin (see below), both WT-FG 
and DD-FG showed a complete, small but noticeable reduction in the 
sizes of both the Aα- and Bβ-chains, attributable to normal cleavage of 
FpA and FpB (Figure 1A). Although both hp-FG and WT-FG displayed 
a typical turbidity profile,40 no change whatsoever was observed in 
absorbency for DD-FG (Figure 1B). The differences in the profiles and 
final turbidity levels for the hp-FG and WT-FG likely derived from the 
relative purity of the two samples leading to differences in clot struc-
ture. For instance, whereas recombinant WT-FG is almost devoid of 
aggregates, these are usually present in hp-FG, and reduce final fiber 
thickness.41,42 In Figure S4, turbidity profiles obtained at the same 

F I G U R E  1   Polymerization kinetics of fibrinogen preparations. (A) SDS-PAGE on a 10% PAA gel under reducing conditions (two portions 
of the same gel) of control samples (hp-FG, DD-FG, and WT-FG), samples from the turbidity experiment after thrombin (Thr) addition 
(DD-FG + Thr and WT-FG + Thr), and a molecular weight marker (MK). The normal FG chains positions are indicated on the left side; the 
standards molecular weights listed on the right side are only indicative. (B) turbidity time course of WT-FG (blue trace), hp-FG (magenta 
trace), and DD-FG (red trace), all at 0.3 mg/mL, after activation with thrombin at 0.08 NHIu/mL (0.28 NIHu/mg FG)
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final fibrinogen concentration and thrombin activity are shown for the 
same hp-FG sample before and after SE-HPLC treatment (see the fol-
lowing section). For the turbidity experiments reported in Figure 1B, 
aggregates were not removed from our hp-FG samples.

The release of fibrinopeptides was analyzed by RP-HPLC in 
parallel to the turbidity experiments (Figure 2). For all datasets, 
complete superimposition of a marker (MK) peak at the three in-
cubation times was observed (Figure 2A-C), suggesting that no 

F I G U R E  2   RP-HPLC fibrinopeptides release analyses following turbidity experiments with various fibrinogen preparations. hp-FG (A), 
WT-FG (B), and DD-FG (C), all at 0.3 mg/mL, after thrombin activation (0.28 NIHu/mg FG) at 25°C for 1 hour (black traces), 2 hours (red 
traces), and 3 hours (green traces). All data shown here are blank-subtracted. Injection volumes were all 20 μL, except 15 μL for the DD-FG 
1-hour sample, whose A211 values were therefore rescaled by a 4/3 factor. The fibrinopeptides are identified in (A) (FpAP, phosphorylated 
FpA; MK, marker peptide; FpAY, FpA lacking the N-terminal A residue; desArgB, FpB lacking the C-terminal R residue; FpBY2, FpB lacking 
the N-terminal pyro-N and G residues; N → D, deamidated forms of all FpBs; see55)
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material was differentially lost in the boiling/filtration/injection 
steps. All non-labeled peaks present were found not to be derived 
from known or new fibrinopeptide species by MS-MS analyses 
(data not shown).

For hp-FG, (Figure 2A) there was no difference in the heights/
shapes of all peaks as a function of the incubation time with throm-
bin, indicating that after 1 hour the fibrinopeptide release had al-
ready reached plateau.

For WT-FG (Figure 2B) the FpAP and FpAY peaks were prac-
tically absent, as previously noted with recombinant fibrinogens 
expressed in CHO cells.43 As a result, the FpA peak was higher 
than for hp-FG. Only desArgB appeared to be present among the 
FpB variants, but the FpB peak was noticeably lower than its coun-
terpart from hp-FG. Similar to hp-FG, the release of all fibrinopep-
tides for WT-FG appeared complete after 1-hour incubation with 
thrombin.

The DD-FG fibrinopeptides analyses showed some differences 
(Figure 2C). FpAP appeared to be present, confirmed by MS-MS 
analyses (data not shown), and FpB was apparently released more 
slowly, with the 2-hour thrombin incubation peak still being lower 
than that observed after 3 hours.

Approximate absolute amounts of fibrinopeptides were then 
determined for the 3 hours timepoints, using calculated ε211 
molar extinction coefficients (see Appendix S1), as shown in 
Table 1. Given the low variability of the MK areas, within ±2% of 
their weighted mean (11.358 ± 0.012 mAU), data normalization 
was unnecessary. The amounts determined for each fibrinopep-
tide species were then grouped into total FpA and FpB, allowing 
to calculate their ratio. The recovery of total FpA, based on the 

theoretical injected amounts of 36 pmol, was ~90% for all three 
fibrinogens used. Considering the uncertainties in the calculated 
ε211 values, this result nicely supports complete cleavage of FpA 
from all our samples.

For hp-FG, the FpA/FpB ratio was close to 1 (Table 1), as expected. 
However, for both WT-FG and DD-FG, the FpA/FpB ratio was higher 
(~1.6 and ~2.3, respectively; Table 1), indicating that about one-third 
and one-half of FpB, respectively, were not recovered. By careful 
MS-MS analysis of all peaks present in our chromatograms, no alterna-
tive FpB form that could account for the missing amounts was found. 
Moreover, by SDS-PAGE analyses (Figure 1A) all FpB is removed from 
the Bβ-chains, excluding the presence of noncleavable FpB in the re-
combinants. The Western blot analyses could provide only a partial 
explanation. As shown in Table S3, ~31% and ~26% of the intact Bβ-
chains were found missing in these WT-FG and DD-FG preparations, 
respectively. For WT-FG, this was reasonably close to the missing FpB 
amount in the HPLC analyses, whereas for DD-FG another ~30% was 
unaccounted for. Unfortunately, the amount of DD-FG sample taken 
from this experiment was insufficient for Western blot following the 
regular SDS-PAGE analysis, and this particular material- and time-con-
suming experiment was not repeated. It is conceivable, however, given 
the variability observed in the degradation of DD-FG batches, that this 
batch had an even higher amount of N-terminally cleaved Bβ-chains. 
Although this issue is being further investigated, the combined results 
still support the notion that both Fps were cleaved from DD-FG, and 
that the absence of clot formation was due to the defective, non-bind-
ing A and B knobs.

Experiments with GPRP-NH2 and GHRP-NH2 knobs mim-
ics were also conducted using hp-FG. As shown in Figure S5, a 

TA B L E  1   Areas and derived amounts (pmol) from the A211 of released fibrinopeptides individual peaks, with the totals for FpA and FpB 
species and their ratio 

Peak

Sample hp-FG WT-FG DD-FG

Calc. ε211

(M−1 cm−1)
Area
(mAU × min)

Amount
(pmol)

Area
(mAU × min)

Amount
(pmol)

Area
(mAU × min)

Amount
(pmol)

MK (% from wm) ND 11.17 ± 0.05
(−1.7 ± 0.4)

ND 11.53 ± 0.02
(+1.5 ± 0.2)

ND 11.30 ± 0.02
(−0.5 ± 0.2)

ND

FpA 24 263 10.29 ± 0.02 21.20 ± 0.04 15.73 ± 0.02 32.42 ± 0.04 12.85 ± 0.02 26.49 ± 0.04

FpAP 24 263 3.48 ± 0.02 7.17 ± 0.03 nd nd 2.83 ± 0.02 5.84 ± 0.03

FpAY 22 957 1.78 ± 0.02 3.88 ± 0.04 nd nd nd nd

FpB 29 317 13.12 ± 0.02 22.38 ± 0.03 9.90 ± 0.02 16.88 ± 0.04 7.31 ± 0.03 12.47 ± 0.04

desArgB 27 135 1.36 ± 0.02 2.51 ± 0.03 1.63 ± 0.02 3.00 ± 0.04 0.84 ± 0.02 1.55 ± 0.03

FpB var1 29 317 0.96 ± 0.02 1.64 ± 0.03 nd nd nd nd

FpB var2 29 317 0.88 ± 0.25 1.51 ± 0.42 nd nd nd nd

FpB var3 29 317 0.94 ± 0.25 1.60 ± 0.42 nd nd nd nd

Total FpA na ND 32.25 ± 0.06 ND 32.42 ± 0.04 ND 32.32 ± 0.05

Total FpB na ND 29.63 ± 0.60 ND 19.88 ± 0.06 ND 14.02 ± 0.05

FpA/FpB na ND 1.09 ± 0.02 ND 1.63 ± 0.01 ND 2.31 ± 0.01

Injected samples were 20 μL each of hp-FG, WT-FG, and DD-FG at 0.3 mg/mL after 3 h thrombin incubation at 0.28 NIHu/mg FG in TBS-PEG 
followed by 1 min boiling and filtration.
Abbreviations: na, not applicable; nd, not detected; ND, not done; wm, weighted mean.
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600 × molar excess of GPRP-NH2 alone (magenta trace) greatly 
delayed but not completely abolished lateral aggregation, likely 
because of a “rescue” effect by the B:b engagement. When 
GHRP-NH2 was also added in a 290 × molar excess (Figure S5, 
blue trace) no lateral aggregation took place. It was found, how-
ever, that while an excess of GPRP-NH2 had no influence on FpA 
cleavage by thrombin, GHRP-NH2 did delay FpB cleavage (data not 
shown). This effect could be overcome by a 10-fold increase in 
thrombin concentration (data not shown).

3.3 | SE-HPLC and SLS/DLS studies

Because turbidity mostly detects the lateral aggregation of fibrin 
fibers, the possibility that protofibrils and/or small oligomers could 
still form after thrombin activation of DD-FG or of HMW-FG in the 
presence of knobs-mimics was investigated by SLS/DLS. To perform 
meaningful SLS/DLS measurements, aggregates and/or degradation 
products were removed by semi-preparative SE-HPLC. HMW-FG, 
containing mostly intact Bβ chains and relatively intact Aα chains 
(~90% with Aα1-503, see Figure S6) was first used, manually collect-
ing the peak fraction starting and ending at approximately half of the 
peak intensity (~1 mL, 0.56 mg/mL). The HMW-FG SE-HPLC traces 
before and after chromatography (Figure 3; black and red traces, re-
spectively) showed a strong reduction of the aggregates peak, as well 
as the absence of degradation products, with the main peak elut-
ing at practically the same position (30.48 vs 30.43 minutes). More 

concentrated HMW-FG and hp-FG fractions were subsequently pu-
rified, both yielding ~0.7 mL at 0.9-1.3 mg/mL (data not shown).

SE-HPLC was then applied to DD-FG, after concentration to 
~9 mg/mL, yielding ~0.65 mL at 0.3 mg/mL. Its profile (Figure 3; 
green trace) showed that although aggregates were practically ab-
sent, a late-eluting relatively intense peak was present. Because 
all subsequent experiments were performed on the main peak 
fraction, containing pure DD-FG as ascertained by SDS-PAGE, its 
nature was not further investigated. A small displacement of the 
top of the peak, 30.63 minutes, was observed compared to the 
HMW-FG sample, possibly reflecting the loss of portions of the 
AαC regions as indicated by SDS-PAGE/Western blot analyses 
(Table S2). Then, as a test of the lack of formation of oligomers 
even at high concentration, 10 μL of a 5 NIHu/mL thrombin solu-
tion in TBS were added to 15 μL of concentrated DD-FG, bring-
ing it to 5.3 mg/mL (thrombin final nominal activity 2 NIHu/mL, 
0.37 NIHu/mg DD-FG). After incubation for 2 hours at 25°C, 15 μL 
were then injected, without spin-filtering, in the SE-HPLC sys-
tem. The resulting profile (Figure 3; blue trace) confirmed that no 
polymers were detectable by this method. The main peak eluted 
slightly later (30.86 minutes) than the untreated material. The 
late-eluting peak was still present, as well as a new, unidentified 
one eluting in between, most likely coming from material present 
in the thrombin solution.

SLS/DLS studies were then performed on 50 μL each of the 
SE-HPLC purified samples, devoid of any pre-existing aggregates, 
before and after thrombin treatment. In Figure 4, the left y-axis 

F I G U R E  3   SE-HPLC profiles of fibrinogen preparations. Concentrated HMW-FG (black; injected 30 μL at 19.9 mg/mL), HMW-FG peak 
fraction used for SLS/DLS (red; injected 100 μL at 0.56 mg/mL), concentrated DD-FG (green; injected 30 μL at 8.9 mg/mL), and concentrated 
DD-FG after incubation for 2 h with thrombin at 2 NIHu/mL (blue; injected 15 μL at 5.3 mg/mL). The absorbance was monitored at 
λ = 250 nm for the black trace, and at λ = 280 nm for all other traces. To facilitate comparison, the A280 values of the red and blue traces 
were blank-subtracted, multiplied respectively 2 and 4 times, followed by blank readdition
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F I G U R E  4   SLS/DLS experiments with fibrinogen preparations. (A) HMW-FG and hp-FG; (B) HMW-FG with GPRP-NH2/GHRP-NH2 
each 500× molar excess; (C) DD-FG. The left y-axes report the weight-average intensities normalized by the sample concentration <In>w 
([counts/s]/[mg/mL]; squares), whereas the right y-axes report the z-average Stokes' radius <Rs>z (nm; circles). Open symbols (negative time 
points), samples before thrombin addition; filled symbols, samples after thrombin addition (indicated by the labeled arrows). Data were 
mostly collected at 1-second acquisition times (1 every 15-20 points are shown for clarity), with 10- to 20-second acquisition times also 
used in nonevolving regions; heavy “spikes” were manually removed. (A) 50 μL HMW-FG at 0.517 mg/mL (black and red symbols) and hp-FG 
at 0.22 mg/mL (green and cyan symbols) before thrombin addition (empty symbols), followed by HMW-FG at 0.431 mg/mL after addition 
of 10 μL 0.23 NIHu/mL thrombin (final 0.1 NIHu/mg FG; filled black and red symbols) and by hp-FG at 0.16 mg/mL after addition of 20 μL 
0.11 NIHu/mL thrombin (final 0.2 NIHu/mg FG; filled green and cyan symbols). (B) 50 μL HMW-FG at 0.83 mg/mL with GPRP-NH2 and 
GHRP-NH2 both 1.92 mmol/L (open dark green and pink symbols), followed by addition of 2 μL of 40 NIHu/mL thrombin (final HMW-FG 
0.8 mg/mL, thrombin 2 NIHu/mg FG; filled dark cyan and purple symbols). (C) 50 μL DD-FG at 0.25 mg/mL before thrombin addition (open 
blue and magenta symbols) monitored for 1 h; at 0.18 mg/mL after addition of 20 μL 0.70 NIHu/mL thrombin (final 1.12 NIHu/mg FG, filled 
blue and magenta symbols), monitored for 50 minutes; and at nominal 0.167 mg/mL after addition of 5 μL 41.7 NIHu/mL thrombin (final 
17.8 NIHu/mg FG, filled gray and orange symbols), monitored for 70 minutes
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reports the SLS weight-average intensity normalized by the sample 
concentration <In>w ([counts/s]/[mg/mL]), whereas the right y-axis 
reports the DLS-derived z-average Stokes' radius <Rs>z (nm). The 
HMW-FG samples, given their integrity, were first used to check 
the procedures and the quality of the measured molecular pa-
rameters. As shown in Figure 4A (black squares and red circles), 
data on untreated HMW-FG at 0.517 mg/mL were first recorded 
(“negative” time points), followed by activation with 10 μL of a 
0.23 NIHu/mL thrombin solution (thrombin final concentration 
0.04 NIHu/mL, 0.1 NIHu/mg FG). Reasonably constant data were 
obtained during the ~10 minutes before thrombin addition (empty 
symbols), followed by a rapid increase thereafter (filled symbols), 
indicating polymerization. HMW-FG at a higher concentration was 
also studied (0.91 mg/mL; data not shown), and the <Rs>z results 
of several individual 20 seconds acquisitions were then averaged, 
reported in Table 2 as [<Rs>z]wa. Table 2 also contains the w-average 
intensities [<Ibs>w]wa,n, (average blank-subtracted before concen-
tration normalization) together with the derived apparent molec-
ular weights [<M*>w]wa and the [<M0>w]wa values corrected for the 
known43 HMW-FG concentration dependence (see Appendix S1). 
The HMW-FG [<Rs>z]wa is close to the accepted value for fibrino-
gen (10.4 nm, see43), demonstrating a practically monomeric sam-
ple prior to thrombin addition. This was confirmed by the derived 
[<M0>w]wa in excellent agreement with that expected for HMW-FG, 
~333 000 g/mol.43 Both data confirmed optimal performance of 
the SLS/DLS set-up.

An additional experiment was performed with the SE-HPLC-
purified hp-FG sample, after dilution to 0.22 mg/mL, similar to that of 
DD-FG (see below ). As shown in Figure 4A (green squares and cyan 
circles), data practically superimposable with those of HMW-FG 
were obtained before thrombin addition (empty symbols). Values of 
[<Rs>z]wa = 10.4 ± 0.1 nm and [<M0>w]wa = 375 000 ± 3000 g/mol 
confirmed that our samples mainly contained monomeric mate-
rial. The polymerization was then initiated with thrombin at a final 
0.2 NIHu/mg FG (Figure 4A, filled symbols): <In>w and <Rs>z data 
very similar to those of HMW-FG were obtained up to ~20 minutes, 
becoming very noisy afterwards. A parallel turbidity test on this 
hp-FG sample showed that little absorbance changes happened until 
~10 minutes, starting to increase afterwards (see Figure S7). This in-
dicates that data on both the HMW-FG and hp-FG samples were 
collected mainly during the polymerization lag time, well before any 
fiber thickening took place.44 This is confirmed by the terminal <In>w 
value of ~5.2 × 106 [(counts/s)/(mg/mL)] for HMW-FG (Figure 4A) 
corresponding to a <M*>w of ~2.2 × 106 g/mol (eg, see Fig. 2 in45).

The effect of knobs-mimics was then studied. To 90 μL of the 
SE-HPLC-treated HMW-FG sample, 2.2 and 3.8 μL of concen-
trated GPRP-NH2 and GHRP-NH2 were respectively added before 
centrifiltration (final 500 × molar excess). SLS/DLS was performed 
on 50 μL before (Figure 4B, empty dark green and pink symbols; 
HMW-FG 0.83 mg/mL) and after addition of 1.7 μL 1.6 NIHu/mL 
thrombin (Figure 4B, filled dark cyan and purple symbols; final 
HMW-FG 0.8 mg/mL, thrombin 2 NIHu/mg FG). No changes were 
observed up to 1 hour after thrombin addition (Figure 4B). The TA
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complete removal of all fibrinopeptides was ascertained both by 
SDS-PAGE/Western blots (Figure S6) and RP-HPLC (Figure S8). 
Before activation, the [<Rs>z]wa and [<M0>w]wa were indistinguishable 
from those of HMW-FG without knobs-mimics, and only a very small 
increase of [<Rs>z]wa resulted at the end of thrombin action (Table 2). 
Interestingly, the terminal [<M*>w]wa value without extrapolation to 
c = 0 was close to the initial [<M0>w]wa, suggesting that removal of 
the fibrinopeptides practically abolished intermolecular unspecific 
interactions.

Experiments with the SE-HPLC purified DD-FG sample are 
reported in Figure 4C, where a 0.25 mg/mL solution was first 
monitored for ~1 hour (open blue and magenta symbols), and 
then thrombin was added (final 0.20 NIHu/mL, 1.120 NIHu/
mg FG) with the resulting solution monitored for ~50 minutes 
(filled blue and magenta symbols). A higher thrombin concentra-
tion than those used for HMW-FG and hp-FG was used to avoid 
long incubation times. At the end of this period, an even more 
concentrated thrombin solution was added (final ~3 NIHu/mL, 
~18 NIHu/mg FG), and the resulting solution was monitored for 
another ~70 minutes (filled gray and orange symbols). Figure 4C 
clearly shows that there was no significant change after throm-
bin treatment in either the normalized SLS intensities, nor in the 
DLS-derived <Rs>z. As for the molecular parameters, the data col-
lected in Table 2 first established that the initial [<M0>w]wa was 
nearly identical to that of HMW-FG. There was, however, a small 
but significantly (P = .001) higher value, 11.27 ± 0.48 nm, of the 
initial DD-FG [<Rs>z]wa compared to HMW-FG. This could be re-
lated to conformational differences between HMW-FG and the 
DD-FG sample, perhaps due to the missing (B)β-chain N-terminal 
residues and their interaction with the αC-regions. Interestingly, 
this difference was practically maintained after each thrombin 
addition (Table 2). Again, the observed decrease of [<Ibs>w]wa,n 
and its derived [<M*>w]wa confirms the abolition of unspecific in-
termolecular interactions after fibrinopeptide removal. The very 
low [<M*>w]wa value obtained after the second thrombin addi-
tion could instead result from an overestimation of final sample 
concentration. If anything, this decrease still reinforces the no-
tion that no polymerization whatsoever took place in the DD-FG 
solution following fibrinopeptides removal by the relatively high 
thrombin concentrations employed.

4  | DISCUSSION

We have reported here the development of a novel recombinant 
fibrinogen, in which both knobs are mutated to prevent fibrin po-
lymerization. The design of this recombinant fibrinogen was inspired 
by fibrinogen Detroit, which bears a mutation in knob A and shows 
reduced polymerization. By analogy, we generated a Double-Detroit 
fibrinogen, with both the A and B knobs mutated. Although other 
naturally occurring mutations leading to unproductive A knobs 
have been reported (e.g., München, AαR19 → D,46 or Aarhus, 
AαR19 → G47), we considered the R → S substitution as the most 

likely to produce a similar effect on the B knob. We have shown that 
these A and B knob mutations when combined completely abolish 
protofibril formation, lateral aggregation, and the formation of a 
polymeric fibrin network. While these experiments were conducted 
at a relatively low DD-FG concentration (~0.2-0.3 mg/mL), the SE-
HPLC test we performed after thrombin treatment of a much more 
concentrated DD-FG sample (~5 mg/mL, at the upper end of the 
physiological range6) still did not produce any evidence of polymer 
formation. At the very least, if putative complexes were dissociating 
by dilution during elution, a substantially altered peak shape should 
have been observed.

Concerning the observed Bβ-chain N-terminal degradation, 
more than ~50% DD-FG molecules in our samples would have at 
least a B-knob available to lead to polymer formation, which was un-
detectable by both the high-sensitivity light scattering experiments 
and the overall turbidity measurements. In addition, the fact that 
all FG preparations showed similar Bβ-chain degradation profiles 
allowed for their direct comparison. As for the AαC region degra-
dation, ~70% of the DD-FG molecules in our samples would bear 
the Aα425-503 self-interacting domain identified within the (A) αC 
regions.14 Importantly, the observed degradation patterns are also 
common in fibrinogen from human plasma.48

These experiments were complemented by nearly intact 
HMW-FG at a substantially higher concentration treated with 
thrombin in the absence or presence of the peptide knobs-mimics 
GPRP-NH2 and GHRP-NH2. Again, we failed to observe any evidence 
of complex formation both by turbidity and SLS/DLS experiments.

Interestingly, in both DD-FG and HMW-FG samples with knobs 
mimics, nonspecific intermolecular FG-FG interactions seemed to 
disappear upon thrombin treatment. Recombinant α251-FG, lacking 
the Aα252-610 C-terminal region, has a similar absence of non-spe-
cific interactions even without fibrinopeptides removal.43 Because at 
pH 7.4 a reduction of net charge from −22 to −12 happens upon fi-
brinopeptides removal, and α251-FG has a net charge of −18, perhaps 
a common charge-related mechanism is responsible for this effect.

A considerable body of evidence exists regarding the proposed 
involvement of the AαC-regions in “helping” fibrin assembly at cer-
tain stages (early reviews49,50). First, electron microscopy studies sug-
gested a “release” mechanism following fibrinopeptide cleavage based 
on differences in the (A)αC-regions location between not-cleaved and 
enzyme-treated fibrinogen.11,25 Additional studies showed concentra-
tion-dependent aggregation of recombinant αC-region fragments,14 
and optical tweezers experiments demonstrated αC-region interac-
tions with the central E-region and, more weakly, between them.51 
More recently, AFM and AFM/turbidity studies further investigated 
the issue.52,53 The consensus picture was that the αC-regions follow-
ing FpB cleavage extend further and help the lateral aggregation of 
fibrils by binding to each other. Furthermore, a very recent molecular 
dynamics simulation54 investigated the role of a particular residue, 
AαM476, located in the β-hairpin present within the only (partially) 
structured domain so far identified in the αC-region.

However, the most sensitive SLS/DLS experiments presented 
here did not show any changes in the aggregation status of DD-FG 
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samples following thrombin treatment. Based on the published 
Kd for the recombinant human fibrinogen αC-region (α392-610), 
12 μmol/L,14 we can calculate (see Appendix S1) that for HMW-FG 
with knobs mimics and for DD-FG, 13% and 3% dimers should have 
respectively formed following prolonged thrombin treatment. To 
ascertain what level of stable complexes our SLS/DLS experiments 
would have been able to reveal, we have performed calculations of 
the predicted weight-average molecular weight <M>w as a function 
of the percentage of hypothetical αC-mediated dimers. As shown in 
Tables S4 and S5, although we should have just barely detected 3% 
dimers in activated DD-FG solutions (P = .03, 95% CI), we should 
have definitively seen the effect of 13% dimers (P < .00001, 95% 
CI) in HMW-FG solutions with peptide knobs mimics. These cal-
culations suggest that interactions between αC-regions in native 
fibrin(ogen), or any other interactions between fibrin molecules, are 
too weak to be able to lead to any assembly following fibrinopep-
tide cleavage in the absence of knob-hole engagement.

A possible explanation that will reconcile our findings with the 
existence of αC-αC interactions, is to reverse the logic behind the 
currently accepted mechanistic view. That is, it could be conceivable 
that it is the lateral thickening of the fibrils that brings the αC-regions 
in sufficiently close proximity to each other and allows their recipro-
cal binding. This will allow immediate reinforcement of the fibers in 
terms of mechanical strength and resistance to proteolysis, both of 
which are later further enhanced by factor XIIIa-mediated crosslink-
ing. As for what regulates the dramatic fiber thickening that follows 
the fibrin assembly lag phase, other mechanisms could be prevalent, 
from the change in the D-regions/coiled-coils relative orientation 
following B-b engagement,28 to the collapse of hyperbranched fi-
brils,43 or their combination. Clearly, more work is necessary to bet-
ter understand this mechanism.

In conclusion, overall, our data strongly support that formation 
of the fibrin clot is critically dependent only on the residues resid-
ing in the A- and B-knobs that are exposed after thrombin cleavage 
of fibrinogen. Although we cannot exclude that undetected issues 
could affect the recombinant fibrinogens behavior, it is the com-
bined results obtained with DD-FG, having similar degradation as 
“normal” plasma fibrinogen, and with HMW-FG plus knobs-mimics, 
with nearly intact Aα- and Bβ-chains, that preclude a relevant role 
for other interactions in fibrin formation. Importantly, the DD-FG 
described in this study provides a novel crucial tool compound with 
which, once degradation issues are resolved, we will be able to study 
monomeric fibrin structural and functional properties, such as the 
proposed αC-regions release and other conformational changes fol-
lowing thrombin treatment, in the absence of polymer formation, and 
in the absence of peptide mimics to bind the polymerization pockets, 
which by themselves may affect the fibrin monomer conformation.
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