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Diabetic cardiomyopathy (DCM) is a disorder of the myocardium in diabetic patients, which is one of the critical complications of
diabetes giving rise to an increased mortality. However, the underlying mechanisms of DCM remain incompletely understood
presently. This study was designed to screen the potential molecules and pathways implicated with DCM. GSE26887 involving 5
control individuals and 7 DCM patients was selected from the GEO database to identify the differentially expressed genes
(DEGs). DAVID was applied to perform gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses. A protein-protein interaction (PPI) network was also constructed to visualize the interactions among these DEGs. To
further validate significant genes and pathways, quantitative real-time PCR (qPCR) and Western blot were performed. A total of
236 DEGs were captured, including 134 upregulated and 102 downregulated genes. GO, KEGG, and the PPI network disclosed
that inflammation, immune disorders, metabolic disturbance, and mitochondrial dysfunction were significantly enriched in the
development of DCM. Notably, IL6 was an upregulated hub gene with the highest connectivity degree, suggesting that it may
interact with a great many molecules and pathways. Meanwhile, SOCS3 was also one of the top 15 hub genes in the PPI
network. Herein, we detected the protein level of STAT3 and SOCS3 in a mouse model with DCM. Western blot results showed
that the protein level of SOCS3 was significantly lower while phosphorylated-STAT3 (P-STAT3) was activated in mice with
DCM. In vitro results also uncovered the similar alterations of SOCS3 and P-STAT3 in cardiomyocytes and cardiac fibroblasts
induced by high glucose (HG). However, overexpression of SOCS3 could significantly reverse HG-induced cardiomyocyte
hypertrophy and collagen synthesis of cardiac fibroblasts. Taken together, our analysis unveiled potential biomarkers and
molecular mechanisms in DCM, which could be helpful to the diagnosis and treatment of DCM.

1. Introduction

Diabetic cardiomyopathy (DCM) is a common cardiac
dysfunction which affects approximately 12% of diabetic
patients, giving rise to overtly higher cardiovascular morbid-
ity and mortality than those without glycemia [1]. DCM is
featured by ventricular diastolic and (or) systolic dysfunction
occurring in patients with type 1 or type 2 diabetes indepen-
dent of hypertension, coronary artery disease (CAD), and
other cardiovascular diseases [2]. The pathogenesis of DCM
is a multistep process, which is implicated with the alter-
ations of various vital events, including mitochondrial dys-
function, altered lipid metabolism, endoplasmic reticulum

stress, oxidative stress, inflammation, and epigenetic changes
[3, 4]. Evidence is mounting that the occurrence and progres-
sion of DCM are triggered by the abnormal expression or
mutation of genes, such as S6 kinase 1 (S6K1) [5], CD36
[6], peroxisome proliferator-activated receptor-α (PPAR-α)
[7], and protein kinase C (PKC) [8]. Currently, the diagnosis
of DCM in clinics mainly relies on the serum natriuretic pep-
tide (NAPP) level and other noninvasive tests involving elec-
trocardiography, to clarify ventricular overload; X-ray, to
evaluate fluid accumulation; and conventional cardiac ultra-
sound, to figure out cardiac structure and function. However,
these methods for DCM diagnosis lack the specificity and
efficiency; it was thus difficult for us to obtain early and
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accurate diagnosis as well as treatment, so some patients with
DCM missed the best opportunity for treatment, thereby
increasing death risk [1]. Hence, identifying the specific and
sensitive genes or proteins which can help us confirm the
patients with DCM as early as possible is of vital significance,
not only for more accurate diagnosis, better treatment, and
ideal prognosis but also for an overall understanding of the
molecular mechanisms underlying DCM.

Bioinformatic analysis and gene expression profiling
analysis have enabled us to screen molecular markers among
healthy individuals and patients, which provides novel
insights into diseases at multiple levels ranging from the
alterations of copy number at the genome level to gene
expression at transcriptome level, and even epigenetic alter-
ations. However, in fact, the application of these microarrays
has not gained popularity as expected in clinics because of
an overwhelming amount of genes identified by gene profil-
ing, lack of validation or repeatability, and intricate statisti-
cal analyses [9–11]. Therefore, for the purpose of putting
these expression profiles in clinical practice as quickly as
possible, it is of necessity to validate a suitable amount of
genes and develop a proper and ideal approach which could
be operated routinely.

In the current study, the gene expression profile of
GSE26887 was downloaded from the Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and
analyzed using the GEO2R online tool to comprehensively
identify the differentially expressed genes (DEGs) between
DCM and healthy individuals. Furthermore, we also ana-
lyzed the gene ontology (GO) involving biological process
(BP), molecular function (MF), cellular component (CC),
and KEGG pathways of these DEGs. Subsequently, we car-
ried out a protein-protein interaction (PPI) network of these
DEGs and chose the top 15 hub genes with a high degree of
connectivity. Meanwhile, we also re-identified the top 15
hub genes by PCR and Western blot.

2. Materials and Methods

2.1. Microarray Data. We obtained the microarray of
GSE26887 from the National Center for Biotechnology
Information (NCBI) GEO database, which is a free and pub-
licly available database [10]. The GSE26887 dataset possesses
24 samples in all, containing 5 normal individuals, 7 patients
with diabetic cardiomyopathy, and 12 nondiabetic-heart fail-
ure patients with ischemic cardiomyopathy, which was based
on the GPL6244 platform [HuGene-1_0-st] Affymetrix
Human Gene 1.0 ST Array [transcript (gene) version] by
Greco et al. We also downloaded the Series Matrix File of
GSE26887 from the GEO database in Pubmed. All of these
cardiac tissues were acquired from the vital, noninfarcted
zone derived from patients with dilated hypokinetic postis-
chemic cardiomyopathy in surgical ventricular restoration.
Inclusion criteria of the diabetic group for this microarray
were blood glucose ≥126mg/dL, previous type 2 diabetes
mellitus (T2DM) diagnosis, or receiving antidiabetic therapy,
and those for the nondiabetic group were blood glucose
<100mg/dL and HbA1c n.v. 4.8–6.0%. Additionally, heart
failure patients were matched for ejection fraction (LVEF),

end systolic volume (ESV), sex, age, smoke habits, ethnic
distribution, body mass index (BMI), hypertension, and glo-
merular filtration rate. The gene expression profile was
assessed by Affymetrix GeneChip Human Gene 1.0 ST array
using total RNA extracted from the above samples.

2.2. Identification of DEGs. We screened the DEGs between
DCM and healthy samples using GEO2R (http://www.ncbi.
nlm.nih.gov/geo/geo2r), an interactive analysis tool for the
GEO database on the basis of R language. Consistent with
the previous criteria [12, 13], we defined the genes with log
FC < −1 (downregulated genes) or logFC > 1 (upregulated
genes) as differentially expressed. Meanwhile, the adjusted
P value < 0.05 was regarded statistically different, aiming at
reducing the false positive rate. Furthermore, after down-
loading the relatively raw TXT data, we also applied visual
hierarchical cluster analysis to display the volcano plot and
heat map of DCM and healthy samples using ImageGP
(http://www.ehbio.com/ImageGP/index.php/Home/Index/
index.html).

2.3. Protein-Protein Interaction (PPI) Network. The PPI net-
work could identify the core hub genes and key gene modules
between healthy individuals and patients [14]. Firstly, we
used the Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING), which is a well-known database contain-
ing the predicted and recognized protein interactions
(https://string-db.org/), to identify the PPI association. Sub-
sequently, we applied Cytoscape software platform on the
basis of the PPI associations to construct the PPI network.
Top 15 hub genes were selected according to the ranking
order of connectivity degree.

2.4. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Pathway Analysis. GO analysis can
annotate a collection of genes with functions involving
molecular function (MF), cellular components (CC), and
biological process (BP) [15]. The KEGG pathway is a group
of databases which could hint biological pathways of certain
genes implicated with diseases and drugs. KEGG in essence is
a resource for us to receive an integrated understanding of
biological functions and even some advanced genome infor-
mation [16]. The GO and KEEG analysis in our study was
performed by the Database for Annotation, Visualization
and Integrated Discovery (DAVID, http://david.ncifcrf.gov)
(version 6.7), an online biological function database inte-
grating considerable biological data and analysis tools [17].
P < 0 05 should be the cut-off criterion. We also used Ima-
geGP to construct the enrichment plots, aiming to visualize
the BP, MF, CC, and KEGG pathways of these DEGs.

2.5. Animals. All animal experimental procedures in this
study were approved by the Animal Care and Use Committee
of Renmin Hospital of Wuhan University and were per-
formed in accordance with the Care and Use of Laboratory
Animals published by the US National Institute of Health
(Revised 2011). Both male type 2 diabetic (db/db) (n = 8)
and WT mice (n = 8) (8–10 weeks) weighing 25.2± 2 g were
purchased from the Institute of Laboratory Animal Science,
Chinese Academy of Medical Sciences (Beijing, China).
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2.6. Quantitative Real-Time PCR (qPCR). The mice were
sacrificed by injecting excessive sodium pentobarbital.
Whereafter, the left ventricles of mice were collected for fur-
ther RNA detection. Total RNAwas isolated using the TRIzol
(Invitrogen, Carlsbad, CA, USA) assay, the concentrations
and purities of which were quantified using an ultraviolet
spectrophotometer. The RNA was then reversely transcribed
according to the previous description [18]. The expression
levels of top 5 upregulated genes and top 5 downregulated
genes were normalized to GAPDH. Relative mRNA expres-
sion levels were analyzed by the 2−ΔΔ cycle threshold (CT)
method. The primer sequences are displayed in Table S1.

2.7. Western Blot. Protein extraction, SDS-PAGE, and immu-
nodetection of the cardiac tissues were all performed accord-
ing to our previous research. Protein expression levels were
normalized to the matched total proteins or GAPDH [19].

2.8. Cell Culture and Treatment.Neonatal rat cardiomyocytes
and neonatal rat cardiac fibroblasts were isolated according
to the previous study [20]. Cardiomyocyte hypertrophy was
evaluated by anti-α-actinin immunofluorescence staining
while the phenotypic change of cardiac fibroblasts was evalu-
ated by anti-α-SMA immunofluorescence staining. For cell
transfection, replication-defective adenoviral vectors were
employed to upregulate the expression of SOCS3. After infec-
tion, cardiomyocytes and cardiac fibroblasts were incubated
with a high-glucose concentration (33mM glucose) while
the normal group was exposed to a normal glucose concen-
tration (5.5mM glucose).

2.9. Statistical Analysis. The obtained data were presented as
mean ± SD (standard deviation) and assessed by the two-
tailed Student’s t-test. A difference of P < 0 05 was consid-
ered statistically significant.

3. Results

3.1. Identification of DEGs. The overall flow diagram of our
study is presented in Figure 1. In this study, a total of 5 nor-
mal individuals and 7 patients with DCM were analyzed. We
applied the GEO2R online analysis tool with default param-
eters to screen the DEGs, using adjusted P value < 0.05 and
logFC ≤ −1 or logFC ≥ 1 as the cut-off criteria. After analyz-
ing GSE26887, 236 DEGs were captured, including 134
upregulated genes and 102 downregulated genes. The expres-
sion proportion of these DEGs is displayed in the volcano
plot (Figure 2(a)). The heat map represented the top 25
upregulated genes and top 25 downregulated genes between
patients with DCM and healthy individuals (Figure 2(b)).
Among these 236 DEGs, the top 5 upregulated genes
involved NPPA, SFRP4, DSC1, NEB, and FRZB while the
top 5 downregulated genes were SERPINE1, SERPINA3,
ANKRD2, XRCC4, and S100A8. The gene tiles and biologi-
cal functions of these 10 genes are displayed in Table 1.

To ensure the credibility of the microarray of GSE26887
and obtain further credible analysis, we re-identified the top
5 upregulated genes and top 5 downregulated genes via qPCR
in vivo and in vitro. The results of echocardiography, hema-
toxylin and eosin (H&E) staining, and picrosirius red (PSR)

indicated that the DCMmodel of db/dbmice was constructed
successfully (Figure S1A–B). The results from PCR demon-
strated that the mRNA expression levels of NPPA, SFRP4,
DSC1, NEB, and FRZB were significantly higher in the
DCM group compared to the healthy group while the mRNA
expression levels of SERPINE1, SERPINA3, ANKRD2,
XRCC4, and S100A8 in the DCM group were statistically
lower than those in the healthy group (Figures 3(a)–3(j)).
Also, we detected the expression levels of these genes in car-
diomyocytes and cardiac fibroblasts, respectively. In cardiac
fibroblasts, the alterations of the ten genes were consistent
with the mouse model (Figure S2A–B). Intriguingly, the
expression level of ANKRD2 in cardiomyocytes displayed
no significant difference between the normal group and the
HG group. In spite of this, other nine genes in cardiomyo-
cytes had a similar variation trend with the mouse model
and cardiac fibroblasts (Figure S2C–D). One the one hand,
these results increased the credibility of this microarray.
On the other hand, these DEGs with the most significant
difference may be the promising candidates in clinics to
diagnose DCM.

3.2. GO Enrichment Analysis. The results from GO term
enrichment analysis varied from expression alterations and
GO classification of these DEGs. By analyzing GO enrich-
ment of these upregulated DEGs and downregulated DEGs
via DAVID, we discovered that the upregulated DEGs in BP
were mainly enriched in the G-protein-coupled purinergic

Search for GEO data of DCM 
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Figure 1: Flow diagram of the analysis procedure: data collection,
preprocessing, analysis, and validation.
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nucleotide receptor signaling pathway, fatty acid metabo-
lism, mitochondrial membrane potential, extracellular
matrix organization, and mitochondrial permeability transi-
tion while the downregulated DEGs in BP were enriched in
inflammatory response, lipid intake, response to drug,
immune response, and platelet degranulation. As for CC,
the upregulated DEGs were principally enriched in the inte-
gral component of the membrane, plasma membrane, extra-
cellular exosome, extracellular space, and extracellular
region while the downregulated DEGs were enriched in
the plasma membrane, extracellular space, extracellular
region, extracellular exosome, and endoplasmic reticulum

membrane. Additionally, MF analysis uncovered that the
upregulated DEGs were principally enriched in zinc ion
binding, calcium ion binding, heparin binding, collagen
binding, and NADP binding. The downregulated genes
were responsible for protein binding, mitochondrial uncou-
pling, cytokine activity, actin binding, and phosphatase
activity (Table 2 and Figures 4(a)–4(c)).

3.3. KEGG Pathway Analysis. To acquire more comprehen-
sive information regarding the vital pathways of those
selected DEGs, KEGG pathways were also analyzed via
DAVID. The results in Table 3 and Figure 4(d) unveiled
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Figure 2: Volcano plot and heat map of the differentially expressed genes (DEGs) between normal samples and patients with diabetic
cardiomyopathy (DCM). (a) Volcano plot of genes detected in DCM. Green means downregulated DEGs; red means upregulated DEGs;
blue means no difference. (b) Heat map of top 25 upregulated DEGs and top 25 downregulated DEGs.
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the most important KEGG pathway of the downregulated
and upregulated DEGs. The downregulated DEGs were
mainly enriched in the PI3K-Akt signaling pathway, MAPK
signaling pathway, HIF-1 signaling pathway, TNF signaling
pathway, and Toll-like receptor signaling pathway. By
contrast, the upregulated DEGs, namely, FMO4, FMO2,
FMO3, ADH1B, and UGT2B4, had a strong correlation with
drug metabolism-cytochrome P450.

3.4. PPI Analysis. Applying the STRING online tool, 120
nodes with 162 PPI relationships were identified, which
accounted for approximately 90.3% of these selected DEGs
(Figure 5(a)). Based on the degree of connectivity, we con-
structed the PPI network and selected the top 15 hub genes
(Table 4). The top 15 hub genes, possessing high degree of
connectivity in DCM, are as follows: IL6, MYC, ACTA2,
SERPINE1, ASPN, SPP1, KIT, TFRC, FMOD, PDE5A,
MYH6, FPR1, C3, CDKN1A, and SOCS3. Among these 15
hub genes, IL6, MYC, SERPINE1, SPP1, TFRC, MYH6,
FPR1, C3, CDKN1A, and SOCS3 were significantly down-
regulated while ACTA2, ASPN, KIT, FMOD, and PDE5A
were upregulated. The 15 hub genes could interact with 189
genes directly, and IL6 acted as the most intensive gene
which could interact with 32 downregulated genes and 15
upregulated genes. Intriguingly, among these, hub genes also
displayed strong interactions (Figure 5(b)). For instance,
ACTA2 could directly interact with multiple genes (FMOD,
IL6, MYH6, MYC, and ASPN), and SPP1 interacted with 4
hub genes (KIT, IL6, MYC, and SERPINE1). The details of
the interactions among these 15 hub genes are shown in
Table 5. Taken together, these results suggested that these
hub genes, especially IL6, ACTA2 as well as SPP1 may exert
critical effects in DCM.

3.5. Functional Analysis. To figure out the role of the IL-
6/STAT3/SOCS3 signaling pathway in the development of
DCM, we detected the protein expression levels of SCOS3,
phosphorylated-STAT3 (P-STAT3), and total STAT3
between the normal group and the db/db group. The results
showed that P-STAT3 had a significantly higher expression
level in theDCMgroup compared to thenormal group.Mean-
while, the level of SCOS3 was significantly downregulated

in the DCM group (Figure 6). To further explore the role
of the IL-6/STAT3/SOCS3 signaling pathway in cardiomyo-
cytes and cardiac fibroblasts stimulated by HG, we firstly
detected the mRNA expression of SOCS3 in cardiomyocytes
and cardiac fibroblasts. As expected, the levels of SOCS3 in
both cardiomyocytes and cardiac fibroblasts were signifi-
cantly lower in the HG group compared with the normal
group (Figures 7(a) and 7(b)). Additionally, immunofluo-
rescent staining showed that the hypertrophic reactions of
cardiomyocytes and phenotypic switching of cardiac fibro-
blasts were significantly abolished after SOCS3 was upre-
gulated (Figures 7(c) and 7(d)). Meantime, hypertrophic
markers and fibrotic markers were also decreased by the
overexpression of SOCS3, evidenced by the lower levels of
ANP, BNP, collagen I, and collagen III (Figures 7(e) and
7(f)). Western blot showed that the overexpression of SOCS3
could inhibit the phosphorylation of STAT3 (Figures 7(g)
and 7(h)).

4. Discussion

Diabetes mellitus has been broadly regarded as one of the
leading causes of morbidity and mortality for several decades
worldwide. According to estimates, by 2030, there will be
approximately 450 million persons with diabetes. DCM
serves as the major etiological factor and death cause of
patients with diabetes, the incidence of which has increased
over recent years [21]. However, currently, there is no spe-
cific and efficient diagnostic methodology and treatment
strategy for DCM, which is partially because of the compli-
cated molecular mechanisms, as well as its being asymptom-
atic for the first several years [2]. Hence, some key diagnostic
biomarkers and therapeutic targets in plasma andmyocardial
biopsy should be verified as early as possible. Although myo-
cardial biopsy is not as routine as that in tumors, it does not
mean that it makes no sense to perform myocardial biopsy.
Takeishi and Yoshihisa retrospectively analyzed 378 patients
with suspected cardiomyopathy who underwent myocardial
biopsy and found that the diagnostic impact of myocardial
biopsymaybe relatively high inpatientswith suspectedhyper-
trophic cardiomyopathy compared to those with suspected
dilated cardiomyopathy [22]. Additionally, in patients with

Table 1: The top 5 upregulated and downregulated differentially expressed genes in patients with diabetic cardiomyopathy.

DEGs Gene title Gene symbol LogFC Biological function

Upregulated

Natriuretic peptide A NPPA 3.53 Extracellular fluid volume and electrolyte homeostasis

Secreted frizzled related protein 4 SFRP4 2.71 Soluble modulators of Wnt signaling

Desmocollin 1 DSC1 2.44 Calcium-dependent glycoprotein

Nebulin NEB 2.4 Cytoskeleton

Frizzled-related protein FRZB 2.36 Soluble modulators of Wnt signaling

Downregulated

Serpin family E member 1 SERPINE1 −2.48 Inhibitor of fibrinolysis

Serpin family A member 3 SERPINA3 −2.44 Anti-inflammatory and antioxidant effects

Ankyrin repeat domain 2 ANKRD2 −2.16 Modulator of NF-κB-mediated inflammatory

X-ray repair cross-complementing 4 XRCC4 −2.05 DNA repair

S100 calcium-binding protein A8 S100A8 −1.98 Regulating inflammation and oxidative stress,
activatingTLR4 signaling
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arrhythmogenic right ventricular cardiomyopathy (ARVC),
Yoshida et al. detected the expression of plakoglobin and
connexin 43 in myocardial biopsy specimens and confirmed
the correlations between the levels of these 2 proteins and the
development of ARVC, indicating that plakoglobin and con-
nexin 43 are two specific biomarkers of arrhythmic events in
ARVC [23]. Furthermore, the combination of cardiac mag-
netic resonance (CMR) imaging and myocardial biopsy
may also improve the diagnostic value in the evaluation of

cardiomyopathic conditions [24]. The above studies further
supported the potential of myocardial biopsy in diagnosis
of DCM. In this study, we firstly performed a comprehensive
investigation on expression profiling of myocardial tissue
obtained from patients with DCM. Our study included 5 nor-
mal individuals and 7 patients with DCM from the GEO
database of GSE26887. In our analysis, a total of 236 DEGs
(accounting for 2.6% of all genes) were found, involving
134 upregulated genes and 102 downregulated genes. By
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Figure 3: Validation of top 5 upregulated and top 5 downregulated DEGs in the mouse model of DCM. (a–e) NPPA, SFRP4, DSC31, NEB,
and FRZB were significantly upregulated in the DCM group. (f–j) SERPINE1, SERPINA3, ANKRD2, ANKRD2, and S100A8 were
significantly downregulated in the DCM group. ∗P < 0 05 versus normal group.
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further annotating and analyzing these DEGs, we identified
10 sensitive biomarkers and top 15 hub genes among these
DEGs. Additionally, we also speculated the putative mecha-
nisms of SOCS3 contributing to DCM by Western blot.

4.1. The Production of IL6 Is Essential for the Development of
DCM. IL6 is a critical cytokine exerting multiple physiologi-
cal effects in inflammation and immune regulation, which
could be secreted by a range of cell types including mono-
cytes, mast cells, lymphocytes, macrophages, endothelial
cells, keratinocytes, tumor cell lines, and fibroblasts [25]. In
the innate immune system and adaptive immunity, IL6 stim-
ulation could trigger different biological activities [26]. For
example, in innate immunity, IL6 could accelerate the pro-
duction of neutrophils as well as the synthesis of acute-
phase proteins, thus giving rise to acute-phase response while
in adaptive immunity, IL6 stimulation could increase the
proliferation of B cells [27]. Notably, IL-6 pretreatment

increased collagen production in cultured cardiac fibroblasts
and promote interstitial fibrosis in Ang II-induced rat heart
[28, 29]. Zhang et al. demonstrated that deletion of IL-6 pre-
served cardiac function and mitigated the interstitial fibrosis
in streptozotocin-induced diabetic mice, the mechanism of
which may involve the inhibitory effects of IL-6 on TGFβ1
and miR-29 pathway [30]. Clinical trials also disclosed a
strong correlation between elevated levels of circulating IL6
and heart failure severity and mortality in patients [31]. In
our study, IL6 was an upregulated hub gene with the highest
connectivity degree, indicating that IL6 may exert a core and
predominant role in the development of DCM. Additionally,
according to KEGG analysis, IL6 was significantly enriched
in the PI3K/Akt signaling pathway, hypoxia-inducible
factor-1 (HIF-1) signaling pathway, TNF signaling pathway,
and Toll-like receptor signaling pathway. The previous study
has demonstrated that HIF-1 deregulation during the early
stage of diabetes gave rise to the development of DCM

Table 2: Gene ontology analysis of differentially expressed genes in patients with diabetic cardiomyopathy.

Expression Category Term Count %

Upregulated

GOTERM_BP_DIRECT
GO:0035589~G-protein-coupled purinergic

nucleotide receptor signaling pathway
9 0.05

GOTERM_BP_DIRECT GO:0007155~fatty acid metabolism 8 0.05

GOTERM_BP_DIRECT GO:0001501~mitochondrial membrane potential 6 0.04

GOTERM_BP_DIRECT GO:0030198~extracellular matrix organization 6 0.04

GOTERM_BP_DIRECT GO:0007409~mitochondrial permeability transition 5 0.03

GOTERM_CC_DIRECT GO:0016021~integral component of membrane 42 0.25

GOTERM_CC_DIRECT GO:0005886~plasma membrane 37 0.22

GOTERM_CC_DIRECT GO:0070062~extracellular exosome 29 0.17

GOTERM_CC_DIRECT GO:0005615~extracellular space 22 0.13

GOTERM_CC_DIRECT GO:0005576~extracellular region 20 0.11

GOTERM_MF_DIRECT GO:0008270~glucose transporter 13 0.08

GOTERM_MF_DIRECT GO:0005509~calcium ion binding 11 0.07

GOTERM_MF_DIRECT GO:0008201~heparin binding 7 0.05

GOTERM_MF_DIRECT GO:0005518~collagen binding 5 0.03

GOTERM_MF_DIRECT GO:0050661~NADP binding 4 0.03

Downregulated

GOTERM_BP_DIRECT GO:0006954~inflammatory response 11 0.07

GOTERM_BP_DIRECT GO:0008284~lipid intake 9 0.06

GOTERM_BP_DIRECT GO:0042493~response to drug 6 0.04

GOTERM_BP_DIRECT GO:0006955~immune response 6 0.04

GOTERM_BP_DIRECT GO:0002576~platelet degranulation 5 0.04

GOTERM_CC_DIRECT GO:0005886~plasma membrane 31 0.21

GOTERM_CC_DIRECT GO:0005615~extracellular space 23 0.15

GOTERM_CC_DIRECT GO:0005576~extracellular region 21 0.14

GOTERM_CC_DIRECT GO:0070062~extracellular exosome 21 0.14

GOTERM_CC_DIRECT GO:0005789~endoplasmic reticulum membrane 13 0.09

GOTERM_MF_DIRECT GO:0005515~protein binding 58 0.39

GOTERM_MF_DIRECT GO:0008083~mitochondrial uncoupling 5 0.03

GOTERM_MF_DIRECT GO:0005125~cytokine activity 5 0.03

GOTERM_MF_DIRECT GO:0003779~actin binding 5 0.03

GOTERM_MF_DIRECT GO:0016791~phosphatase activity 3 0.03

GO: gene ontology.
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[32]. In diabetic retinopathy, the expression of proinflam-
matory IL6 and TNF-α were significantly inhibited after
decreasing the expression of HIF-1 [33]. Hence, whether

IL6 could be effectively suppressed via blocking HIF-1 in
DCM, eventually alleviating inflammation in myocardium,
needs to be further explored.
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Figure 4: Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DCM. (a) The enriched GO
terms in the biological process (BP); (b) the enriched GO terms in the cellular component (CC); (c) the enriched GO terms in the
molecular function (MF); (d) the enriched KEGG pathway in DCM.

Table 3: KEGG pathway analysis of differentially expressed genes in patients with diabetic cardiomyopathy.

Category Term Count % P value Genes

Downregulated DEGs

hsa04151:PI3K-Akt signaling pathway 8 0.05 0.01
FGF18, CDKN1A, IL6, FGF7,
TNC, LAMC2, MYC, and SPP1

hsa04010:MAPK signaling pathway 6 0.04 0.03
DUSP5, FGF18, FGF7, MAP2K3,

FLNC, and MYC

hsa04066:HIF-1 signaling pathway 4 0.02 0.03 CDKN1A, IL6, and TFRC

hsa04668:TNF signaling pathway 4 0.02 0.04 IL6, SOCS3, MAP2K3, and SELE

hsa04620:Toll-like receptor signaling pathway 4 0.02 0.04 IL6, LY96, MAP2K3, and SPP1

Upregulated DEGs hsa00982:Drug metabolism-cytochrome P450 5 0.03 0.001
FMO4, FMO2, FMO3,
ADH1B, and UGT2B4

KEGG: Kyoto Encyclopedia of Genes and Genomes; FDR: false discovery rate.
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4.2. Inflammation and Immune Disorders Are Vital
Pathophysiological Alterations of DCM. Another major find-
ing of our study is that the inflammation and immune disor-
ders mediated by cytokines may exert an important role in
DCM [34]. Cardiac inflammation is one of the important fea-
tures in heart failure. Enhanced proinflammatory cytokine
expression levels and intensified immune cell infiltration,
including macrophages and cytotoxic T lymphocytes, have
been previously observed in the inflamed heart in DCM

[35]. The activation of certain molecular pathways including
c-Jun NH2-terminal kinase, NF-κB, and p38-MAPK could
aggravate the development of inflammation which displayed
a strong relationship with insulin resistance, thus inducing
DCM [36–38]. In the diabetic hearts of type 2 diabetes
patients, elevated inflammatory cytokines, such as IL6,
TNF-α, cell adhesion molecules, including vascular cell adhe-
sion molecule-1 (VCAM-1) and intracellular adhesion
molecule-1 (ICAM-1), and acute phase reactants, such as
C-reactive protein and other inflammatory markers, have
been verified [39, 40]. On the other hand, immune disorder
in cardiovascular diseases has been also studied for decades.
Particularly, activation of the immune system is not indepen-
dent of inflammation in the progression of heart failure. In
chronic heart failure, activating the immune system can usu-
ally contribute to the activation of the complement system,
secretion of proinflammatory cytokines, and production and
release of autoantibodies [41]. As for DCM, impaired systolic
and diastolic LV function in the streptozotocin-induced dia-
betes, to a great extent, was correlated with increased immune
cell invasion and adverse cardiac remodeling [42]. Toll-like
receptors (TLRs) are a type of membrane-anchored proteins
existing in various cell types involving immune cells (macro-
phages and lymphocytes) and nonimmune cells (cardiomyo-
cytes) [43, 44]. Cardiac TLRs and inflammasome could
interact with each other, inducing inflammation through
reactive oxygen species overproduction andNF-κB activation
[45]. In our study, the enriched Toll-like receptor signaling
pathway was observed from KEGG analysis, indicating the
vital role of immunity in DCM. Meanwhile, GO analysis
unveiled that the downregulated DEGs were mainly enriched
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Figure 5: Protein-protein interaction (PPI) network. (a) The PPI network of overall DEGs and (b) the PPI network of top 15 hub genes with
high connectivity degree.

Table 4: Top 15 hub genes with higher degree of connectivity.

Gene Degree of connectivity P value

IL6 29 5.48E − 04
MYC 17 3.99E − 03
ACTA2 14 9.78E − 06
SERPINE1 14 1.16E − 02
ASPN 12 9.15E − 03
SPP1 11 4.04E − 02
KIT 11 4.54E − 03
TFRC 9 3.34E − 04
FMOD 9 3.42E − 04
PDE5A 9 2.96E − 04
MYH6 8 1.55E − 03
FPR1 8 1.71E − 06
C3 7 1.18E − 02
CDKN1A 7 3.94E − 04
SOCS3 7 1.02E − 03
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in inflammatory response and immune response. Addition-
ally, we found that the upregulated DEGs were significantly
enriched in the G-protein-coupled purinergic nucleotide
receptor signaling pathway in BP. To our knowledge, the
nucleotides, the fundamental subunits of nucleic acids, are
released by mast cells, macrophages, T cells, endothelial cells,

and platelets in response to physiological activation. The pur-
inergic nucleotide receptor could inhibit the activation of
effector T cells in many allergic diseases [46]. Thus, we
hypothesize that balancing the immune homeostasis by reg-
ulating the nucleotide receptor signaling pathway may be
promised to be a novel strategy to treat DCM. Last but not

Table 5: Gene-specific primers used in quantitative real-time PCR.

Species Genes Sequences

Mouse GAPDH
Forward 5′-ACTCCACTCACGGCAAATTC-3′
Reverse 5′-TCTCCATGGTGGTGAAGACA-3′

Mouse NPPA
Forward 5′-CCCTCCGATAGATCTGCCCT-3′
Reverse 5′-GTCAATCCTACCCCCGAAGC-3′

Mouse SFRP4
Forward 5′-AAAAGCCGTCCAGAGGAGTG-3′
Reverse 5′-GAGGGACTTGTGTTCGAGGG-3′

Mouse DSC31
Forward 5′-GATCAGGCCAGTGGAAATGT-3′
Reverse 5′-GTGTGTTTCGTGCAACCATC-3′

Mouse NEB
Forward 5′-ATCCTGTCCAAACTAAGGCTCG-3′
Reverse 5′-ACCTCTTTAGCATAGTAGTCCGC-3′

Mouse SERPINE1
Forward 5′-GGGTTCACTTTACCCCTCCG-3′
Reverse 5′-TAGGGCAGTTCCACAACGTC-3′

Mouse SERPINA3
Forward 5′-TGACCTTTCTCAGCACGACC-3′
Reverse 5′-AATAGGGGAGGATGGGAGCA-3′

Mouse ANKRD2
Forward 5′-TTGCCCAGGAGGAAGAGACT-3′
Reverse 5′-TGTCTCTCACGTTGGTGTCG-3′

Mouse XRCC4
Forward 5′-TTGGGCGCATCGGTTTATCT-3′
Reverse 5′-ACCAGTGCCTTTCTCAGCTC-3′

Mouse S100A8
Forward 5′-TTCGTGACAATGCCGTCTGA-3′
Reverse 5′-GGCCAGAAGCTCTGCTACTC-3′
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Figure 6: Identification of the STAT3/SOCS3 pathway in an in vivo model of DCM. SOCS3: phosphorylated-STAT3 (P-STAT3) and total
STAT3 protein levels as shown by Western blot analysis.
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Figure 7: Continued.
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least, many of the hub genes and top 5 downregulated or
upregulated genes were also implicated with inflammation
and immune response: SERPINA3 (immune response to
elevated platelet cytosolic Ca2+), S100A8 (regulating inflam-
mation and oxidative stress, activatingTLR4 signaling),
ANKRD2 (a modulator of NF-κB-mediated inflammatory),
FPR1 (G protein-coupled receptor, inflammation), C3
(immune response), CDKN1A (inflammatory response
gene), SOCS3 (regulating interleukin), and IL6 (proinflam-
matory cytokine).

Taken together, our results, in the perspective of bioin-
formatics, provide compelling evidence for the fact that
inflammation and immune effects play critical roles in the
development in DCM. Sincerely, we hope that these findings
could provide new strategies and insights to identify the piv-
otal targets and pathways with regards to the immunologic
mechanisms of DCM in future research.

4.3. The Improvement of Cardiac Metabolism and Calcium
Homeostasis May Benefit DCM. Cardiac metabolic abnor-
malities are broadly recognized to increase various death
risks. In diabetic heart, glucose oxidation was significantly
decreased while the intake of fatty acids and its oxidation rate
were further elevated. Increased dependence on fatty acids to
generate energy may predispose the diabetic heart to the
endoplasmic reticulum, oxidative stress, stress, and ischemic
damage. Accumulation of intracellular toxic lipid metabolites
gives rise to a great many cellular abnormalities resulting in
cardiac dysfunction and cardiac remodeling [47]. Mean-
while, the abnormal mitochondrial membrane potential
and permeability not only increased the production of reac-
tive oxygen species but also impaired its elimination, causing
accumulation of reactive oxygen species in diabetic heart.
Excessive production of reactive oxygen species and loss of

endothelial antioxidant barrier scales could lead to the pro-
duction of oxidative stress. Additionally, calcium ion could
enter the mitochondrial matrix mediated by a calcium uni-
porter complex in a sodium calcium exchanger manner,
which helps to alleviate calcium overload. In our study, the
GO analysis demonstrated that the DEGs were primarily
enriched in fatty acid metabolism, mitochondrial membrane
potential, mitochondrial uncoupling, glucose transporter,
calcium ion binding, and lipid intake.

4.4. SOCS3 May Act as a Novel Therapeutic Target in DCM.
The role of the IL-6/STAT3/SOCS3 signaling pathway in
tumors has been well evaluated. IL6 stimulates survival, pro-
liferation, and progression to cancer of intestinal epithelial
cells via activation of signal transducers and activators of
transcription 3 (STAT3), eventually inducing the expression
of SCOS3 [47]. Meanwhile, SOCS3 is an important inhibitory
factor of STAT3, which could block the phosphorylation of
STAT3 and negatively regulate IL-6/STAT3 signaling [25].
Under normal circumstances, the activation of STAT3 is
transitory and speedy, while STAT3 could be constitutively
activated under pathologic status, which is attributed to the
absence or downregulation of SOCS3 [48]. Currently, the
role of SCOS3 in DCM remains unclear. We found that both
IL6 and SOCS3 acted as hub genes in our study. Therefore,
we put forward a hypothesis that IL6 trans-signaling may
also activate STAT3/SOCS3, thus promoting the develop-
ment of DCM. As expected, Western blotting showed that
the protein expression of SOCS3 was significantly lower in
the DCM group than that in the control group while the
phosphorylation of STAT3 was significantly higher in the
DCM group, indicating the inhibitory effects of SOCS3 on
the phosphorylation of STAT3. To obtain more accurate
results, further studies should be performed to explore the
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Figure 7: The expression and effects of SOCS3 in cardiomyocytes and cardiac fibroblasts. (a) The mRNA level of SOCS3 in cardiomyocytes
induced by HG. (b) The mRNA level of SOCS3 in cardiac fibroblasts induced by HG. (c) The immunofluorescence staining of α-actin in
cardiomyocytes induced by HG with or without SOCS3 overexpression. (d) The immunofluorescence staining of α-SMA in cardiac
fibroblasts induced by HG with or without SOCS3 overexpression. (e) The mRNA levels of ANP and BNP in cardiomyocytes induced by
HG with or without SOCS3 overexpression. (f) The mRNA levels of collagen I and collagen III in cardiac fibroblasts induced by HG with
or without SOCS3 overexpression. (g, h) The protein expression of P-STAT3 and T-STAT3 in the indicated groups. ∗P < 0 05 versus
normal group and #P < 0 05 versus HG group.
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accurate mechanisms of the IL-6/STAT3/SOCS3 signaling
pathway in DCM.

5. Conclusion

Conclusively, using a series of bioinformatics analysis, we give
a comprehensive and novel illustration of gene expression
profiles to identify DEGs expressing in myocardial tissue,
which may play critical roles in the occurrence and develop-
ment in patients with DCM. Genes and pathways implicated
with inflammation, immune, and metabolism were signifi-
cantly altered in DCM. Notably, IL6 may act as a much more
important role in the development of DCM beyond our
expectation. Additionally, targeting the IL-6/STAT3/SOCS3
signaling pathway is a promising strategy to treat DCM.
These findings will greatly contribute to unveiling the mole-
cule mechanisms of DCM. To allow these biomakers and tar-
gets to be used more routinely in clinic, further investigations
into the correlation of plasma proteins as well as metabolites
and these dysregulated genes should be performed.
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