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ABSTRACT

Whole-genome sequencing combined with transcrip-
tomics can reveal impactful non-coding single nu-
cleotide variants (SNVs) in cancer. Here, we de-
veloped an integrative analytical approach that, as
a first step, identifies genes altered in expression
or DNA methylation in association with nearby so-
matic SNVs, in contrast to alternative approaches
that first identify mutational hotspots. Using ge-
nomic datasets from the Pan-Cancer Analysis of
Whole Genomes (PCAWG) consortium and the Chil-
dren’s Brain Tumor Tissue Consortium (CBTTC),
we identified hundreds of genes and associated
CpG islands for which the nearby presence of
a non-coding somatic SNV recurrently associated
with altered expression or DNA methylation, respec-
tively. Genomic regions upstream or downstream
of genes, gene introns and gene untranslated re-
gions were all involved. The PCAWG adult cancer
cohort yielded different significant SNV-expression
associations from the CBTTC pediatric brain tu-
mor cohort. The SNV-expression associations in-
volved a wide range of cancer types and histolo-
gies, as well as potential gain or loss of tran-
scription factor binding sites. Notable genes with
SNV-associated increased expression include TERT,
COPS3, POLE2 and HDAC2––involving multiple can-
cer types––MYC, BCL2, PIM1 and IGLL5––involving
lymphomas––and CYHR1––involving pediatric low-
grade gliomas. Non-coding somatic SNVs show a

major role in shaping the cancer transcriptome, not
limited to mutational hotspots.

INTRODUCTION

The cancer genome is characterized by widespread somatic
genomic alterations, which may include single nucleotide
variants (SNVs), genomic rearrangements or structural
variants (SVs), small insertions or deletions (indels) and
copy number alterations (CNAs). Only a small subset of
somatic mutations detected for a given cancer genome is
thought to play a critical role in the development or progres-
sion of the disease, with such mutations termed as ‘drivers’
as opposed to the presumably non-essential ‘passenger’ mu-
tations (1). At the same time, driver discovery is not yet
complete (1,2), and recent findings of medium-impact pu-
tative passengers may challenge the driver–passenger di-
chotomy (3). Much of the early efforts of major can-
cer genomics initiatives, including The Cancer Genome
Atlas (TCGA) and the International Cancer Genomics
Consortium (ICGC), focused primarily on somatic mu-
tations occurring within the ∼1% of the genome that is
protein-coding. As opposed to whole-exome sequencing,
whole-genome sequencing (WGS) would involve the en-
tire genome, including both coding and non-coding alter-
ations. Recent efforts by the Pan-Cancer Analysis of Whole
Genomes (PCAWG) consortium represented an important
milestone in providing curated TCGA and ICGC WGS
data on over 2500 cancers and their matching normal tis-
sues across 38 tumor types (1), with a substantial fraction
of these cases also having RNA sequencing or DNA methy-
lation data. Independent efforts by the Children’s Brain Tu-
mor Tissue Consortium (CBTTC) (4) provide combined
WGS and RNA sequencing data on pediatric brain tumors,
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where PCAWG expression data did not include any pedi-
atric brain tumor cases.

Much work remains to distinguish impactful from not
impactful mutations in cancer, including somatic non-
coding SNVs. Perhaps the most well-known example of so-
matic non-coding SNVs having functional impact involves
TERT, for which two highly recurrent promoter mutations
create ETS family binding sites resulting in TERT upregu-
lation (5,6). In general, however, somatic non-coding vari-
ants tend not to be recurrent among patients, which makes
the characterization of their functional impact particularly
challenging (7). Analytical methods to define impactful
non-coding SNVs include identifying regions that show
clustering of SNVs in the genome across samples, or look-
ing within pre-defined genomic regions of interest (known
regulatory regions in particular) (2,7). Also, the integration
of WGS with transcriptome data can reveal impactful non-
coding cancer-associated alterations that DNA-only ap-
proaches might have missed (8). Using the above TERT pro-
moter SNVs as a template, pre-defined non-coding regions
in proximity to each gene, e.g. 1–2 kb upstream, could be
systematically examined for the presence of somatic SNVs,
and whether these would be associated with altered gene ex-
pression. We have previously used a similar approach to as-
sociate SV breakpoints with altered expression (9–11). This
approach could identify SNV-expression associations even
in cases where the SNVs are not recurrent (so long as they
fall within the given region). Furthermore, the approach
would not be limited to our current understanding of the
functional or regulatory role of the non-coding genome,
which remains incomplete.

In this present study, we set out to survey genes with their
expression potentially impacted by nearby non-coding so-
matic SNVs. Our study took advantage of the unique re-
sources and opportunities offered by the PCAWG consor-
tium and the CBTTC––which respectively include cancer
profiles of gene expression for over 1200 tumors and over
850 tumors, with corresponding SNV data by WGS. The
PCAWG and CBTTC cohorts represent adult cancers and
pediatric brain tumors, respectively, where the two would
represent different biology and genomics. We utilized an an-
alytical approach integrating RNA with SNV data, which
approach we adapted from another that we previously used
to identify associations of SV breakpoints with gene ex-
pression (9–11). Our approach as a first step identifies gene
altered in expression in association with nearby SNVs, re-
gardless of whether the SNVs would cluster in a tight pat-
tern. Our approach would be in contrast to analysis ap-
proaches that first identify mutational hotspots and then
determine which of these may involve the altered expression
of nearby genes (2). Also, we adapted our SNV-expression
integration approaches to identifying analogous SNV asso-
ciations with CpG Island (CGI) methylation, based on the
subset of cases in the PCAWG cohort with DNA methyla-
tion array data. We found widespread associations of so-
matic non-coding SNVs with altered gene expression in
both adult and pediatric cancers, along with SNV asso-
ciations with altered DNA methylation. Our results in-
clude genes not identified in other recent WGS cancer
studies.

MATERIALS AND METHODS

Patient cohorts

The results here are based upon publicly available data
generated by both the PCAWG project (involving data
from both TCGA Research Network and the ICGC) and
the CBTTC. Tumor molecular profiling data were gener-
ated through informed consent as part of the efforts of
each respective project and analyzed here per the speci-
fied data use guidelines and restrictions. For the PCAWG
cohort, combined WGS analysis and RNA-sequencing
(RNA-seq) analysis was carried out for 1220 cases in to-
tal (9), with WGS coverage at ∼30–60× for tumors. Cases
profiled spanned a range of cancer types (bladder, sar-
coma, breast, liver-biliary, cervix, leukemia, colorectal, lym-
phoma, prostate, eosophagus, stomach, central nervous sys-
tem or ‘cns’, head/neck, kidney, lung, skin, ovary, pancreas,
thyroid and uterus), as detailed in Supplementary Data S1.
Of the 1220 PCAWG patients, all but 24 were over the age
of 17 (8,9). Of the 1220 cases with WGS and RNA-seq, 568
cases were from TCGA that were also uniformly profiled for
DNA methylation using Illumina 450K array platform.

For the CBTTC cohort, combined WGS analysis (at 60×
coverage) and RNA-seq analysis (at 30× coverage) were
carried out for 854 pediatric brain tumor samples, repre-
senting 759 patients. Tumor samples in CBTTC spanned at
least 33 different tumor types: APTAD, Adenoma; ATRT,
Atypical Teratoid Rhabdoid Tumor; CHDM, Chordoma;
CNC, Neurocytoma; CPC, Choroid plexus carcinoma;
CPP, Choroid plexus papilloma; CRANIO, Craniopharyn-
gioma; DIPG, Diffuse intrinsic pontine glioma; DNT,
Dysembryoplastic neuroepithelial tumor (DNET); EPM,
Subependymal Giant Cell Astrocytoma (SEGA); EPMT,
Ependymoma; ES, Ewing’s Sarcoma; GMN, Germinoma;
GNBL, Ganglioneuroblastoma; GNG, Ganglioglioma;
GNOS, Glial-neuronal tumor not otherwise specified
(NOS); HMBL, Hemangioblastoma; LCH, Langerhans
cell histiocytosis; MBL, Medulloblastoma; MNG, Menin-
gioma; MPNST, Malignant peripheral nerve sheath tumor;
NBL, Neuroblastoma; NFIB, Neurofibroma/Plexiform;
ODG, Oligodendroglioma; PBL, Pineoblastoma; PC-
NSL, Primary CNS lymphoma; PHGG, High-grade
glioma/astrocytoma (WHO grade III/IV); PLGG, Low-
grade glioma/astrocytoma (WHO grade I/II); PNET,
Supratentorial or Spinal cord primitive neuroectodermal;
RMS, Rhabdomyosarcoma; SARCNOS, Sarcoma; SCHW,
Schwannoma; TT, Teratoma; and Other/unspecified. A
subset of CBTTC samples represented multiple samples
taken from the same patient, involving 170 tumor samples
from 75 patients in total. As indicated in Supplementary
Data S1, multiple samples from the same patient may en-
tail samples from multiple initial tumors, or samples taken
at different times, e.g. samples taken initially from the ini-
tial tumor and later from a progressive or recurrent tumor.
As different tumors from the same patient often demon-
strate extensive molecular heterogeneity with respect to
each other (12), each sample was analyzed independently in
the integrative analyses. The situation with CBTTC is differ-
ent from that involving studies of intratumoral heterogene-
ity (13), as in CBTTC multiple independent tumors from
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the same patient are profiled, rather than multiple samples
taken from the same initial tumor.

Somatic single nucleotide variant (SNV) data

For the PCAWG cohort, we used the consensus set of so-
matic SNV calls as provided by the PCAWG consortium,
which applied multiple analytical pipelines applied to SNV
calling, with the resulting variants then merged and sub-
jected to a set of filters and other QC steps as described pre-
viously (1). PCAWG genomic data were aligned using hg19
genome coordinates. For the CBTTC cohort, CBTTC data
included SNV calls by either Strelka2 v2.9.3 or Mutect2
v4.1.10 algorithms. CBTTC genomic data were aligned us-
ing hg38 genome coordinates. We used only variant calls
that passed quality filters in the analyses. We considered
variant calls made by either Strelka2 or Mutect2, as true
SNV calls missed by one variant caller would potentially
be supplemented by the inclusion of results from the other
caller. Besides, the data integration represented another bar-
rier for false positive SNV calls to contribute to the SNV–
gene associations. The integration of results between or-
thogonal data platforms, namely WGS and RNA-seq, was
a key aspect of our study, as associations identified must be
significant enough to rise above any noise involving the re-
spective data platforms.

Gene expression data

PCAWG expression calls by RNA-seq were available for
1220 cases (including 442 ICGC cases and 778 TCGA
cases), which data involved alignments by both STAR (ver-
sion 2.4.0i,2-pass) and TopHat2 (version 2.0.12) being used
to generate a combined set of calls, which efforts substan-
tially reduced potential batch effects due to the use of dif-
ferent computational pipelines between ICGC and TCGA
projects (14). For TERT gene in particular, we used the
TopHat2 expression calls. TERT represented a positive con-
trol (5), but while the combined STAR/TopHat2 expres-
sion values were significantly associated with TERT muta-
tion by rank-based statistics (9), these values did not lend
themselves to linear modeling for some reason, while the
TopHat2 expression calls did. We obtained processed RNA-
seq data for 854 CBTTC samples from the PedCBioPor-
tal (https://pedcbioportal.org/), which data we quantile nor-
malized before the analyses.

Copy number alteration (CNA) data

Gene-level copy number calls were based on WGS analy-
sis results, as provided by PCAWG and CBTTC. PCAWG
consortium previously generated gene-level copy calls using
a consensus of multiple copy callers (15). For the PCAWG
cohort, we used copy number calls of five or higher to
approximate gene amplification. For the CBTTC cohort,
we obtained gene-level CNA calls from the PedCBioPortal
(https://pedcbioportal.org/datasets).

We inferred low-level gene gain (approximating three–
four copies), high-level gene amplification (approximating
five or more copies), low-level copy loss (approximating het-
erozygous loss), or deep copy loss (approximating gene dele-
tion) using the ‘thresholded’ calls (with values of +1, +2,

−1, or −2, respectively) as made available by PedCBioPor-
tal.

Integrative analyses between SNVs and gene expression

To examine associations between gene expression and
nearby SNVs, we adapted an analytical approach previ-
ously demonstrated for finding associations between gene
expression and nearby SV breakpoints (9–11). For each of
a set of specified genomic region windows in relation to
genes, we constructed a somatic SNV matrix by annotat-
ing for every sample the presence or absence (using ‘1’ or
‘0’, respectively) of at least one SNV within the given re-
gion. For the set of SNVs associated with a given gene
within a specified region in relation to the gene (20 kb up-
stream, 2 kb upstream, 1 kb upstream, gene intron, 1 kb
downstream, 3′ UTR and 5′ UTR, with the 20/2/1 kb up-
stream regions overlapping each other), we assessed the cor-
relation between expression of the gene and the presence
of at least one SNV using a linear regression model (with
log-transformed expression values). Linear regression mod-
els corrected for specific covariates including sample cancer
type (as denoted by TCGA/ICGC project for PCAWG and
by the above pediatric brain tumor histological types for
CBTTC), gender, total mutation burden (i.e. log2 of the to-
tal number of SNVs for each tumor profiles, using Mutect2
calls for CBTTC) and gene-level SV breakpoint pattern.
For somatic SV breakpoint pattern, we had previously (10)
tabulated the relative distances of the somatic SV break-
point closest to the start of each gene, with a gene X sample
relative breakpoint distance matrix being assembled (with
maximum distance of 1 Mb imputed if no SV breakpoints
found). For these linear regression models, we considered
genes with at least three samples associated with an SNV
within the given region. The method of Storey and Tibshi-
rani (16) was used to estimate false discovery rates (FDRs)
for significant genes. In downstream analyses, we explored
the set of genes for which SNVs were significantly associ-
ated with expression, after correcting for the above covari-
ates (FDR < 10%) and for which the association was not
attributed to gene copy levels (P < 0.05, linear model with
above covariates plus gene copy).

Transcription factor (TF) binding site associations

Transcription factor (TF) binding site locations, as de-
termined by ENCODE consortium (17), were obtained
from Ensembl (GRCh37/hg19 build for PCAWG data,
GRCh38/hg38 build for CBTTC). We used TF sites as iden-
tified in the HeLa-S3 cell line (accessed 17 April 2020).
To define the set of TF repressors of interest, we selected
from the set of TFs with available binding site data those
which had Gene Ontology annotation of ‘negative regula-
tion of transcription, DNA-templated’ but not an annota-
tion of ‘activating TF binding.’ By the above criteria, we
included 20 TFs in the analysis: BAF170, BRG1, CEBPB,
CTCF, E2F1, E2F6, ELK4, EZH2, GABPA, IRF3, JUND,
NRSF, PRDM1, REST, RFX5, SMARCA4, SREBF2,
STAT3, TCF7L2 and ZHX1. For a set of SNVs of interest
(e.g. SNVs 1 or 2 kb upstream of a globally significant gene
in a sample with elevated expression of that gene, defined

https://pedcbioportal.org/
https://pedcbioportal.org/datasets
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as >0.4 SD from the sample median), the subset of SNVs
falling within a TF binding site was annotated, based on the
above binding data from ENCODE.

For both PCAWG and CBTTC cohorts, we also exam-
ined the SNVs in the 1 or 2 kb upstream region associated
with gene over-expression using the BayesPI-BAR2 pack-
age (18). BayesPI-BAR2 provides a pipeline for identifying
functional non-coding somatic SNVs in cancer patient co-
horts, by integrating diverse information such as the spatial
distribution of the mutations and a biophysical model for
estimating protein binding affinity. We used the default pa-
rameters calculating the mutation regulatory blocks, with
the minimum number of patients/tumors in a hot mutation
region equal to five, the minimum number of SNVs in a hot
mutation region equal to ten, and the maximum distance
between SNVs in a hot mutation region equal to 30. For
the top results, we selected the significant position weight
matrices (pwms) at P < 0.001 by Bonferroni correction.

Integrative analyses between SNVs and DNA methylation

TCGA had generated DNA methylation profiles using the
Illumina Infinium HumanMethylation450 (HM450) Bead-
Chip array platform (Illumina, San Diego, CA, USA), as
previously described (19). Patterns of association of altered
DNA methylation with nearby SSV breakpoint focused
on the 111 203 array probes falling within CGIs that did
not involve X or Y chromosomes (these chromosomes not
being included as these would be present or not present
or differentially methylated according to patient gender).
The analytical approach involving expression data, as de-
scribed above, was applied similarly to the DNA methyla-
tion data. The gene X sample SNV matrices, as constructed
above, were joined to the DNA methylation data matrix,
in terms of the genes associated with CGIs. We assessed
the correlation between methylation of each CGI and the
presence of an SSV breakpoint in relation to the CGI-
associated gene, using linear regression models (with logit-
transformed DNA methylation � values). As with the gene
expression analyses, we incorporated specific covariates of
relevance into the linear modeling, with FDR (16) used to
estimate significant genes. DNA methylation values were
logit-transformed to be more aligned with linear model as-
sumptions (20). In downstream analyses, we explored the
set of CGI probes for which SNVs were significantly as-
sociated with expression (FDR < 10%)––after correcting
for sample cancer type, gender, total mutation burden and
gene-level SV breakpoint pattern––and for which the asso-
ciation was not attributed to gene copy levels (P < 0.05, lin-
ear model with above covariates plus gene copy).

Statistical analysis

All P-values were two-sided unless otherwise specified. We
utilized linear regression models to associate the expression
or methylation of genes with nearby SNVs after adjusting
for specific covariates, as described above. In all of the lin-
ear models performed in this study, we applied appropriate
data transformations to make the data align better with the
model assumptions (e.g. log2-transformation for gene ex-
pression and logit-transformation for DNA methylation).

One-sided Fisher’s exact tests or chi-squared tests deter-
mined the significance of overlap between two given feature
lists. The method of Storey and Tibshirani (16) estimated
FDR for significant genes. Visualization using heat maps
was performed using JavaTreeview (21) and matrix2png
(version 1.2.1) (22).

RESULTS

Associations of somatic non-coding SNVs with altered gene
expression in adult cancers

Using the PCAWG datasets, we carried out a systematic,
pan-cancer analysis of all coding genes, for patterns of ex-
pression impacted by nearby somatic SNVs falling within
non-coding regions. We aimed to identify genes for which
the nearby presence of an SNV significantly associated with
changes in expression (based on an analysis of 1220 cases
with both WGS and RNA-seq data available, Data S1). We
considered non-coding SNVs within fixed genomic regions
in relation to each gene. Specifically, we considered somatic
SNVs occurring within 20kb upstream of the gene, 2 kb up-
stream, 1 kb upstream, the gene introns, 1 kb downstream,
the gene 3′ Untranslated Region (UTR), and the gene 5′
UTR (the 20, 2 and 1 kb upstream regions overlapping
each other). For each of the above regions, we assessed each
gene for correlation between one or more SNVs occurring
within the region and altered expression. Using linear mod-
els, specific variables that may influence expression or SNV
patterns––cancer type, gender, total mutation burden, gene-
level SV breakpoint pattern (10) and gene-level CNA––were
incorporated to determine SNV-expression associations ris-
ing above the other variables.

For each of the genomic regions relative to genes that we
considered, we found widespread associations between the
presence of non-coding SNVs and altered expression, after
correcting for covariates (Figure 1A; Supplementary Figure
S1a-b and Data S2). For 20 kb upstream, 2 kb upstream,
1 kb upstream, introns, 1 kb downstream, 3′ UTR and 5′
UTR, the numbers of significant genes at FDR < 10% (16)
(with association independent of gene-level CNA, see ‘Ma-
terials and Methods’ section) were 181, 231, 198, 208, 197,
74 and 32, respectively. For each of these gene sets, more
genes positively correlated with SNV event (i.e. expression
was higher when at least one SNV was present) than neg-
atively correlated. While the 1 kb upstream and 2 kb up-
stream regions shared many significant genes, the signifi-
cant genes of the other regions did not share much over-
lap (Figure 1A). Interestingly, there were no highly signif-
icant overlaps observed between genes altered in associa-
tion with SNVs and genes altered in association with SVs in
PCAWG cohort (9). For example, just 15 genes overlapped
between 584 and 359 genes having increased expression as-
sociated (P < 0.01, linear modeling), respectively, with SV
breakpoints and with SNVs in the 20 kb upstream region
(P = 0.02, one-sided Fisher’s exact test), and 11 genes over-
lapped between genes increased (P < 0.01) with within-gene
SV breakpoint and genes increased with intronic SNVs (P
= 0.29, one-sided Fisher’s exact).

Perhaps not surprisingly, genomic regions relative to
genes representing a larger size––namely, introns and the
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upstream 20 kb region––tended to involve a higher per-
centage of patients with SNVs involving the top significant
genes (Figures 1B–E and Supplementary Figures S1c and
d). Genes significant for the 1 kb upstream region included
TERT, with SNVs found in 111 PCAWG patients (9%), of
which 53 showed elevated expression (>0.4 SD from the
sample median) of the gene (Figures 1B and 2A). In addi-
tion to the canonical C228T and C250T SNVs previously
associated with the upregulation of TERT (5,6), additional
SNVs 1 kb upstream of TERT (involving 14 patients) were
also associated with elevated expression but were not re-
current at a specific location (Figure 2A). The significant 1
kb upstream genes included LINC01136 (SNVs in 4.7% of
patients) and BCL2 (3.2%), with the remaining significant
genes representing <2.5% of patients. Similarly, genes sig-
nificant for the 2 kb upstream, other than the above-noted
genes, involved <4% of cases (Supplementary Figure S1c).
Genes significantly associated with over-expression for 2
kb upstream region included COPS3, an oncogene and a
subunit of the COP9 signalosome (23), with SNVs found
in 14 patients (Figure 2B). Close to half of the significant
genes for intron SNVs each involved more than 10% of pa-
tients (Figure 1C), including DNA polymerase epsilon 2,
accessory subunit POLE2, a gene for which knockdown
has shown anti-tumor activity in vitro (24), with intronic
SNVs involving 155 patients (Figure 2C). The 3’ UTR of-
ten contains regulatory regions that post-transcriptionally
influence gene expression. Genes upregulated in association
with SNVs in their 3′ UTR (Figure 1D) included HDAC2
(Figure 2D), which regulates chromatin plasticity and is fre-
quently deregulated in cancer (25).

For malignant lymphoma cases (PCAWG project
MALY-DE), specific genes showed high SNV clustering
patterns in proximity to the gene associated with elevated
expression (Figure 3). Previous genomic studies of Chronic
Lymphocytic Leukemia (CLL) using mutational signatures
have demonstrated the activities of activation-induced
cytidine deaminase (AID) to underlie such SNV patterns
(26). For example, somatic SNV clustering within intron
I of MYC has long associated with its upregulation in
lymphoma (27). This phenomenon is reflected in the
PCAWG cohort, involving 41 lymphoma cases and 349
SNVs (Figure 3A). A recent study by Batmanov et al. (28)
identified SNV clustering near BCL2 with associated over-
expression in follicular lymphoma. A similar phenomenon
was observed here in the PCAWG lymphoma cohort, with
SNV clustering at both promoter one (P1) and promoter
two (P2) of BCL2, involving 44 lymphoma cases and 936
SNVs (Figure 3B). BCL6, another gene found with SNV
clustering in the Batmanov et al. study, was also significant
in our results set for the 20 kb upstream region (Figure
1A and Supplementary Figure S1d). Other genes with
SNV clustering-associated over-expression in PCAWG
lymphomas included PIM1 (29) and IGLL5 (Figures 3C
and D). We also observed SNV clustering for some cases
of CLL in PCAWG involving BCL2 and IGLL5. MYC,
BCL2, PIM1 and IGLL5 were all found to have SNV
hotspots in the non-coding somatic driver analysis study
led by PCAWG consortium (2). However, as the SNV
patterns were AID-associated and expected to occur later
in tumor evolution (26), these genes were not put forth

by PCAWG consortium in their final results of somatic
non-coding events likely to represent early cancer drivers.

Associations of somatic non-coding SNVs with altered gene
expression in pediatric brain tumors

As compared to adult cancers, different genomic loci and
associated genes are likely to be targeted in the pediatric
tumor setting. The above PCAWG expression datasets are
primarily representative of adult cancer and did not in-
clude any pediatric brain tumor cases in particular. Us-
ing the CBTTC datasets (representing 854 tumors from
759 patients), we applied the same analytical approach
as applied above to PCAWG datasets, to identify SNV-
expression associations for any coding genes. For each of
the genomic regions relative to genes that we considered,
we found widespread associations between the presence of
non-coding SNVs and altered expression, after correcting
for covariates (Figure 4A; Supplementary Figures S2a–f
and Data S3). For 20 kb upstream, 2 kb upstream, 1 kb up-
stream, introns, 1 kb downstream, 3′ UTR and 5′ UTR, the
numbers of significant genes at FDR < 10% (with associa-
tion independent of gene-level CNA) were 110, 101, 58, 87,
61, 64 and 1, respectively. We found fewer significant genes
for the CBTTC cohort as compared to the PCAWG cohort,
likely due in part to the reduced power offered by smaller
numbers of tumor profiles in CBTTC, with biological dis-
tinctions between pediatric brain tumors and other tumor
types probably involved as well.

The set of significant genes for the CBTTC pediatric
brain tumor cohort was almost entirely distinct from that of
the PCAWG adult pan-cancer cohort, reflecting the unique
disease entities the respective cohorts represented. Using
more relaxed statistical cutoffs (FDR < 25%) to define sig-
nificant genes for each cohort, a set of 18 genes positively
correlated with SNVs for the same regions examined in both
cohorts (Figure 4B). These 18 genes did not represent a
highly significant overlap, although TERT was significant
(P < 0.001, linear model) for the 1 kb upstream region in
both cohorts. Genes significant for the 2 kb upstream re-
gion in the CBTTC cohort included CYHR1, with SNVs
found in 74 tumors (9%), of which 32 showed elevated ex-
pression (>0.4 SD from the median) of the gene (Figure
4C). Recently, CYHR1 was found to represent both a prog-
nostic marker and a therapeutic target in esophageal squa-
mous cell carcinoma (30). In the CBTTC datasets, CYHR1
showed SNV hotspots upstream of the gene (Figure 4C),
analogous to SNV patterns involving TERT upregulation.
Most tumors with an upstream SNV were pediatric low-
grade gliomas. Two somatic SNV hotspots in the CYHR1
promoter region were A→C at position 581 (hg38 coordi-
nates), involving 51 tumors and T→G at position 601, in-
volving nine tumors (three of which also had A581C). Five
tumors also had A→C at position 757. Most of the other
significant genes did not show the sort of tight SNV cluster-
ing patterns observed for CYHR1. Instead, SNV-expression
associations would involve SNVs positioned throughout the
region. One example involved the oncogene PIM2, a gene
typically associated with leukemias (31), for which SNVs
across the region 20kb upstream of the gene associated with
elevated expression in pediatric brain tumors (Figure 4D).
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Figure 2. Somatic SNVs associated with increased expression of TERT, COPS3, POLE2 and HDAC2 in PCAWG cohort. (A) Left, gene expression levels
of TERT, corresponding to somatic SNVs located in the genomic region surrounding the gene, including the region 2 kb upstream. Plot represents 145
patients (out of 1220 patients in PCAWG) and 172 SNVs. Each data point represents a single SNV. Multiple SNVs from the same patient will have the same
level of expression. Right, box plot of expression for TERT by alteration class (‘228 SNV’ and ‘250 SNV,’ known activating promoter mutations (5); ‘other
SNV 1 kb upstream.,’ other somatic SNVs 1 kb upstream; ‘amplification,’ approximating copy levels more than 2× greater than that of wild-type; ‘SV,’
somatic SV breakpoint within 100 kb upstream; ‘unaligned,’ cases not involved in any of the above categories). (B) Similar to panel (A), but for COPS3.
Expression plot by genomic position (left) includes the region 2 kb upstream of the gene. Expression plot represents 31 patients and 44 SNVs. Boxplot
(right) evaluates differential COPS3 expression for cases with SNVs 2 kb upstream. (C) Similar to panel (A), but for POLE2. Expression plot by genomic
position (left) includes the region surrounding the entire gene. Expression plot represents 145 patients and 296 SNVs. Boxplot (right) evaluates differential
POLE2 expression for cases with intronic SNVs. (D) Similar to panel (A), but for HDAC2. Expression plot by genomic position (left) includes the region
surrounding the entire gene, including its 3′ UTR. Expression plot represents 224 patients and 580 SNVs. Boxplot (right) evaluates differential HDAC2
expression for cases with SNVs in 3′ UTR of the gene. P-values by t-test on log-transformed data. Box plots represent 5, 25, 50, 75 and 95%. For the plots
on the left, the y-axis is positioned at the gene start.
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Figure 3. Somatic SNVs associated with increased expression of MYC, BCL2, PIM1, and IGLL5 in PCAWG lymphoma cases. (A) Left, gene expression
levels of MYC, corresponding to somatic SNVs located in the genomic region surrounding the gene. Plot represents 104 patients (out of 1220 patients
in PCAWG) and 437 SNVs (349 in lymphoma cases). Each data point represents a single SNV. Multiple SNVs from the same patient will have the same
level of expression. Right, box plot of expression for MYC by alteration class (including cases with somatic SNV within introns). (B) Similar to panel (A),
but for BCL2. Expression plot by genomic position (left) includes the P1 and P2 promoter regions. Expression plot represents 61 patients and 968 SNVs
(936 in lymphoma cases). Boxplot (right) evaluates differential BCL2 expression for cases with SNVs in P1 or P2 regions. (C) Similar to panel (A), but for
PIM1. Expression plot by genomic position (left) includes the region surrounding the entire gene. Expression plot represents 84 patients and 358 SNVs
(202 in lymphoma cases). Boxplot (right) evaluates differential PIM1 expression for cases with intronic SNVs. (D) Similar to panel (A), but for IGLL5.
Expression plot by genomic position (left) includes the region surrounding the entire gene. Expression plot represents 187 patients and 2989 SNVs. Boxplot
(right) evaluates differential IGLL5 expression for cases with intronic SNVs. P-values by t-test on log-transformed data. Box plots represent 5, 25, 50, 75
and 95%. For the plots on the left, the y-axis is positioned at the gene start.
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Figure 4. Genes with altered expression associated with nearby somatic SNVs in the CBTTC cohort. (A) Heat map of significance patterns, for 428 genes
with nearby non-coding SNV associated with altered expression. For each of several specified genomic region windows in relation to genes (20 kb upstream,
2 kb upstream, 1 kb upstream, gene intron, 1 kb downstream, 3′ UTR and 5′ UTR), the numbers of significant genes (FDR < 10%%, with association
independent of gene-level CNA) are indicated, based on analysis of the CBTTC pediatric brain tumor cohort (854 tumor samples from 759 patients). Genes
tested for the given region had at least three tumors with an SNV in that region. Red, significant positive correlation; blue, significant negative correlation.
(B) Heat maps representing the set of 18 genes positively correlated (FDR < 25%) with SNV in CTBBC pediatric brain cohort and the genes positively
correlated (FDR < 25%) within the PCAWG cohort, for the same regions examined. Red, positive correlation between expression and SNV; blue, negative
correlation; white, P > 0.05, linear model correcting for sample cancer type, gender, total mutation burden, gene-level SV breakpoint pattern and gene-level
CNA. (C) Left, gene expression levels of CYHR1, corresponding to somatic SNVs located in the genomic region surrounding the gene, including the region
2 kb upstream. Plot represents 94 tumors (out of 854 in CBTTC) and 118 SNVs. Each data point represents a single SNV. Multiple SNVs from the same
tumor will have the same level of expression. Right, box plot of expression for CYHR1 by alteration class, including tumors with SNV 2 kb upstream.
PLGG, pediatric low-grade glioma. See ‘Materials and Methods’ section for other pediatric brain tumor cancer type abbreviations. (D) Similar to panel
(A), but for PIM2. Expression plot by genomic position (left) includes the region 20 kb upstream of the gene. Expression plot represents 77 tumors and 44
SNVs. Boxplot (right) evaluates differential PIM2 expression for cases with SNVs 20 kb upstream. P-values by t-test on log-transformed data. Box plots
represent 5, 25, 50, 75 and 95%. See also Supplementary Figure S2 and Data S3.
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SNV densities and transcription factor (TF) binding sites in-
volving SNV-associated altered expression

In PCAWG and CBTTC cohorts, significant SNV–gene as-
sociations involved almost all cancer types represented (Fig-
ure 5A–D; Supplementary Figures S3a-b and Data S4 and
S5). For some genes, such as those above associated primar-
ily with PCAWG lymphoma cases (MYC, BCL2, PIM1 and
IGLL5, Figure 3), there was a very high clustering of SNVs
in the region relative to the gene examined. Such patterns
can represent regulatory mutation blocks that affect the
binding affinity of TFs (28). We quantified this SNV clus-
tering for each gene significant for any of the following re-
gions: 1–2 kb upstream (considering genes arising from ei-
ther the 1 or 2 kb region), intronic and 3′ UTR. For each
significant gene for the given region, we calculated the av-
erage number of SNVs per patient, for SNVs involving pa-
tients with elevated expression of the gene (>0.4 SD from
the median). For the 1–2 kb upstream region, significant
genes in the PCAWG cohort with a very high density of
SNVs included BCL2 as mentioned above and long non-
coding RNA LINC01136, primarily involving lymphoma
cases (Figure 5A). In contrast, TERT-associated SNVs in-
volved ∼57 patients but without a high number of SNVs per
patient. For the gene intronic region, significant genes in the
PCAWG cohort tended overall to have higher numbers of
SNVs per patient as compared to that of the other regions,
in part due to the larger region represented by introns (Fig-
ure 5B), with notable genes including IGLL5 (most repre-
sented in lymphoma cases) and GPHN (most represented in
liver cancer). On the other hand, genes significant for the 3′
UTR region for the PCAWG cohort (Figure 5C) and genes
significant for the various regions examined in the CBTTC
cohort (Figures 5D; Supplementary Figure S3a and b) both
tended to have lower numbers of SNVs per patient.

Somatic SNVs could conceivably disrupt TF binding, in-
cluding TFs with repressor functions. From ENCODE con-
sortium (17), we obtained binding site locations for a set
of 20 TF repressors, to determine which of the SNVs as-
sociated with gene over-expression may fall within these
binding sites. For the PCAWG cohort, of the 2403 SNV
events in the 1–2 kb upstream region associated with over-
expressed genes (>0.4 SD from the median for the given
sample), 329 (13.7%) involved TF repressor binding, repre-
senting 685 SNV–TF associations with some SNVs overlap-
ping with more than one TF (Figure 6A). The most repre-
sented TFs in this SNV set included RFX5 (122 SNVs, some
involving other TFs), CTCF (110), E2F1 (78), GABPA (69),
SREBF2 (65) and CEBPB (55). For the CBTTC cohort, of
the 461 SNV events in the 1–2 kb upstream region associ-
ated with over-expressed genes, 80 (17.4%) involved TF re-
pressor binding (Figure 6B), representing 193 SNV-TF as-
sociations. The most represented TFs in this SNV set in-
cluded GABPA (42 SNVs), RFX5 (42), CTCF (23), E2F1
(19), TCF7L2 (18), ZHX1 (15), and CEBPB (14).

Somatic SNVs could also conceivably create new TF
binding sites. We used the BayesPI-BAR2 algorithm (18) to
evaluate possible TF binding effects represented by the clus-
tered SNV patterns associated with over-expressed genes.
For the PCAWG cohort, of the 2403 SNV events in the
1–2 kb upstream region associated with over-expressed

genes, just four genes––TERT, BCL2, KIAA0125 and
LINC01136––involved tight clusters of at least 10 SNVs
within 30 bases of each other (‘Materials and Methods’ sec-
tion). Of these genes, TERT SNVs were associated with
predicted increased binding of ETS family TFs (Figure 6C
and Supplementary Data S4), as expected. BCL2 SNVs
were associated with disruption of FOX TF family mem-
bers (Supplementary Data S4), consistent with previous
findings outside of PCAWG (28). For the CBTTC co-
hort, of the 461 SNV events in the 1–2 kb upstream re-
gion associated with over-expressed genes, just two genes,
CYHR1 and GTSE1 divergent transcript (GTSE1-DT) in-
volved tight SNV clusters. CYHR1 SNVs were associated
with predicted increased binding of several TFs, includ-
ing ARNT::HIF1A, HNF4, HSF2, PXR, T3R, USF1 and
ZNF354C (Figure 6D and Supplementary Data S5).

Furthermore, we examined the set of SNVs falling within
introns and associated with over-expression of the gene,
for those which might represent splicing alterations. Using
a previously generated catalog of SNVs near exon–intron
boundaries in the PCAWG cohort (8), just 40 of the 24 762
intron-related SNV events in our set involved exon–intron
boundaries, with only five SNV events associated with a
change in splicing. Therefore, the phenomenon represented
by the intron SNV-expression associations uncovered by
our study would not appear to involve altered splicing.

Associations of somatic non-coding SNVs with altered
methylation of CpG Islands (CGIs)

While non-coding somatic SNVs have been understood to
impact the expression of individual genes such as TERT,
the PCAWG datasets included 568 cases with DNA methy-
lation data. These data presented an opportunity for us
to carry out an analogous survey of associations between
non-coding somatic SNVs and DNA methylation patterns
across these cancers. We joined the gene by sample SNV
matrices, as constructed above for analysis of gene expres-
sion (Figure 1A), to the DNA methylation data matrix of
568 cases, in terms of the genes associated with CGIs. Us-
ing linear regression models, we assessed the correlation
between methylation of each CGI and the presence of an
SNV in the given region in relation to the CGI-associated
gene, with the same covariates used for the expression anal-
ysis. With this approach, we examined 111 203 CGI DNA
methylation probes, involving 13 043 associated genes, and
the above seven genomic regions in relation to genes. For
each genomic region, we found hundreds of CGI probes
consistently altered in methylation by nearby SNVs (Fig-
ure 7A and Supplementary Data S6). For 20 kb upstream,
2 kb upstream, 1 kb upstream, introns, 1 kb downstream, 3′
UTR and 5′ UTR, the numbers of significant genes at FDR
< 10% by linear model were 108, 862, 875, 191, 737, 662 and
257, respectively. In contrast to the gene expression results,
there were notably fewer associations between methylation
and SNVs within the 20 kb upstream and gene intronic re-
gions, even though these two regions were the largest.

More CGI features were positively correlated (i.e. showed
increased methylation) with somatic SNV events than were
negatively correlated, and positively versus negatively cor-
related CGI sets showed distinctive characteristics with re-
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spect to each other. CGI probes with SNV-associated in-
creased methylation tended to be promoter-associated (Fig-
ure 7B) and were enriched for probes within 200 bp of
the gene transcriptional start site (Figure 7C). In con-
trast, CGI probes with SNV-associated decreased methyla-
tion were markedly anti-enriched for promoter-associated
probes (Figure 7A and Supplementary Figure S4a) but
were highly enriched for gene body CGIs (Figure 7A and
Supplementary Figure S4b). The above CGI probe lo-
cation associations for SNV-related methylation increases

or decreases were similar to associations involving SV
breakpoint-related methylation increases or decreases, re-
spectively (10). When considering the overall correlation
between expression and DNA methylation across can-
cer cases, the CGI probes with SNV-associated increased
methylation were highly enriched for genes negatively cor-
related between methylation and expression (Figure 7D).
We did not observe this enrichment pattern for the CGI
probes with SNV-associated decreased methylation (Sup-
plementary Figure S4c).
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Classical DNA methylation at the CGIs of promoters
causes stable silencing of genes (32). We examined the
overlap between CGI probes with SNV-associated altered
methylation and the related genes with corresponding SNV-
associated altered expression (FDR < 10% by linear model
for each set). For the 2 kb upstream, 1 kb upstream, 1
kb downstream and 3’ UTR regions, there were significant
overlaps between CGI probes with SNV-associated altered
methylation and nearby genes with corresponding SNV-
associated altered expression (Figure 7E). These overlaps
altogether represented 71 CGI methylation probes and 21
genes (Figure 7F), most of these expression-methylation
correlations being in the inverse direction. At the same time,
the 71 CGI probes represented just a small fraction of the
3199 globally significant probes (from Figure 7A), of which
1702 were significantly correlated between methylation and
expression (1497 inversely correlated, using FDR < 5% by
linear model, correcting for both cancer type and gene-level
CNA and based on 1482 TCGA cases (10)). This finding
indicates that some genes may not be globally associated
with SNV-mediated expression changes across all tumors,
but these genes may still be impacted by SNV-association
methylation alterations in a subset of tumors, while influ-
enced by additional variables in the other tumors.

DISCUSSION

This study provides a comprehensive catalog of mRNAs ap-
pearing deregulated by nearby non-coding somatic SNVs,
across both adult cancers of various types and pediatric
brain tumors of various histologies. The finding of the
PCAWG adult cancer cohort yielding different sets of top
significant genes from those of the CBTTC pediatric brain
tumor cohort would underscore the notion that pediatric
cancers represent a markedly different set of diseases from
adult cancers (33). Other factors that may be involved in ob-
served discrepancies between PCAWG and CBTTC results
include the smaller CBTTC cohort, younger patients failing
to accumulate a significant number of mutations, and lack
of representation of similar pediatric cancers in the adult
patient cohort. By using gene expression as a filter for as-
signing significance to SNVs, our analytical approach is not
limited by our incomplete understanding of the functional
role of the non-coding genome. Also, SNV patterns that are
not highly recurrent (but falling across a given region) may
contribute to expression associations. Non-coding somatic
SNVs can potentially create new TF binding sites for tran-
scriptional activators or disrupt existing binding sites for
transcriptional repressors. Our study observed an overall
trend of non-coding SNVs resulting in more upregulation
versus downregulation of nearby genes. In many instances,
it may be challenging to determine the precise mechanism
for SNV-mediated deregulation. We based our determina-
tion of gene-level significance on a fixed genomic region
window relative to the gene. However, every gene would
have its unique regulatory landscape, and a modified region
window might have better revealed an association for some
genes. For many of our top genes, a functional role in cancer
may not yet be established. Also, in a few instances, an up-
regulated gene may represent a tumor suppressor. One chal-
lenge with interpreting our results would be to understand

which of the deregulated genes are genuinely contributing
to the disease, besides the genes with well-established onco-
genic roles. In future experimental studies, as more func-
tional data establish previously understudied genes as hav-
ing potential oncogenic roles, our results would represent a
resource to help determine how such genes may be deregu-
lated in the human tumor setting.

In contrast to analytical approaches that focus first on
SNV hotspots or regulatory regions or motifs, our approach
primarily focuses on associated expression changes, and the
interpretations as to the roles of our top significant genes
in cancer may differ from that of a conventional ‘drivers’
study. For example, several of our top genes showed a tight
SNV clustering pattern associated with elevated expression,
including MYC, BCL2, PIM1 and IGLL5 in lymphoma.
However, in the PCAWG-led Rheinbay et al. drivers study
(2), a post-filtering of significant hits was performed to re-
move those genes involving mutations caused by mutational
processes. In particular, Rheinbay et al. identified genes
with AID-related mutations in lymphoma in the first round
of the PCAWG analyses as candidate drivers (due to the
clustered mutation patterns). Still, they were not part of
the set of driver genes put forth by PCAWG in their fi-
nal results. The rationale for this is that these AID-related
gene alterations would represent subsequent events, which
presumably resulted from the somatic alteration of ‘true’
drivers that would have initiated the AID mutation sig-
nature processes at an earlier stage of the disease. In our
present study, the understanding of our results involving
AID-related genes is consistent with that of Rheinbay et
al. However, while genes such as BCL2 and MYC may not
satisfy a classical definition of drivers in terms of their mu-
tation patterns, they nevertheless would play an important
role in the disease. In lymphoma, we find that only specific
genes appear altered for expression in association with clus-
tered non-coding SNV patterns. These genes include those
with well-known oncogenic roles, and for which non-coding
SNV associations have previously been reported for lym-
phoma cohorts outside of PCAWG (27–29). A number of
our top genes may well represent passenger SNV events.
However, the elevated expression observed for several genes
previously determined to have functional roles in cancer
seems likely to represent disease contributors, even if such
genes may not fit within a dichotomous model of drivers
versus passengers (3).

This present study has revealed widespread associations
in human cancer of non-coding somatic SNVs with CGI
methylation of nearby gene promoters. Specific CGIs ap-
pearing recurrently and non-randomly altered in associ-
ation with nearby SNVs across cancers is intriguing and
suggestive of a selection process in the disease. This phe-
nomenon would be distinct from that involving mutation of
chromatin modifier genes, which results in a more general,
widespread impact on DNA methylation (19). CGIs with
SNV-associated methylation increases versus decreases re-
spectively represented different classes of CGI annotations,
similar to the CGI classes involved in SV-associated methy-
lation alterations (10). Whether the observed altered DNA
methylation patterns would be the driving cause or the re-
sult of somatic mutation remains an open question. On the
one hand, it has been understood that DNA repair in can-
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cer, particularly involving double-stranded breaks, can lead
to altered CpG methylation at the repair site (34–36). On the
other hand, over-representation of mutations at CpG din-
ucleotides has implicated DNA methylation in the genera-
tion of oncogenic point mutations, where the DNA methyl-
transferase enzyme itself might contribute to the high rate
of transitions seen at CpG dinucleotides (37). Both of the
above could conceivably be at work in our results. Altered
DNA methylation in association with SNVs would rep-
resent just one potential mechanism for altering gene ex-
pression, with many other mechanisms involving different
genes and different tumors. There would be no common
explanation for all the differential expression and methyla-
tion patterns observed in the context of nearby non-coding
SNVs, as the regulatory landscape for each gene is unique.
As more data from more cancer genomes become avail-
able, future studies will continue to refine our knowledge of
the set of non-coding somatic alterations that contribute to
cancer.
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