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Abstract: Genistein is an isoflavonoid present in high quantities in soybeans. Possessing a wide
range of bioactives, it is being studied extensively for its tumoricidal effects. Investigations into
mechanisms of the anti-cancer activity have revealed many pathways including induction of cell
proliferation, suppression of tyrosine kinases, regulation of Hedgehog-Gli1 signaling, modulation of
epigenetic activities, seizing of cell cycle and Akt and MEK signaling pathways, among others via
which the cancer cell proliferation can be controlled. Notwithstanding, the observed activities have
been time- and dose-dependent. In addition, genistein has also shown varying results in women
depending on the physiological parameters, such as the early or post-menopausal states.
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1. Introduction

Genistein, an isoflavone, is a natural phytoestrogen present in soybeans and native
to Southeast Asia. It was first isolated from Genista tinctoria (L.) in 1899 and named after
it, following which it has been mostly identified in the Trifolium spp., exclusive to the
Leguminosae (Fabaceae) [1].

Several in vitro and in vivo studies have attempted to understand and gain a better
insight into the mechanisms underlying the biomedical properties of genistein [2–4]. The
isoflavonoid has been analyzed and previously reviewed for its neoplastic potentials. The
pathways though which genistein alleviates breast cancer include various grey areas which
pertain to the molecular mechanisms of genistein, and preclinical results remain unclear.
The identification of the mechanistic action of genistein on breast cancer could help in the
development of anti-breast cancer therapy in cases where there are no targeted therapies
known or available. Further research into the mechanistic action of genistein could lead to
the development of a potential plant-based cancer drug with minimal deleterious effects,
along with overcoming drug resistance and repression of reoccurrence of cancers. Such
a development of genistein in chemotherapy may be a powerful tool in personalized
medicine. The current review focuses mainly on the molecular basis of the anti-breast
cancer potential of genistein, wherein we have complied the evaluations of the pathways
and various targets of this molecule when administered.
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2. Chemistry of Genistein
2.1. Structure

In plants, the synthesis of genistein starts from a flavanone, naringenin, by the
isoflavone synthase enzyme due to ring migration [1,3]. The structure of genistein (chem-
ically, 4′,5,7-trihydroxyisoflavone (C15H10O5)) and estradiol have been observed to be
similar [5]; hence, genistein has estrogenic activity and is a good example of a phyto-
estrogenic substance. Its nucleus is made up of two arenes (A and B) coupled to another
carbon ring (C). It has a limited water solubility and a preference for polar solvents such as
acetone and ethanol. It has a C2-C3 double bond in its basic carbon skeleton, as well as an
oxo-group in the C ring at the C4 position along with 3 hydroxyl groups at the C 4′, 5, and
7 locations of rings A and B [4]. The structure of genistein is illustrated in Figure 1.
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Figure 1. Structure of genistein. PubChem CID 5280961 (https://pubchem.ncbi.nlm.nih.gov/
compound/Genistein, accessed on 1 October 2021).

2.2. Synthesis of Genistein

Baker was the first to synthesize genistein organically in 1928 [6] using deoxybenzoin
as a substrate. The cyclization of ketones was used as a chemical method of genistein
synthesis in an oven [7]. Its synthesis from 2,4,6-trihydroxyphenyl ethenone with the two
hydroxyl substituents in the triol as methoxymethyl ester has been attempted using a
technique that begins with ketone production, followed by closing of the ring structure and
a Suzuki coupling reaction with palladium acetate and polyethylene glycol [8]. Treatment
of trihydroxybenzoin, derived by acylation of phloroglucinol substituted with phenyl
acetonitrile using hydrochloric acid and zinc chloride with catalyst dry ether, is a more
contemporary technique to genistein production [9]. Biotechnological synthesis was accom-
plished by converting (2S)-naringen to genistein under NAD(P)H and oxygen-dependent
states and adding cytochrome P-450 to soybean cell cultures [10]. Employing genetically
modified Saccharomyces cerevisiae cells containing the isoflavone synthase gene obtained
from Glycyrrhyza echinata, a metabolic approach along with engineering tools was set up as
genistein synthesis [11]. In Nicotiana tabacum leaves transformed with IFS, genistein was
created via acting on the phenylpropanoid pathway; however, ultraviolet ray treatment
also increased genistein assembly [12]. Biological genistein synthesis from p-coumaric acid
or naringenin was attempted utilizing Escherichia coli as a biotransformation host using
Os4CL, PeCHS, RcIFS, and OsCPR for production [13].

2.3. Synthesis of Genistein Derivates or Analogues

Synthesis of analogues of genistein was achieved by the Ferrier rearrangement of
compounds yielding 2,3-unsaturated bromo-alkyl-glycosides, which were then epoxidated
with meta-chloroperoxybenzoic acid before coupling with genistein [14]. For the manufac-
ture of genistein derivatives, new glycosylation and glycoconjugation chemical techniques
have been devised [15]. A novel three-step synthesis from genistein of a water-soluble com-
pound was also attempted, in which base-catalyzed reaction of genistein was hydrolyzed
to obtain the target compound [16].

https://pubchem.ncbi.nlm.nih.gov/compound/Genistein
https://pubchem.ncbi.nlm.nih.gov/compound/Genistein
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2.4. Bioavailability and Metabolism of Genistein

The amount of a component that is absorbed in the body is known as bioavailability. It
is critical to research a chemical’s bioavailability in order to determine how effective it is on
the body. Poor water solubility of genistein is a limitation to overcome for its bioavailability
after oral administration, for which water-soluble derivatives of genistein were synthe-
sized [17]. Because of its low molecular weight (270 kDa) and lipophilic characteristics,
genistein is quickly absorbed in the intestine in both rodents and humans [18]. A very low
half-life of approximately 46 h was observed in vivo following oral administration [19].
Glucuronidation and sulfation are major pathways of metabolism of genistein with the
production of metabolites [18]. Once consumed, genistein is converted into genistein
glucuronide and sulphate in the intestine, which along with genistein circulate through
veins with the assistance of multidrug resistance-associated protein 3 transporters with a
100% absorption ratio [20]. The metabolites are excreted through bile or through kidneys.
In humans, micromolar levels of genistein in blood can be found through prolonged dietary
exposure [20,21]. Metabolomic studies may be required in order to assess the intracellular
concentrations of genistein at which modulation of a range of targets occur and hence,
careful attention is required towards the dose-dependent behavior of genistein, as well
as the pertaining molecular intricacy [22,23]. One main limitation with genistein being a
natural compound is its low water solubility, which may need to be modified with respect
to its chemical structure in order to increase solubility and have higher bioavailability [24].
Furthermore, studies may need to be performed on identifying the purified individual
versus mixture of isoflavones present in breast cancer. However, studies observing the
pharmacological and biomedical activity of unbound genistein in comparison with its
metabolic products are less. Hence, it is important to evaluate free, unbound genistein
concentration in blood. Being bitter in taste, genistein requires different formulations in
order to overcome the taste, as well as the limitation of bioavailability.

3. Genistein and Cancer

Genistein has demonstrated a plethora of biomedical effects, such as anti-oxidation,
anti-proliferation, and tumoricidal activities [25]. More importantly, in vivo, in vitro, as
well as in silico research into its anti-cancer properties have pointed towards a pivotal role
played by genistein as an anti-tumoricidal molecule in varied types of cancer [26]. Two
very important reasons for the extensive research conducted on genistein over the past
decade are the evidence of lower risk of diseases in association with its administration and
to look for pharmacologic drugs that affect with growth factor signaling pathways in cells.

Numerous previous studies have reported arrest of cell-division cycle and apoptosis
in multiple cancer cell lines in in vitro studies, as well as demonstration of the same
in vivo [4,25]. When researchers looked at the consequences of genistein on cell cycle
progression in prostate cancer cell lines, they discovered that it stopped cell-division cycles
in the G2/M phases due to the downregulation of cyclin B expression, leading to the
conclusion that it could be a potent regulator of cyclin B with potential applications in
cancer prevention [27]. In a study of the pleiotropic molecular effects of genistein on head
cancer cells, researchers discovered that genistein causes molecular alterations in the cancer
cells that impede cell development and induce apoptosis. In a series of tests, the same
researchers discovered that genistein halted progression through the cell cycle and death in
a head cancer cell line through regulating p21WAF1 and Bax, as well as repressing cyclin B1
and Bcl-2. They further confirmed that genistein reduces metaphase chromosomal spread
and hampers nuclear translocation of human telomerase reverse transcriptase without
impacting telomerase activity via downregulating cerbB-2 [28]. Some recently discovered
mechanisms employed by genistein in various cancer models to bring about anti-cancer
effect are summarized in Table 1.
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Table 1. Some recently discovered anti-cancer mechanisms of genistein.

Effect Mechanism Cancer Model Reference

Evasion of Apoptosis
ER-stress HL-60 [29]

↑ROS Mia-PaCa2 and
PANC-1 [30]

Cell cycle arrest
G0/G1arrest Mia-PaCa2 and

PANC-1 [30]

Mitotic arrest, ↓PlK1 TP53-mutated A460
cancer cells [31]

Anti-metastatic ↓DMBA-induced
metastatic transition Mouse model [32]

Anti-proliferative

↑p-ERK
Mouse model [33]↑BDNF

↓AChE

↓mTOR

Hen model [34]

↓p70S6K1
↓4E-BP1
↓Bcl-2
↑Nrf2
↑HO-1
↑Bax

↓HDACs HeLa cells [35]
ER—Estrogen Receptor; ROS—Reactive Oxygen Species; PlK1—Polo-Like Kinase 1; DMBA—7,12-
Dimethylbenz[a]anthracene; p-ERK—Phosphorylated Extracellular Signal-Regulated Kinase; BDNF—Brain-
Derived Neurotrophic Factor; AChE—Acetylcholinesterase; mTOR—Mammalian target of rapamycin; p70S6K1—
Ribosomal protein S6 kinase β 1; 4E-BP1—Eukaryotic translation initiation factor 4E-binding protein 1; Bcl-2—
BCL2 apoptosis regulator gene; Nrf2—Nuclear factor erythroid 2-related factor 2; HO-1—Heme Oxygenase 1;
Bax—BCL2 Associated X, Apoptosis Regulator gene; HDACs—Histone Deacetylases.

4. Genistein and Breast Cancer
4.1. Epidemiology

Breast cancer has been classified as one of the prevailing malignancies in women
throughout the globe, with the American Cancer Society estimating that over 43,600 women
will die from breast cancer in 2021 [36]. Various natural compounds with pharmacological
capabilities are being explored as an alternative to manufactured anti-cancer medications
in order to overcome their negative side ramifications. Genistein is one such chemical.
In various studies, epidemiologic data has suggested that soy consumption is oppositely
proportional to the risk of breast cancer, with Asian women and men who consumed
a soy diet having a 40% lower prevalence of mammary cancer, while Asians who did
not consume a traditional soy-rich diet lost this protection [37,38]. However, the soy
isoflavone in several in vitro and in vivo models with bone micro-metastasis in mice have
been observed to stimulate breast cancer and further research in human subjects maybe
required about the duration of consumption of the same by breast cancer survivors [39].

4.2. Mechanism

The tumoricidal effects of genistein have been seen on cell lines and in breast cancer-
induced animal models at various dosages. Genistein has been linked to distinct pathways
and targets. Apoptosis, cell-division cycle modification, and anti-cell proliferation are some
of the strategies that have been proposed as genistein targets and pathways for anti-breast
cancer tumorigenesis and are discussed below in Table 2.
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Table 2. Some possible anti-breast cancer molecular mechanisms for genistein and its targets.

Effect Proteins/Pathways Affected Reference

Decreased response to growth
factors

Downregulation of tyrosine kinase activity
Expression of SRF mRNA

[40]
[41]

Arrest of cell cycle G0/G1 arrest by cell cycle transition
G2/M phase arrest via cyclin B

[42]
[27]

Induction of apoptosis

Downregulation of CIP2A mRNA;
modulation of E2F1
Activation of PPPA

Inactivation of NF-kB
Bcl-2 Bax

Activation of Caspase-3
Upregulation of DNA fragmentation

[43]
[44]
[44]
[44]
[45]

Anti-proliferative effects

Downregulation of DNA methylation
Upregulation of ATM
Upregulation of APC

Upregulation of SERPINB5

[46]
[47]

Upregulation of ER α

Decreased ER binding
[48]
[2]

Erβ inhibited E2-dependent cell growth [44]

Cancer-associated microRNAs
(mi)

miR-155—Downregulation of PTEN, casein
kinase, p27

miR-23b—Upregulation of PAK2

[49]
[50]

Epigenetic modifications
Tumor suppressors p21 and p16

c-MYC-BMI complexes
Regulation of E2-induced genes

[44]

SRF—Serum Response Factor; CIP2A—cancerous inhibitor of PP2A; E2F1—Transcription factor E2F1; PPPA—
PP2C-family protein phosphatase; NF-kB—nuclear factor kappa-light-chain-enhancer of activated B cells; Bcl-2
Bax- BCL2-associated X protein; ATM—ataxia telangiectasia mutated; APC—Adenomatous Polyposis Coli;
SERPINB5—Serpin Family B Member 5; ER—Estrogen Receptor; PTEN—Phosphatase and Tensin Homolog;
PAK2- Serine/threonine-protein kinase PAK 2; c-MYC-BMI—myc and bmi-1 oncogenes; E2- 17β-estradiol.

4.3. Induction of Apoptosis

The rate of cell division rises as tumors develop, resulting in a lower rate of pro-
grammed cell death. Apoptosis can be triggered in a variety of ways, according to new
research. In numerous cell lines of mammary cancer, genistein triggered apoptosis. The
stimulation by the peroxisome proliferator-activated receptor gamma (PPARγ) pathway
has been proposed as a possible mechanistic pathway in the prevention of mammary cancer.
PPAR, PTEN, and cyclin B1 are all part of this pathway. Upregulation of PPAR expression
as well as a reduction of cyclooxygenase-2 and prostaglandin E2 expression were observed
when MDA-MB-231 cells were given genistein in combination with arachidonic acid, do-
cosahexaenoic acid, and eicosapentaenoic acid, which reverted invasiveness in the cancer
cells [51]. Apoptosis was observed as a result of synergistic activity of genistein combined
with anti-breast cancer drugs in MDA-MB-231 cells and BT-474 cells [52,53], reducing their
chemoresistance.

Apoptosis could also be instigated by calpain and caspase, which are enabled by
calcium ions and mediate cell death. Depletion of calcium storage in the endoplasmic
reticulum, higher Ca2+ concentrations, activation of calpain, and hampering of calpain’s
Ca2+ binding sites result in improved cytosolic Ca2+ buffering capacity, as well as caspase
inhibition, which result in a decrease of apoptosis in cancer cells. Hence, one pathway
of apoptosis by genistein is through its cellular Ca2+ regulatory activity [54]. In in vivo
and in vitro models of MDA-MB-435 and Hs578t cells, as well as immunocompromised
animals, mammary tumor growth was produced by hindering cell viability and eventually
death of the cell [54].
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When MCF-7-C3 and T47D breast cancer cells were medicated with genistein, the
cancerous inhibitor of protein phosphatase 2A (CIP2A), a human oncoprotein, was dysreg-
ulated, leading to the hypothesis that CIP2A was a genistein target [43] in causing growth
inhibition and apoptosis. Injection of genistein into 35-day-old rats reduced tumor size by
27%, and comparable findings were shown in nude mice bearing MCF-7 and MDA-MB-231
heterografts with mammary cancer cell invasion and tumor formation [55].

Thus, genistein has been extensively documented to induce cancer cell apoptosis via
a number of mechanisms including cell-signaling pathways. Both in vitro and in vivo
evidence of the apoptotic nature of genistein on breast cancer cells is highlighted, showing
genistein in a promising role. However, further research may be required to recognize the
intracellular targets of genistein in order to be used as a therapeutic drug.

4.4. Cell Cycle Arrest and Anti-Proliferative Mechanism

Nearly three decades ago, the first report revealing the hinderance of protein kinase
brought about by genistein was published. Using an omics approach, genistein was
discovered to regulate 183 proteins [40]. The cell-division cycle is a set of events that occur
inside a cell that leads to cell multiplication and duplication. On a molecular level, genistein
hinders the growth of malignant cells by acting on multiple cell-division cycle regulators
and proteins. Genistein impacts cell development and progression by altering cell-division
cycle-regulator proteins, such as Akt and nuclear factor [56,57]. Some proteins operate
as cell division checkpoints and monitor the stages of the cell-division cycle. A balance
between the regulatory proteins is required for the progression of a cell-division cycle.

One of the anti-proliferative mechanisms demonstrated by genistein is the blocking of
NF-kB pathways and subsequent activation of NF-kB [57]. The EGFR/Akt/NFκB pathway
modulation play a role in cell differentiation [58], which leads to cancer cell death. With
genistein, the activity of Akt is suppressed, promoting the deactivation of downstream
signaling pathways, including NF-κB [2,59]. This was demonstrated by the electrophoretic
mobility shift assay in MDA-MB-231 cells, along with inhibition in the activation of Akt
by preventing EGF signal triggering [59]. Furthermore, through modulating AMPK and
COX-2, the combination of genistein and capsaicin instigated synergistic apoptotic con-
sequences [60]. As a result, it has been concluded that genistein hinders the activation
of NF-B, mostly through the inactivation of EGF and Akt or by directly deactivating it.
The merging of genistein, cisplatin, docetaxel, and doxorubicin has also been shown to
cause NF-kB deactivation, resulting in enhanced growth inhibition and finally apoptosis in
MDA-MB-231 cells [61]. This is said to be brought about by the MEK5/ERK5 pathway [62],
revoking the EGF and Akt induced NF-kappa B activation, which led to the conclusion that
the inactivation of NF-kappa B cancer cells is partly arbitrated though the Akt pathway [59].
In silico studies have studied the binding interactions of active sites of these molecules,
which confirmed these findings along with revelation that the amino acid residues of
lysine, serine, and aspartic acid play a major role [63]. Inactivation of the Akt pathway can
potentially be used to prevent proliferation [64].

In MCF-7 and MCF-7 HER2 cells, an increase in sub G(0)/G(1) apoptotic fractions
was observed, which could be due to induction of the extrinsic programmed cell death
pathway, up-regulation of p53, reduced phosphorylation of IB, and evasion of the nuclear
translocation of p65 and its phosphorylation within the nucleus [65]. MDA-MB-231 cell
growth inhibition was seen in a dose-dependent manner via hindering NF-B activity via the
Notch-1 signaling pathway, as well as lower production of cyclin B1, Bcl-2, and Bcl-xL [66].
Some of these mechanisms are picturized in Figure 2.
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Phosphatase and tensin homolog; PI3K—Phosphoinositide 3-kinases; PIP3—Phosphatidylinositol (3,4,5)-trisphosphate;
Akt—Protein kinase B; mTOR—The mammalian target of rapamycin.

Genistein causes a halt in the cell-division cycle at the G2/M phase via the expression
of p21Waf11/Cip1 which is stated to have increased, eventually leading to the seize [67].
Cell-division cycle-associated phosphatase Cdc25C downregulation was also associated
with genistein in MCF-10F cells [68]. Furthermore, mitogen-activated protein kinase
-mediated genistein and subsequent repression of cyclin B1 and Cdc25C, as well as ele-
vation of c-Jun and c-Fos levels, are linked to cell division arrest at G2/M phase [69]. By
modulation of the RAS/RAF signaling pathway, the activation and phosphorylation of
MAPK is stabilized [69]. Genistein’s intrinsic stimulation of cell death is a slow process.
The breakdown of the mitochondrial membrane and the generation of reactive oxygen
species are caused by changes in Bcl2/Bax levels. The fundamental issue, however, is the
difficulty in identifying the initial genistein target among these protein kinases.

4.5. Preventing Angiogenesis

Downregulation of matrix metalloprotein genes together with a decrease in cancer
cell invasiveness suggests that both transcriptional modulation of genes involved in the
cancer pathogenic process and repression of breast cancer cell invasiveness are linked [70].
The expression of MMPs 2, 3, 3, and 15 have been noted to be decreased in T47D cells with
genistein treatment, preventing angiogenesis and metastasis [71].

Some studies also indicate that genistein is responsible for the downregulation of
hypoxia-inducible factor 1-α, with in silico backing in studies that characterized the sites of
interaction between them, showing that genistein is bound to FIH-1 binding site [72].

Furthermore, in silico studies have proven the involvement of Akt, Hif1α, and VEGF
cascades in the prevention of angiogenesis by genistein [73]. The same researchers have
also reported the development of spermine tethered lipo-polymeric hybrid nano-constructs
in synergistic delivery of anti-breast cancer drugs and genistein by inhibition of breast
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arterial calcifications. These findings could lead to possibility of finding new combinations
of chemotherapeutic drugs, along with anti-angiogenic genistein using nanoparticles [73].

4.6. Effect of Genistein on Cancer Stem Cells

Modification in mammosphere-formation capability in breast cancer stem cells was
found to be a tumoricidal targeting mechanism of genistein [74,75]. Amphiregulin released
from ER+ cells activate the PI3K/Akt and MEK/ERK signaling pathways, which are
connected to the mammosphere differentiation induction [74]. With the upregulation
of PTEN, the signaling pathways may be inhibited, which may be a relevant pathway
through which stem cells or progenitor cells may be controlled and breast cancer can be
repressed [75]. Dietary exposure to genistein was found to be associated with reduced
body weight, as well as adiposity in rodent models due to increased mammary tumor
suppressors PTEN and E-cadherin expression [76]. Adipocyte differentiation was found to
be mediated by Erβ signaling via a linear pathway that involves the activation of the Erβ
and PPARγ expression [76]. Furthermore, the Hedgehog-Gli1 signaling pathway, which
when blocked, lowers stem cell survival by reducing the proteins SMO and/or Gli1, has
been found to be dysregulated in breast cancer stem cells [77].

4.7. Gene Regulation

Another mechanism by which genistein impacts breast cancer is through gene regu-
lation. Genes involved in cell salvage were found to be increased, while genes involved
with signaling pathways, cell proliferation, and differentiation were shown to be down-
regulated [41]. Stress response, transcription, and salvage pathway enzyme genes were
all upregulated, implying that genistein is implicated in the activation of the salvage re-
sponse. Genistein’s anti-proliferative properties could be attributed to the stress response
pathway [78]. Heat shock proteins, also known as molecular chaperones, are thought to
be important for cells’ adaptability to environmental changes. The induction of HSP as
a result of a stress response may govern apoptotic control. Dysregulated genes include
the Serum response factor (SRF), Disabled homolog 2 (DOC 2) and Fms-related tyrosine
kinase 1 (flt-1) [41]. Genistein dysregulated the SRF protein, a transcription factor, and
mRNA expression in a dose-dependent manner [41]. It has been proposed that genistein’s
inhibitory activity is due to the suppression of ER- and insulin-like growth factor-arbitrated
pathways in MCF-7 cells via dysregulation of SRF expression, as SRF regulates growth
factors and estrogen’s non-genomic activities [79,80].

Furthermore, downregulation of genes associated with the replication of DNA such
as the replication factor C 4, VJ reintegration of immunoglobulin, and T-cell genes such
as the recombination activating gene 1, apoptosis, and mitochondrial synthesis of DNA
occurs with treatment of genistein [41]. The downregulation of RFC4 and subsequent
replication of DNA led to the identification of mechanism for the reduction in S-phase of
cell-division [41]. However, the main role of all the dysregulated genes in mediating the
inhibitory action of genistein remains to be determined.

The development and progression of cancer is greatly affected by cytochrome P450
1B1 (CYP1B1) via activation of estrogens and carcinogens [81]. Genistein was found to
induce the CYP1B1 gene expression and hence stimulate ROS production and breast cancer
cell proliferation [82]. However, more detailed studies are required in order to further
assess the role played by genistein, as well as cytochrome P450 in breast cancers.

Genistein is thought to regulate epigenetic processes and thus influence gene transcrip-
tion. Due to aryl hydrocarbon receptor antagonism, administration of genistein into adult
female rats during conception resulted in reduced methylation of CpG in the BRCA1 gene,
as evidenced by a reduction in Cyp1b1 expression, a possible aryl hydrocarbon receptor
target. Cell culture research on triple negative breast cancer cells with overexpression
of active aryl hydrocarbon receptor backed up this finding. Genistein has been shown
to subdue BRCA1 expression by demethylating the BRCA1 promoter [18,47,83]. All this
data has been consistent with the other epidemiological reports available regarding the
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consumption of soy products and incidence of breast cancer [37]. Genistein treatment
to BRCA1 silenced breast cancer cells, led to downregulation of GPR30 expression and
the inhibition of Akt phosphorylation which induced downregulation of B1 expression,
leading to cell-cycle arrest. Furthermore, the treatment also led to diminished ROS levels
via upregulation of Nrf2 expression [84].

In silico studies explained that the negative effect of genistein on DNA methyltrans-
ferase may be due to competitive binding of genistein with hemi-methylated DNA at the
catalytic sites of DNA (cytosine-5)-methyltransferase 1 [46,47]. Genistein has also been
shown to activate the Wnt signaling pathway. In breast cancer cells, genistein treatment
increased phosphorylation of βcatenin, causing it to be restricted to the cytoplasm along
with downregulation of Wnt signaling and related genes such as cyclinD1 and cMyc [85].
This was proven in in vivo and in vitro studies which concluded that genistein was respon-
sible for the inhibition activity of DNA methyltransferase (DNMT) [18], downregulation of
DNA methylation, and DNA (cytosine-5)-methyltransferase 1 by its ability to demethylate
and reactivate methylation-silenced tumor repressor genes [46].

Another avenue of genistein’s anti-breast cancer function could be the downregulation
of the estrogen receptor and its associated vascular endothelial growth factor (VEGFR).
Genistein inhibits estrogen receptor expression and the processes that leads to it. VEGFR-2
expression is lowered when the estrogen receptor is inhibited [41]. Furthermore, along
with enterolactone, genistein was also found to inhibit estradiol-mediated expression
of VEGFR-2 [86]. Both the csf1 and VEGFR-dependent pathways have been implicated
via the downregulation of DOC2 [41]. As a result, angiogenesis-related genes could be
genistein’s target. In an estrogen-rich environment, breast cancer cells from young or early
postmenopausal women were discovered to use genistein as a replacement to grow and
survive [87]. However, when breast cancer cells grew in estrogen-negative environment,
i.e., in postmenopausal women, a high level of genistein was found to instigate apoptotic
cell death [87]. In a 2014 clinical trial, 140 women with breast cancer at the early stages were
haphazardly assigned to one of two groups and given genistein or placebo for a month.
There was an over-expression of tyrosine kinase, the EGFR2 receptor, and other genes
that control the cell cycle [88]. The dose-dependent nature of genistein, the time period of
study, and the age range of the included women in the studies are all important factors
to consider when designing and interpreting clinical studies, as evidence suggests that
early postmenopausal women produced different results than late menopausal women.
One study found that dietary soy consumption affected gene expression differently than
purified genistein [89] and provided strong proof about the difference in results after
consumption of pure isoflavone versus soy flour, which may need to be considered during
further studies.

4.8. Genistein and miRNA

In response to genistein administration, oncogenic miR-155 is repressed when cell
viability reduces, whereas FOXO3, casein kinase, PTEN, and p27, the pro-apoptotic and
anti-cell proliferative targets, are elevated [49,90]. As a result, miR-155 downregulation
concomitantly aids in mammary cancer repression. Another micro-RNA, miR-23b, has been
found to influence cytoskeletal rearrangement and contribute to PAK2-induced decreased
invasion [50].

4.9. Genistein and Estrogen

Genistein, along with anti-estrogenic and anti-cancer properties, has also been noted
to possess estrogen-like properties [91]. Given the structural similarity between genistein
and estrogen, in circulation, it may exhibit a number of activities mimicking estrogen.
It is known to act on both estrogen receptors α and β through the classical genomic
mechanism [92]. However, it differs from estrogen in its preference for ER β.

So far, many meta-analyses which have been published have not been able to consis-
tently conclude the nature of the relationship between genistein and breast cancer. While
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some reports suggest the protective effect of soy consumption in premenopausal women
compared to postmenopausal women, others have concluded no association between
menopausal status, genistein, and breast cancer [93–95]. Yet other studies have suggested
the protective effect of genistein, however, only in postmenopausal women [96]. Some
studies have also suggested that due to difference in the levels of estrogen, the effects
of menopausal status (i.e., premenopausal and postmenopausal women) play a modify-
ing role in genistein—breast cancer association [97]. Furthermore, it has been suggested
that genistein may be associated with increased survival rates in ER negative, ER+, and
postmenopausal patients [98]. Some studies have found genistein-induced cell death in
breast cancer cells irrespective of the presence or absence of estrogen [45,99]. A large study
including breast cancer diagnosed Asian and American women found that consumption of
soy every day significantly declined breast cancer reoccurrence as well as non-significantly
reduced the risk [91]. Further conflicting evidence has been documented reporting that
a subset of the population might be adversely affected through gene expression. Gene
expression because of soy intake is characterized by an overexpression of FGFR2 and
genes that drive cell cycle and proliferation pathways. However, the study period or the
consumption period was for 1–4 weeks, which may be a drawback because patients might
consume soy proteins for years [47,88].

Because genistein can only weakly bind to the estrogen receptor, it interfered with
the binding inside estrogen molecules, causing ER-dependent pathways to be impacted
in a dose-dependent manner [45,100,101]. In a dose-dependent manner, genistein could
also stop the growth inhibition caused by aromatase inhibitor fadrozole [102]. ER α

mRNA and protein expression in human breast cancer cells was found to be inhibited with
sufficient doses [41]. Because estrogen is a primary promoter of breast cancer tumor growth,
inhibiting it with genistein allows its consequences to be reduced, resulting in a reduction in
tumor cell growth. Genistein has a greater affinity for Erβ than Erα, providing a powerful
feature of control of breast cancer development. Genistein enhanced c-fos expression
both through ER α and through the G protein-coupled receptor homologue in an ER-
independent way, as seen in ER α-positive MCF7 and ER-negative SKBR3 breast cancer
cells. c-fos proto-oncogene expression may be considered an early sensor of estrogenic
activity in cells [103]. Further, study into the effect of genistein on the inflammation of
cancerous cells with various different receptors α (ERα) and β (ERβ) ratio revealed that
genistein could modulate inflammatory-related genes though the help of ER [104].

Using transcriptomics and qualitative proteomics, the effects of ERα and ERβ on
gene and protein expression in T47D cells treated with genistein were studied, revealing
an interplay between focal adhesin kinase, actin, and integrins in signaling pathways in
cells with lower levels of Erα and depleted levels of ERβ. Further, in cells expressing
Erα, genistein was found to induce signatures of transcriptomics and proteomics which
signaled rapid cell growth and migration. ERβ led to a decrease in motility of cells and
cancer potential [105]. Other works have pointed towards the possibility that genistein
modulates oxidative stress in cells according the ERα and Erβ ratios, causes cell cycle
arrest, and leads to increased function of mitochondria and upregulation of uncoupling
protein 2 and sirtuins [106,107].

4.10. Exposure to Genistein in Early Developmental Stages

Various studies have proven that exposure to genistein early in life may reduce
the incidence of breast cancer [108]. Mammary terminal end buds are ducts found in
young animals that include a large number of undifferentiated cells that are vulnerable
to carcinogens. When young rats were given genistein, the number of terminal end buds
dropped while the number of lobules increased [109,110]. Researchers determined that pre-
pubertal and adult exposure to chemically produced breast cancer in genistein-protected
rats must occur between birth and the pre-pubertal period of mammary gland development
for genistein to be protective [111]. Researchers have concluded that genistein operates as
a chemo-preventive drug during the pre-pubertal stage, which they believe corresponds
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to the teenage period in human life [111]. Through these studies, the cellular mechanism
of action of genistein has been observed to be through increased cell differentiation of the
breast [111,112].

4.11. Clinical Trials

Despite the vast number of studies to understand the association of genistein with
breast cancer, for the clinical application of genistein as a promising anti-cancer therapeutic
agent, its mechanisms and targets need to be understood better. So far, genistein has
been utilized in a number of human clinical trials for the treatment of cancer. Phase I
and II clinical trials checking the efficacy of genistein combined with FOLFOX for treat-
ment in colorectal cancer have documented a safe and tolerable use with notable results,
warranting further clinical trials for use of genistein in combination with other drugs in
cancer chemoprevention [113]. Similarly, phase II trials studying the efficacy of genistein in
bladder cancer have noted a bimodal effect of genistein, being effective at lower doses and
warranting further trials of genistein in synergy with other drugs [114]. Three clinical trials
including the use of genistein in the treatment of breast cancer have been completed so
far [115]. A phase I double-blinded trial evaluating the effect of soy isoflavone consumption
for 84 days in healthy postmenopausal women concluded that its consumption was safe
even at 900 mg per day [116]. More clinical trials examining the effects of genistein on
women at early- and late-postmenstrual ages, as well as men, may be deemed necessary to
gain more insight on the effects of genistein.

5. Conclusions

In summary, this article explores the various evidences of genistein being responsible
for prevention, retardation, or blockage of breast cancer development. As per pre-clinical
and clinical evidence, genistein exhibits clear dose-dependent anti-breast cancer effects
achieved via a number of different molecular pathways, and based on these indications, it
may be hypothesized that genistein could be a potent anti-breast cancer agent.
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