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Ketone bodies are crucial intermediate metabolites widely associated with treating
metabolic diseases. Accumulating evidence suggests that ketone bodies may act as
immunoregulators in humans and animals to attenuate pathological inflammation through
multiple strategies. Although the clues are scattered and untrimmed, the elevation of these
ketone bodies in the circulation system and tissues induced by ketogenic diets was
reported to affect the immunological barriers, an important part of innate immunity.
Therefore, beta-hydroxybutyrate, a key ketone body, might also play a vital role in
regulating the barrier immune systems. In this review, we retrospected the endogenous
ketogenesis in animals and the dual roles of ketone bodies as energy carriers and signal
molecules focusing on beta-hydroxybutyrate. In addition, the research regarding the
effects of beta-hydroxybutyrate on the function of the immunological barrier, mainly on the
microbiota, chemical, and physical barriers of the mucosa, were outlined and discussed.
As an inducible endogenous metabolic small molecule, beta-hydroxybutyrate deserves
delicate investigations focusing on its immunometabolic efficacy. Comprehending the
connection between ketone bodies and the barrier immunological function and its
underlining mechanisms may help exploit individualised approaches to treat various
mucosa or skin-related diseases.

Keywords: ketone bodies, beta-hydroxybutyrate, endogenous ketogenesis, dual-functionmolecular, immunoregulation,
immunological barrier, mucosa, innate immune system
INTRODUCTION

As a kind of indispensable spare metabolic fuel source, ketone bodies, including beta-
hydroxybutyrate (BHB), acetone (Ac), and acetoacetate (AcAc), are accepted to play important
roles in all realms of life and attract much attention by many researchers (1–5). Factors such as
fasting, prolonged exercise, and feeding a ketogenic diet will increase the endogenous hepatic
org June 2022 | Volume 13 | Article 8058811
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ketogenesis, which significantly raises the total concentration of
ketone bodies in circulating blood and tissues. These ketone
bodies are thought to participate in the overall energy
metabolism within extrahepatic tissues and replenish energy
(6) (Figure 1). For instance, humans and cows frequently
undergo energy deficiency situations in which they utilize
ketone bodies as the major energy fuel. In healthy humans, the
concentration of total circulating ketone bodies exhibits
circadian oscillations (0.1~0.2 mM), raises to approximately
1mM after 24 hours of fasting or prolonged exercise, and even
up to 20 mM in pathological states like diabetic ketoacidosis (7).
Since ketone bodies possess high permeability to the blood-brain
barrier (BBB), especially during a low glucose accession period,
they become the principal energy source for the brain because
the glucose supplement is inadequate (8, 9). Dairy cows often
suffer from serious starvation because of the massive metabolic
demands to support their lactation needs. It was reported that
approximately 45% of dairy cows had circulating BHB above
thresholds associated with metabolic diseases, such as bovine
subclinical ketosis (over 1.7 mM) (10, 11). However, it’s
important to realize that elevated circulating BHB has complex
physiological consequences and is considered an attractive
strategy to treat multiple diseases by some researchers, which
is why the ways to elevate circulating ketones exogenously have
been developed. For example, oral administration of exogenous
BHB supplements, such as D-b-hydroxybutyrate monoester and
ketone ester (KE), has become an efficient avenue to elevate
circulating BHB concentration (12). Intravenous BHB is also a
new approach to boosting the circulation of BHB because it
obviates the time delay of circulating BHB elevation induced by
oral BHB supplements administration (1, 13).

In recent years, elevated blood ketones concentration by
endogenous and exogenous interventions has been widely
studied in experimental and clinical research, showing great
application potential, including applications in relieving
epilepsy (14), Parkinson’s disease (15, 16), gout flares (17),
respiratory tract influenza virus infections (18), and obesity
(19, 20). Intriguing, almost all these applications are thought to
involve immune systems regulations induced by energy and/or
signal information carried by BHB (21). Recently, Simone and
colleagues directly investigated the yet-unproven assumption
that ketone bodies positively affect human immunity and
found that a ketogenic diet markedly enhanced the capacities
of CD4+, CD8+, and regulatory T cells, augmented Tmem cells
formation, consequently improved overall human T-cell
immunity (22) even though further deeply and specific studies
are warranted. Besides, previous work also showed that
intravenous injection of BHB significantly decreased the
diversity of microbiota community of the yak nasopharynx
mucosa and increased the abundance of some pathogenic
bacteria, implying that ketone bodies might influence the
function of mucosal barriers (13), which also needs to be
further investigated. Although direct evidence is lacking,
mounts of indirect testimonies could be collected to support
the putative influence of ketone bodies on the immune system.
Hence, we outlined and discussed the previous research
Frontiers in Immunology | www.frontiersin.org 2
regarding the effect of ketone bodies on the immunological
barriers in this review.
ENDOGENOUS KETOGENESIS

The ketone bodies are predominant lipid-derived metabolites
produced by the hepatocytes through fatty acid oxidation (FAO)
(23). They are also the key nodes connecting multiple metabolic
pathways, including b-oxidation, the tricarboxylic acid (TCA)
cycle, gluconeogenesis, and the biosynthesis of lipid and
sterols (6, 7, 24). Non-hepatic peripheral tissues cannot directly
utilize the free fatty acids (FFAs) derived from adipose tissues
because of the lack of a key mitochondrial enzyme 3-
hydroxymethylglutaryl-coenzyme A synthase (mHMGCS2),
which is why they are transported by albumin to the liver, one
of the only two tissues abundantly expressing mHMGCS2 (24,
25). In hepatocyte plasma, FFAs are condensed with free
coenzyme A (CoASH) and activated (26). They are transported
into the mitochondrial via carnitine palmitoyltransferase 1
(CPT1), where they are b-oxidated into Ac-CoA and
AcAc-CoA. Then the mHMGCS2 catalyzes fatty acid-b-
oxidation-derived Ac-CoA and AcAc-CoA condense into
hydroxymethylglutaryl (HMG)-CoA, which is cleaved into Ac-
CoA and AcAc later by hydroxymethylglutaryl coenzyme A lyase
(HMGCL) (27). Most of the AcAc is reduced to D-b-
hydroxybutyrate (D-BHB) by phosphatidylcholine-dependent
mitochondrial D-BHB dehydrogenase (BDH1) (28–30). A very
small part of AcAc can also be spontaneously decarboxylated to
volatile acetone and CO2, released into the bloodstream by free
diffusion and easily eliminated through the lung, explaining the
rotten apple smell in the exhaled air from ketosis patients (31).
Hence, BHB is the main ketone body in animal circulating blood
(over 70%). AcAc and BHB cross the hepatocyte mitochondrial
inner membrane through an unknown-yet mechanism and are
then released into circulating blood by transporter solute carrier
family 16 member 6 (SLC16A6) (32), a member of the
monocarboxylate transporters (MCT) protein family (33). As
small polar molecules, ketone bodies are soluble in blood,
indicating that they can be transported to extrahepatic tissues
through the circulation and then imported into extrahepatic cells
by MCT1/2 to wield their energy/signaling carrier roles (34). The
diagrammatic sketch of endogenous ketogenesis is shown
in Figure 1.

Of note, it seems that intestinal epithelial cells also contribute
to the local ketone bodies pool of animals (35, 36). In addition to
the hepatocyte-dependent ketogenesis, as mentioned above,
some intestinal epithelial cells were recently reported to
abundantly express mHMGCS2 (37, 38), indicating its
potential to produce ketone bodies. Indeed, butyrate from
polysaccharides fermentation by some anaerobic bacteria is
easily absorbed by colonocytes or transported to the liver for
ketogenesis (36, 39). This process plays an important role in the
differentiation of colonocytes (40). In ruminants, colonocytes-
derived BHB affects the development of the rumen and is
June 2022 | Volume 13 | Article 805881
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believed to be associated with the responsiveness to weaning and
infections (10, 41, 42).

Fragmentary extrahepatic ketogenesis has been reported in
tumour cells (43), astrocytes of the central nervous system (CNS)
(44), renal cells (45), retinal pigment epithelium (46), or other
cells with an unusual expression of mHMGCS2 (47, 48),
ketogenesis was also observed. However, in the physiological
state, no extrahepatic tissue presents a higher steady-state ketone
body concentration than in the circulation (49), indicating that
the extrahepatic ketogenesis does not influence the circulating
ketone body concentration. Collectively, by controlling the
substrate accession (mainly controlled by the ratio of insulin to
glucagon) and strictly spatiotemporal expression of mHMGCS2
(primarily regulated by the fork-head transcription factor),
endogenous ketogenesis is delicately controlled (50, 51).
Previous work has reviewed the regulations of ketogenesis in
detail (34, 52). For now, two queries are still needed to be studied.
The first is how the AcAc and BHB cross the mitochondrial
adventitia; the other is the physiological action of extrahepatic
ketogenesis in bodies.
ENERGY AND SIGNAL ROLES OF BHB

Ketone bodies play extensive physiological roles in animal tissues
(6). Because the proportion of AcAc and Ac in circulating ketone
bodies is very low and their unstablebilities (6, 49), we will
mainly focus on the physiological role of BHB. BHB was
considered a passive energy carrier in the early stage (52). But,
with the deepening of research in recent years, abundant
evidence authenticated its signalling carrier roles, which affect
various physiological processes by multiple mechanisms.

Alternative Energy Source
The glucose supply in animals does not meet the body’s energy
requirement in many physiological states, such as neonatal
period, fasting, prolonged exercise, pregnancy and lactation,
and adherence to low-carbohydrate diets (53, 54). Under these
conditions, the stored energy in muscle and liver glycogen and
the fatty acids residing in adipose tissues will be mobilized. As the
major form of energy storage, adipose tissues, which contain
more than 80% stored energy of the body, are catabolized into
FFAs through lipolysis and parts of these FFAs are transported to
the liver for ketogenesis (7). The hepatic BHB is then distributed
via blood circulation to metabolically active tissues, including
muscle, brain, and heart, then metabolized into Ac-CoA, and
eventually ATP in the TCA circle (34) (Figure 1). The liver can
produce up to 300 g of ketone bodies per day in human bodies,
which provides 5~20% of the total energy expenditure (34, 55).
In addition, BHB has a higher H: C ratio than pyruvate (2 and
1.3, respectively) and higher reducibility, which means that it
yields more free energy per mole of oxygen to fuel ATP
production (56) and consequently was thought to produce
fewer byproducts of reactive oxygen species (ROS) than
glucose or FFAs (57). However, ROS was also thought to be
more than a byproduct of mitochondrial terminal oxidation and
Frontiers in Immunology | www.frontiersin.org 3
play an important role in sustaining the function of T cells
(58, 59), which might explain why pyruvate instead of BHB was
chosen as the main substrate for mitochondrial terminal
oxidation in normal state. In short, this alternative energy
storage is considered a mechanism developed by animals to
adapt to food availability and nutrient stress (34).

Direct and Indirect Regulators of Various
Physiological Processes
Apart from passive energy carriers, BHB is also involved in
multiple signalling functions at the cell surface and intracellular,
affecting gene expression, lipid and protein metabolism,
neuronal function, and metabolic rate by direct or indirect
mechanisms (Table 1).

BHB was found as a competitive inhibiting catalytic site,
directly inhibiting class I histone deacetylases (HDACs) (83),
which were thought to participate in the regulation of gene
expression by deacetylating lysine residues on histone and
nonhistone proteins, such as NF-kB, TP53, MYC, and
MYOD1 et al., and consequently regulates corresponding gene
expression (84, 85). Li and colleagues found that BHB
upregulated claudin-5 gene expression and ameliorated the
diabetes-associated cardiac endothelial hyperpermeability by
inhibit ing HDAC3 (60) (Figure 2A) . By lysine b-
hydroxybutyrylation, BHB can also directly modify proteins in
multiple model organisms, including yeast, fly, rat, and human
cells, and regulates gene expression (63). Zhang and colleagues
found that the b-hydroxybutyrylation of Lys 9 of histone H3
(H3K9) upregulated the expression of foxo1 and ppargc1a,
contributing to the development of CD8+ Tmem cells (64)
(Figure 2B). BHB is also the ligand of two cell surface G-
protein-coupled receptors, hydroxycarboxylic acid receptor 2
(HCAR2), also called GPR109A (86), and free fatty acid
receptor (FFAR), which both were thought to play important
roles in metabolism and metabolic diseases (66, 87, 88). Chen
and colleagues found that BHB activated the HCAR2 signalling
pathway, which increased M2-related gene transcription in
intrahepatic macrophages and attenuated liver damage induced
by alcohol hepatitis by lowering mitochondrial membrane
potential (68) (Figure 2C). Liu and colleagues found that BHB
activated HCAR2 and inhibited the activation of the NF-kB
signaling pathway, which decreased the release of pro-
inflammatory cytokines in primary rat microglial cells (15, 16)
(Figure 2D). There is also evidence indicating that BHB affects
the K+ channel and modulates potassium flux across the plasma
membrane (71, 72), which probably explains why BHB inhibits
the activation of NOD-like receptor protein 3 (NLRP3)
inflammasome and ameliorates NLRP3 inflammasome-
mediated inflammatory diseases (89) (Figure 2E). Interestingly,
oxidation of BHB was found to close the mitochondrial
permeabil i ty transi t ion pore , which maintains the
electrochemical potential gradient required for ATP
generation of oxidative phosphorylation (56). This closure was
thought to protect neurons against ROS-induced apoptosis
(90, 91) (Figure 2F). Besides, by directly inhibiting the
neuronal vesicular glutamate transporter (VGLUT), BHB
June 2022 | Volume 13 | Article 805881
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reduces excitatory glutamate neurotransmission without
affecting inhibitory gamma-aminobutyric acid (GABA)
neurotransmission (92), which is believed to be involved in the
process of lowering the seizure of epilepsy by utilizing a
ketogenic diet (73). However, some nonnegligible evidence
shows that BHB might increase the release of inflammatory
factors. For instance, Neudorf et al. found that elevated
circulating BHB by oral ketone supplementation significantly
increased the levels of IL-1b and IL-6 but not TNF-a or IL-8,
through a caspase-1 dependent manner in human monocytes
(93). Li et al. also found that, by activating the NF-kB signal
pathway, BHB increased the release of pro-inflammatory factors
(94). These contradictory results indicate that elevated BHB
might have anti-inflammatory or pro-inflammatory effects for
different target cells or in a different trigger method (exogenous
or endogenous). The mechanisms of these contradictory effects
Frontiers in Immunology | www.frontiersin.org 4
should be the most priority in studying BHB on cell physiology,
which is urgent for researchers to solve as soon as possible.

In addition to the above direct modulator roles, BHB also
exerts indirect signalling effects by its metabolic intermediates,
including but not limited to Ac-CoA, succinyl-CoA, and NAD+/
NADH, during its catabolism to ATP (95). The catabolism of
BHB increases the level of intracellular Ac-CoA (Figure 1),
which was thought to post-transcriptionally modulate gene
expression via both enzymatic and nonenzymatic protein
acetylation (96). As the alternative energy source, by increasing
cytoplasmic citrate and inhibiting the activit ies of
phosphofructokinase (PFK) and pyruvate dehydrogenase
(PDH), BHB inhibits glycolysis, the cytoplasmic steps of
glucose utilization in many tissues (Figure 1), such as the
heart, brain, skeletal muscle, and tumours (6, 55, 71, 75),
maintaining blood glucose at a necessary level. Besides, Ac-
FIGURE 1 | Diagrammatic sketch of endogenous generation and consumption of BHB. Any factors that elevate the ratio of glucagon to insulin, such as fasting, prolonged
exercise, insisting on a ketone diet, lactation, diabetes, or alcoholism, can accelerate the process of steatolysis and release lots of FFAs. The released FFAs are transported
to the liver by albumin and are condensed with free CoASH in hepatocyte plasma. Then the condensed FFAs are transported into the mitochondrion by CPT1. The forage
and concentrate englobed by ruminants are fermented into butyrate by rumen microbes and absorbed by colonocytes. The condensed FFAs and butyrate transported into
the mitochondrion of hepatocytes or colonocytes are b-oxidated into Ac-CoA, two of which are further condensed into an AcAc-CoA, releasing a CoASH. The Ac-CoA and
AcAc-CoA are then catalyzed to condense into HMG-CoA by mHMGCS2, encoded by a strictly spatiotemporally controlled gene (mHMGCS2). The HMG-CoA is cleaved
into Ac-CoA and AcAc by HMGCL. The AcAc is reduced into D-BHB by BDH1 (consuming NADH and releasing NAD+) or spontaneously decarboxylated to volatile
acetone and CO2, released into the bloodstream by free diffusion and easily eliminated through the alveolar epithelial cells in the lung. Ac and AcAc are released into
circulating blood. The D-BHB is transported across the mitochondrial intima through a yet-unknown mechanism and across the mitochondrial adventitia by SLC16A6 and
released into the circulating blood. AcAc and BHB are absorbed by extrahepatic cells. BHB is oxidated to AcAc by BDH1 (consuming NAD+ and releasing NADH, a
reversible reaction that also occurs in the generation process of BHB), and AcAc is activated into AcAc-CoA by SCOT1 (succinyl-CoA donates the CoA), and then split into
Ac-CoA by mThiolase, consuming CoASH. The glucose derived from the glycogen is transported to and absorbed into the extrahepatic cells by GLUT. In the cytoplasm,
the glucose is oxidated into pyruvate by glycolysis, inhibited by the BHB-derived Ac-CoA. Pyruvate is transported into the mitochondrion and then dehydrogenated to Ac-
CoA by PDH, inhibited by the BHB-derived Ac-CoA. The BHB and pyruvate-derived Ac-CoA enter the TCA circle or act as signalling molecules. CoASH, coenzyme A;
FFAs, free fatty acids; CPT1, carnitine palmitoyltransferase 1; FAO, fatty acids b-oxidation; Ac-CoA, acetyl-CoA; AcAc-CoA, acetoacetyl-CoA; mHMGCS2, mitochondrial 3-
hydroxymethylglutaryl-coenzyme A synthase; HMG-CoA, hydroxymethylglutaryl-CoA; HMGCL, hydroxymethylglutaryl coenzyme A lyase; Ac, acetone; AcAc, acetoacetate;
BHB, b-hydroxybutyrate; NADH/NAD+, nicotinamide adenine dinucleotide; SLC16A6, solute carrier family 16 member 6; MCT, monocarboxylate transporters; OXCT1, 3-
oxoacid-CoA transferase 1; GLU, glucose; GLUT, glucose transporter; MPC, membrane permeation channel; CS, Citrate Synthase; TCA, tricarboxylic acid; ATP, adenosine
triphosphate.
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CoA-derived acetylation has extremely extensive influences on
multiple cellular compartments, particularly mitochondria and
nucleus, which are very sensitive to acetyl-CoA concentration
and whose gene expression is readily affected (85). The
catabolism of BHB also consumes succinyl-CoA to donate the
CoA to AcAc (97) (Figure 1). Like acetylation, lysine
succinylation also plays an important role in the mitochondria
Frontiers in Immunology | www.frontiersin.org 5
of diverse organisms (76, 98). Its consumption affects the balance
of lysine succinylation, which affects the expression of HMGCS2
and other genes (76, 99). NADH utilization during BHB
metabolism is different from glucose metabolism. Considering
that the cytoplasmic and mitochondrial NAD+: NADH
equilibrium is thought to be crucial in metabolic disease and
ageing (78), this alteration might also explain the anti-ageing
effects of the ketone diet. Moreover, BHB also serves as a
substrate for synthesizing glutamine and other amino acids in
astrocytes (100), which further alters the biosynthesis of the
inhibitory neurotransmitter GABA (101). On the whole, the
signal molecule actions of BHB involve multiple molecules and
pathways, which need to be further deeply investigated.

Referencing the term ‘RNA World’ proposed by Ádám et al.
(102), we propose an analogical concept: ‘BHB World’. BHB is a
more effective fuel molecular with fewer byproducts and a more
regulative intermediate metabolite that regulates multiple
metabolisms processes (52) (Figures 1, 2 and Table 1). In
adipose tissues, which are crucial for animals’ survival, FFAs,
the precursor of BHB, can be steadily and massively stored and
quickly utilized. BHB also connects and regulates multiple
physiological processes like a bridge (95). These functions are
similar to the performance of RNA as genetic information
storage and functional enzymes. Considering these seemingly
coincidental similarities, we can speculate that BHB might also
act as the main circulation fuel molecular rather than glucose in
FIGURE 2 | The physiological processes that BHB direct regulates. (A) BHB across the plasma membrane enters the nucleus and inhibits HDACs, which participate in
the deacetylation of histone and nonhistone proteins, resulting in the increased expression of the claudin-5 gene in the cardiovascular endothelial cells. (B) BHB that
enters the nucleus was activated into acetylated BHB and then b-hydroxybutyrates histone and nonhistone proteins, resulting in the increased expression of Foxo1 and
Ppargc1a gene in the CD8+ T cells. (C) BHB holds back the K+ channel in the plasma membrane, which maintains the cytoplasmic K+ concentration and inhibits the
activation of the NLRP3 inflammasome. BHB activates HCAR2, a seven-transmembrane G-protein coupled receptor of the Gi family, and inhibits the activity of the AC/
cAMP/PKA signaling pathway. (D) the inhibition of the AC/cAMP/PKA signaling pathway decreases the mitochondrial membrane potential and promotes the transcription
of M2-related genes in intrahepatic macrophages. (E) the inhibition of the AC/cAMP/PKA signaling pathway also inhibits the activation of NF-kB, consequently inhibiting
the expression of pro-inflammatory genes in primary rat microglial cells. (F) the oxidation of BHB in the mitochondrion closes the channel proteins in the mitochondrial
intima, which inhibits the outflow of ROS. BHB, b-hydroxybutyrate; BHBtion, b-hydroxybutyration; MCT, monocarboxylate transporter; HCAR2, hydroxycarboxylic acid
receptor 2; HDACs, histone deacetylases; Ac, acetyl group; His/non-His, histone/nonhistone proteins; AC, adenylate cyclase; cAMP, cyclic adenosine monophosphate;
PKA, protein kinase A; NF-kB, nuclear factor kappa-B; Ac-CoA, acetyl coenzyme A; TCA, tricarboxylic acid cycle; ROS, reactive oxygen species; ATP, adenosine
triphosphate; ATPase, ATP synthase.
TABLE 1 | The roles of BHB as signal carriers.

type mechanism physiological
processes

references

direct HDACs inhibition gene expression (60–62)
BHB-ylation gene expression (63–65)
FFAR inhibition sympathetic system (66, 67)
HCAR2 activation lipid metabolism (68–70)
plasma member K+ channel
expansion

NLRP3-induced
inflammation

(71, 72)

VGLUT inhibition epilepsy (73, 74)
indirect feedback inhibition of Ac-CoA glucose metabolism (52, 75)

inhibition of protein
succinylation

lipid metabolism (76, 77)

NAD+ sparing sirtuin activity (78–80)
GABA synthesis epilepsy (81, 82)
HDACs, histone deacetylases; BHB-ylation, b-hydroxybutyrylation; FFAR3, free fatty acid
receptor 3; HCAR2, hydroxycarboxylic acid receptor 2; NLRP3, NOD-like receptor protein
3; VGLUT, vesicular glutamate transporter; Ac-CoA, acetyl-CoA; NAD+, nicotinamide
adenine dinucleotide; GABA, gamma-aminobutyric acid.
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the early stage of the life evolution process. However, this theory
has never been proposed before and needs to be discussed more.
BARRIER IMMUNOREGULATORY ROLE
OF BHB

The energetic and signalling functions of BHB suggest its
extensive physiological activities, such as an immunoregulator.
Indeed, accumulating evidence corroborates the important role
of BHB on immunoregulation by different mechanisms,
including nutrition competition, metabolic reprogramming,
immune microenvironment modification, and gene expression
regulation, in various tissues, such as peripheral blood, brain,
respiratory tract, and digestion tract, which have been well-
summarized before (1, 3, 21, 103). However, there are mounts
of reports regarding the effects of BHB on the function of the
immunological barrier, which has never been reported before in
literature. Hence, in this section of the review, we will outline and
discuss the regulatory role of BHB on the immunological barrier,
mainly mucosa.

Over 400 m2 of mucosa and skin in human bodies are
constantly exposed to the environment, harbouring massive
microorganisms since birth, and over 70% of immune cells
resident in the mucosal system (104). These barriers maintain
the equilibrium between the body and the external environment
by constructing microbial, chemical, and physical protections
(105) (Figure 3). Indubitably, these barrier immune systems are
the first defence line against infections.

BHB Affects Microbiota Barrier
The mucosa and skin are colonized by massive commensal,
opportunistic pathogenic, and pathogenic microorganisms,
covering the epithelial cells and forming a layer of microbiota
barrier (106). The commensal microflora competes for ecological
niches and nutritional resources with pathogenic microflora,
which is thought to inhibit the invasion and proliferation of
the latter, indirectly protecting the tissues from infection (107).
Importantly, the competition among these microorganisms is
homeostatic, which was recently confirmed to be reproducibly
influenced by BHB (Figure 3).

The mucosal microbiota of the gut is considered an important
regulator of the immune system (108, 109). Paoli and colleagues
systematically reviewed the relationship between ketogenic diets
(KD) and the gut microbiome, showing common consequences:
decreasing the a diversity and richness of the gut microflora
community and decreasing some specific bacteria (110),
indicating the gut microflora regulatory role of BHB. Newell
and colleagues found that KD significantly decreased the gut
microbiota a diversity of the B6 murine model of autism
spectrum disorder, characteristically reducing the relative
abundance of Bifidobacterium and Lactobacillus genera (111).
Then Ang and colleagues observed very similar gut microbiome
alterations in both human and B6 mice (35). To explore the
underlying mechanism, they also conducted both in vivo and in
vitro experiments, showing that BHB directly inhibited the
Frontiers in Immunology | www.frontiersin.org 6
proliferation of the Bifidobacterium and most gut-resident
anaerobes (35). This direct bacteriostasis of BHB might explain
the KD-induced gut microbiota alteration, at least partly.
Considering that Bifidobacterium is proven to induce the
proliferation of pro-inflammatory Th17 cells in the intestinal of
mice and humans (35, 112), it’s believed that BHBmight regulate
the gut microflora through some indirect mechanisms, which
needs to be verified in further investigations. Even though there
seems to be a consensus that BHB has an important influence on
the gut microbiome, very limited research directly studies its
effects on the gut microflora, and its mechanism is not well
characterized either.

The mucosal microbiota in the respiratory tract is also
considered an important regulator of the immune system (107,
109). In previous work, by dietary restriction and intravenous
injection of exogenous BHB, it was found that elevated
circulating BHB significantly increased the a diversity and the
richness of the yak nasopharyngeal mucosal microbiota
community, contrary to the gut, with an unexpected increase
of many bovine respiratory disease-related bacteria, indicating
the increased risk of bovine respiratory diseases (13). The
prominently changed genus in the experiment was also
obviously distinct from those in the gut, suggesting that BHB
has a different influence on the digestive and respiratory tract
microflora community. This work also implied that
hyperketonemia rather than dietary changes were more
responsible for the nasopharyngeal mucosal microbiome
alteration (13). It must be highlighted that yak is not a
canonical model organism, and whether a similar BHB-
induced nasopharynx-colonized microorganisms alteration will
occur in mice and humans must be verified by further
experiments. Based on these results, it can be analogously
assumed that BHB also affected the microbiota of the lower
respiratory tract. However, apart from this report, few references
about the effect of BHB or KD on the respiratory tract can
be found.

There are a few essentials to be noticed. Firstly, the short-
chain fatty acids (SCFAs) represented by butyrate possess a
similar bacteriostatic effect to BHB (108, 113), and they are
also mucosal immunoregulatory molecules (113). Ang et al.
observed no significant alteration in the level of SCFAs,
including butyrate, in their experiment, indicating SCFAs were
not involved in the gut microbiota growth inhibition of KD even
though butyrate inhibits the growth of Bifidobacterium (35).
However, more evidence is needed to distinguish the
immunoregulatory effects of SCFAs and BHB. The second
point is the extremely complex interreactions among these
barrier-colonized microorganisms, and this equilibrium will be
broken even though a slight alteration in a single kind of
microorganism (106). This complexity makes it more difficult
to identify the specific effects of BHB on the microbial
community. Thirdly, the altered microorganism also affects the
immune system where it colonizes. For instance, Tagliabue et al.
found that three months of KD significantly decreased the
abundance of Desulfovibrio spp in patients with Glucose
Transporter 1 Deficiency Syndrome. Desulfovibrio spp
June 2022 | Volume 13 | Article 805881
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participates in regulating mucus layer inflammatory status,
indicating BHB could indirectly affect the immune system by
exerting influence on the microflora (114). Finally, the
microbiota in the gut and respiratory tract mucosa is
important for inducing immune tolerance (109). It was noticed
that fasting inhibited the induction of oral tolerance (115).
However, whether the inhibition of microflora induced by
BHB affects the induction of immune tolerance is uncertain
and warrants attention. In short, according to the different effects
of BHB on the intestinal and the nasopharynx, it’s reasonable to
suspect that BHB exerts its barrier microbiota regulatory role in
Frontiers in Immunology | www.frontiersin.org 7
an unknown tissue-specific way via different mechanisms which
warrant further investigation.

BHB Affects Chemical Barriers
The chemical components, such as mucins secreted by goblet
cells, antibacterial peptides secreted by epithelial types of cells,
and secretory immunoglobulin A (sIgA) secreted by plasma cells
et al., are released into the mucosal secretions and form a dense
viscoelastic barrier, covering the mucosal epithelial cells and
resisting the adhesion and invasion of microorganisms
(116, 117), like a city moat (Figure 3). Referencing previous
FIGURE 3 | The mucosal immunity of the intestine and the possible effects of BHB on intestinal mucosal immunity. BRC and circulating immune cells from bone
marrow circulate in the blood and lymphatic system and then return to the bone marrow. BHB was found to accelerate the homing process of circulating naïve B
cells, decrease the expression of CXCL13 (a chemokine that recruits naïve B cells) in the intestinal vascular endothelial cells and stromal cells, and increase the
expression of adhesion proteins between vascular endothelial cells, indicating BHB might reduce the chance of circulating immune cells infiltrating into the intestinal
mucosa. The germinal centre in the intestine tissue contains multiple kinds of follicular lymphocytes, which are released into the stromal participating in the immune
defence process. BHB was found to inhibit the proliferation and differentiation of primary follicular lymphocytes, indicating BHB might reduce the number of follicular
lymphocytes in the stromal. There are massive microbes on the surface of the small intestinal mucosa, which prevents the colonization of pathogens (Microbiota
Barrier). BHB was found to inhibit the growth of Bifidobacterium and Lactobacillus in the intestine and alter the microflora community of the nasopharynx, indicating
BHB affects the microbiota barrier of mucosal. Covering the surface of mucosal epithelium, a layer of mucus consists of kinds of chemical components (Chemical
Barrier), including mucins secreted by goblet cells, antibacterial peptides secreted by epithelial types of cells, and sIgA secreted by plasma cells, et al. BHB was
found to affect the thickness and viscosity of the mucosal layer, indicating BHB might affect the secretory function of these secretory cells. The mucosal epithelial
cells are woven into a dense network by tight junctions and intermediate junctions, including occlaudin, claudin, E-cadherin, Ep-CAM, et al. This network prevents
pathogens from invading the mucosal tissue and resulting in infection (Physical Barrier). BHB affects the expression of adhesion proteins between vascular
endothelial cells, indicating that it might also affect the physical barrier of mucosal epithelium. Macrophages, DCs and other immune cells play important roles in
recognizing and eliminating the invaded pathogens. BHB was found to decrease the pro-inflammatory activities of granulocytes and macrophages, indicating that
BHB might also affect the activities of immune cells in the infected mucosal tissues. BRC, blood-red cell; BHB, b-hydroxybutyrate; sIgA, secretory immunoglobulin;
E-cadherin A, epithelial cadherin; Ep-CAM, epithelial cell adhesion molecule; DCs, dendritic cells.
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works (118, 119), we named these barriers chemical barriers
instead of mucus barriers because mucus barriers seem to be
used to describe the mucosa only (does not include the skin).
Prior works suggested that the richness decrease induced by
carbohydrate restriction decreased the gut mucosal mucus layer
(120, 121). Besides, Nagai and colleagues found that fasting
significantly reduced the production of IgG, IgM, and antigen-
specific sIgA (115). These works implied that BHB might also
affect the generation of mucus. However, Ang and colleagues
noticed KD neither reduced the expression of the muc2 gene nor
the thickness of the mucus layer in gut mucosal (35). Intriguing,
two randomized controlled trials also investigated the effect of
KE oral administration on athletes’ immune response to exercise,
focusing on sIgA secretion, indicating that elevated blood
ketones slightly increased sIgA level in saliva (122, 123). Given
that fasting and KD are usually accompanied by elevated blood
BHB, these heterogeneous results implied that BHB might have
complicated effects on the mucosal mucus layer. It’s proposed
that the decreased consumption of mucins by microbiota, the
altered quantities and activities of immune cells, and the
modified secretion and transportation abilities of plasma cells
and epithelial cells accounted for these complicated effects on the
mucus layer (13, 115, 120). However, these conjectures all need
to be further investigated.

BHB Affects Physical Barriers
The tissue barrier function of the mucosa is provided by
the tightly interlaced cell-to-cell network of epithelial cells and
intraepithelial lymphocytes (124) and the microvilli of epithelial
cells (125). There are tight junctions and intermediate junctions
among the epithelial cells and intraepithelial lymphocytes, such
as occlaudin, claudin, epithelial cadherin (E-cadherin), and
epithelial cell adhesion molecule (Ep-CAM), which weave
these cells into a dense network, impeding microbiota invading
epithelial tissues and wielding innate immunity function (125,
126) (Figure 3). Mounts of studies indicated that prolonged
aerobic exercise increased intestinal permeability (127–129).
Although no evidence indicated that ketone bodies were
involved in the exercise-induced augmented intestinal
permeability, it cannot be excluded that BHB contributed to
the permeability augmentation. Serino and colleagues found that
a high-fat diet-induced hyperketonemia increased the
permeability of mice ’s gut and resulted in a higher
concentration of endotoxin in the blood (130). We hypothesize
that the increased intestinal permeability allows more nutrient
substances to be transported into the vein by a paracellular
pathway to replenish the prolonged exercise-induced over energy
consumption. In this process, it is inevitable that some antigens
(bacteria) also pass through the epithelial barrier, which results
in endotoxaemia. However, ketone bodies were also found to
upregulate the expression of endothelial connexin 43 (Cx43) gap
junctions of bovine vascular endothelium (131), which decreased
the permeability. This contradiction could be explained by the
different functions of these two types of mucosal. The intestinal
epithelium absorbs nutrients from the outsides while the vascular
provides tissues with nutrients. These contradictive responses to
elevated BHB concentration have the same aim: maintaining a
Frontiers in Immunology | www.frontiersin.org 8
necessary blood glucose concentration. Anyway, these clues
indicated that BHB affected the junctions among mucosal
tissue cells. Although the direct evidence is lacking, it is an
attractive research direction to investigate the different influences
of BHB on the permeability between the digestive tract and
respiratory tract mucosal epithelium, even between different
sections. Furthermore, the mucociliary clearance produced by
epithelial microvilli also wields an important role in the
resistance against microbiota adhesion and invasion (125).
However, there is no study regarding the effects of ketone
bodies on epithelial microvilli function, which is worthy
of investigating.

Apart from the mucosa, some other tissues also act as
barriers, including the skin, BBB, blood-embryo barrier, blood-
testis barrier, blood-ocular barrier, and vascular barrier
endothelium, et al. Skin, a specific mucosal barrier, was
reported to be influenced by KD, especially in the artificially
induced murine psoriasis model (132, 133). A high-fat diet
significantly reduced the expression levels of BBB transporters
and tight-junction proteins (claudin-5, occludin) in mouse brain
capillaries (134), which supported our previously mentioned
explanation. Another study revealed that elevated BHB
concentration also increased the retinal outer nuclear layer
Cx43 expressions, which improved retinal permeability and
homeostasis (69). The researches regarding the effect of ketone
bodies on these specific barriers are quite limited and warrant
more attention, especially on the blood-embryo barrier and
vascular endothelium.

It’s important to realize that these three levels of barriers
discussed above are just a part of the mucosal immune system,
which also contains the innate immune cells in the stroma from
the circulating blood or the germinal centre (Figure 3). Since
these innate immune cells are also distributed in other non-
mucosal tissues (22, 135), the effects of BHB on these cells were
not discussed in this review. Collectively, BHB is an important
regulator for the barrier immune system, but these mechanisms
are still confusing.

Even though many eyes focused on the immunomodulatory
roles of BHB and accumulating literature was published, this
knowledge gap is still huge and needs to be deeply investigated.
For instance, are there any differences between the effects of
endogenous and exogenous BHB? Is it feasible to apply the
immunomodulatory effect of BHB to the treatment of respiratory
inflammation? Is the role of BHH consistent in the respiratory
and digestive tract? All these queries need to be answered by the
efforts of a large number of researchers.
CONCLUDING REMARKS

BHB is an endogenous natural small molecule that presents in
almost all l ife realms, connecting glycometabolism,
lipometabolism and proteinmetabolism. During its metabolism
as energy molecular, NAD+ is oxidated to NADH, the succinyl-
CoA is consumed, and lots of Ac-CoA is generated, inhibiting
glycolysis and affecting the metabolic environment of
extrahepatic cells. Together with its protein and gene
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modification function, BHB can alter the metabolism, gene
expression, and post-transcriptional modification of cells,
especially the immune cells. Because BHB is a signal of energy
deficiency and a more reductive substrate molecule, elevated
blood BHB concentration will guide the body to shut
unnecessary physiological processes down, including altering
the permeabilities of many endothelium and epithelium to
support pivotal processes and reducing the activities of some
high energy-consuming cells (plasma cells and goblet cells).
These alterations consequently affect the mucosal immune
systems, showing great potential in treating mucosal and skin-
related diseases. However, the detailed mechanisms and
progresses behind these alterations are not fully understood
and deserve further investigation.
Frontiers in Immunology | www.frontiersin.org 9
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