
9906  |  	﻿�  Ecology and Evolution. 2020;10:9906–9919.www.ecolevol.org

1  | INTRODUC TION

Livestock farmers around the globe rely on high and stable grass-
land productivity for fodder production (FSO, 2015). To boost the 
productivity of their land, farmers frequently use fertilizers and 

seed mixes (FSO, 2015). A side effect of this approach is a loss of 
plant biodiversity and a transition toward productive species that 
rely on abundant resources to survive (Flynn et al., 2009; Gross & 
Mittelbach, 2017; Harpole & Tilman, 2007; Socher et al., 2012). This 
is concerning, because the loss of diversity could reduce grassland 
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Abstract
Livestock farmers rely on a high and stable grassland productivity for fodder produc-
tion to sustain their livelihoods. Future drought events related to climate change, 
however, threaten grassland functionality in many regions across the globe. The 
introduction of sustainable grassland management could buffer these negative ef-
fects. According to the biodiversity–productivity hypothesis, productivity positively 
associates with local biodiversity. The biodiversity–insurance hypothesis states that 
higher biodiversity enhances the temporal stability of productivity. To date, these 
hypotheses have mostly been tested through experimental studies under restricted 
environmental conditions, hereby neglecting climatic variations at a landscape-scale. 
Here, we provide a landscape-scale assessment of the contribution of species rich-
ness, functional composition, temperature, and precipitation on grassland productiv-
ity. We found that the variation in grassland productivity during the growing season 
was best explained by functional trait composition. The community mean of plant 
preference for nutrients explained 24.8% of the variation in productivity and the 
community mean of specific leaf area explained 18.6%, while species richness ex-
plained only 2.4%. Temperature and precipitation explained an additional 22.1% of 
the variation in productivity. Our results indicate that functional trait composition is 
an important predictor of landscape-scale grassland productivity.
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productivity and temporal stability of productivity in response to cli-
matic perturbations, such as drought and flood events, which are be-
coming increasingly frequent worldwide (Hautier et al., 2015; Hector 
et al., 2010; IPCC, 2018; Isbell et al., 2013, 2015). Hence, intensive 
grassland management aimed at promoting productivity could po-
tentially be counterproductive. It is vital to determine the relative 
contribution of biodiversity and climatic variability to grassland pro-
ductivity and its temporal stability.

The positive effect of biodiversity on grassland productivity 
and temporal stability, as measured by the temporal mean of pro-
ductivity divided by its temporal variability, can arise through multi-
ple nonexclusive mechanisms. Niche complementarity can result in 
overyielding in a mixture when its biomass production exceeds that 
of the average monoculture of the species contained in the mixture 
(Schmid, Hector, Saha, & Loreau, 2008). Overyielding can contrib-
ute to increase the temporal stability of productivity by increasing 
the temporal mean of productivity (de Mazancourt et  al.,  2013). 
The portfolio effect (Doak et  al.,  1998) and insurance hypothesis 
(Yachi & Loreau, 1999) can contribute to reduce the temporal vari-
ability of productivity when decreases in the productivity of some 
species are compensated for by increases in other species. This 
asynchrony in species response to environmental fluctuations is 
more likely to occur when the species pool is larger and more di-
verse (Loreau, 2010). Additionally, temporal stability combines the 
effect of resistance and resilience (Isbell et al., 2015) and can arise 
because species-rich communities are more likely to contain a mix-
ture of productive species that recover well after a perturbation 
and stress-tolerant species that resist well during a perturbation 
(Craven et al., 2018). Hence, biodiversity is expected to both boost 
productivity under average circumstances and stabilize productivity 
in response to environmental fluctuations (Hector et al., 1999; Isbell 
et al., 2015; Yachi & Loreau, 1999).

Recent experimental evidence suggests that in particular spe-
cies, trait composition (i.e., the community-weighted trait means and 
variances within a given area) promote grassland productivity (Gross 
et  al.,  2017; Tilman et  al.,  1997). The potential role of functional 
composition has already been demonstrated in several experimental 
field studies, where functional guilds have been manipulated (Gross 
et  al.,  2017; Marquard et  al.,  2009; Tilman et  al.,  1997). Although 
functional trait composition varies at any scale, contrasts between 
grasslands with very different trait compositions should be espe-
cially marked when studying entire landscapes, in particular since 
climate and management influence plant trait composition (Díaz & 
Cabido, 2001; Harpole & Tilman, 2007; Loreau et al., 2001). For ex-
ample, grassland fertilization results in a dominance of fast-grow-
ing species in grassland communities (Borer et al., 2014; Harpole & 
Tilman, 2007; Hautier, Niklaus, & Hector, 2009; Soons et al., 2017). 
Fast-growing species have specific traits that distinguish them from 
stress-tolerant species, such as a large specific leaf area and a pref-
erence for high nutrient levels (Mariotte, Vandenberghe, Kardol, 
Hagedorn, & Buttler,  2013). It is hypothesized that high invest-
ment in plant growth is at the expense of investment in stress tol-
erance (Willis, Thomas, & Lawton, 1999). At a landscape-scale, the 

functional composition of grasslands could, therefore, be a profound 
predictor of both grassland productivity and temporal stability of 
grassland productivity (Fischer et al., 2016). Hence, to understand 
the influence of biodiversity on productivity at a landscape-scale, it 
is important to include the functional trait composition of grassland 
communities (Loreau et al., 2001; Marquard et al., 2009).

Over the past decades, the majority of studies demonstrating 
diversity effects on productivity were conducted at a local scale, 
within a controlled setting of experiments under restricted environ-
mental conditions (Hector et al., 1999; Reich et al., 2004; Roscher 
et  al.,  2004; Schittko, Hawa, & Wurst,  2014; Tilman et  al.,  1997). 
Experimental context can, however, significantly differ from situ-
ations in real landscapes (Sandau et  al.,  2017; Wardle,  2016). The 
relationship between biodiversity and productivity under natural 
conditions might be affected by a range of variables, including tem-
perature and precipitation, which vary spatially, in topographically 
heterogeneous landscapes (Ciais et al., 2005; Mariotte et al., 2013). 
In addition, differences in regional species pools that arise from 
historical processes and management, such as grazing, mowing, 
the use of seed mixtures, and fertilizers, influence the species 
composition in grassland communities, which may affect produc-
tivity (Chalmandrier, Albouy, & Pellissier,  2017). Hence, in natural 
grasslands, changes in species composition in response to distur-
bances are nonrandom, while in experimental studies, species are 
randomly removed or combined from a species pool. To overcome 
this gap in the literature, researchers around the globe recently 
started to study the relative effect of biodiversity on productivity 
at a landscape-scale (Grace et al., 2007, 2016; Loreau, Mouquet, & 
Gonzalez, 2003; Oehri, Schmid, Schaepman-Strub, & Niklaus, 2017; 
Soliveres et al., 2016; Tylianakis et al., 2008; Winfree, Fox, Williams, 
Reilly, & Cariveau, 2015).

Previous studies found varying effects of biodiversity on eco-
system functioning in real-world ecosystems (Grace et  al.,  2007; 
Grigulis et al., 2013; Loreau et al., 2003; Oehri et al., 2017; Soliveres 
et al., 2016; Tylianakis et al., 2008; Winfree et al., 2015). Both Oehri 
et al.  (2017) and Tylianakis et al.  (2008) showed a positive correla-
tion between biodiversity and productivity at a landscape-scale 
across a range of land use types, including forests, grasslands, and 
agricultural areas. Tylianakis et  al.  (2008), however, did not assess 
the relative effect of biodiversity in comparison to climatic variables, 
such as temperature and precipitation, while Oehri et al. (2017) did 
not consider a possible nonlinear effect of climate on productivity 
(Whittaker, 1960). Grace et al. (2007) did not find a significant effect 
of biodiversity on productivity at a landscape-scale, therefore, hy-
pothesizing that the overall influence of small-scale biodiversity on 
productivity is weak. Grace et al. (2016) showed a positive relation-
ship between diversity and productivity using small-scale grassland 
plots around the world. Winfree et al. (2015) showed that not species 
richness but a few dominant species drive ecosystem functioning in 
natural ecosystems. A recent study compared the results of exper-
imental studies with data collected in real-world natural grassland 
communities (Jochum et al., 2019). Jochum et al. (2019) found that al-
though variance in functional trait composition and species richness 
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is higher in experimental grasslands, biodiversity-ecosystem func-
tioning relationships did not differ significantly between the two. 
The differences between the studies might be related to the varying 
spatial scales at which biodiversity–productivity relationships were 
assessed, which range from regional to national and global (Grace 
et  al.,  2007, 2016; Oehri et  al.,  2017; Winfree et  al.,  2015). Apart 
from Jochum et al. (2019), none of these studies found assessed the 
potential influence of functional trait composition on productivity 
and stability in grassland productivity. This is surprising, since there 
are indications that metrics of functional diversity are stronger pre-
dictors of ecosystem functioning than species richness in naturally 
assembled communities (van der Plas, 2019). Jochum et al. (2019) did 
not specifically assess biodiversity at a landscape-scale, but focus 
on the differences between real-world and experimental studies. 
Besides this, Grace et al. (2007) only assessed natural grasslands of 
which species compositions likely do not differ as fundamentally as 
those of grasslands used for livestock farming (Borer et  al.,  2014; 
Harpole & Tilman,  2007; Hautier et  al.,  2009; Soons et  al.,  2017). 
This indicates the need for a study that focuses on both the effect of 
species richness and functional trait composition on the productivity 
of grasslands over a topographically diverse landscape with strong 
biogeographical and management gradients. Today, novel remote 
sensing methods provide a major opportunity for the coupling of re-
motely sensed productivity and climate data with biodiversity mea-
sures to disentangle the effect of plant trait composition and climate 
variations on the productivity of grasslands at a landscape-scale.

In this study, we evaluate the relative contribution of climate and 
biodiversity (species richness and functional trait composition) to 
productivity of grasslands across the topographically diverse land-
scape of Switzerland. We ask the following research questions: (a) 
Is productivity best explained by species richness, functional trait 
composition, or climatic variables at a landscape-scale? and (b) Does 
biodiversity influence the stability of productivity under climatic 
variations? Our study differs from experimental studies in which 
biodiversity was artificially reduced, because experiments analyze 
the effect of random species removal on grassland productivity, 
while a study-based data from grasslands at a landscape-scale test 
the real-life effect of existing grassland communities that differ in 
the amount of species and their functional trait distribution. We 

hypothesize that plant communities in agricultural areas dominated 
by productive species are more sensitive to climatic variation and 
thus less stable through time compared to communities composed 
of both productive and stress-tolerant species (Schläpfer, Pfisterer, 
& Schmid, 2005; Wang, Yu, & Wang, 2007). We, furthermore, ex-
pect a trade-off between the two (Willis et al., 1999). Overall, the 
results of this study could be integrated in management strategies 
in high-intensity agricultural landscapes that are vulnerable to global 
changes.

2  | MATERIAL S AND METHODS

Our study focuses on Switzerland, a country with an area of 
±41,000  km2 and strong gradients in elevation (190–4,500  m 
a.s.l.). Switzerland harbors intensive agricultural areas below the 
tree line (ca. 1,800 m a.s.l.) and 70.6% of the total agricultural area 
of Switzerland is covered by grasslands used for agriculture (FSO, 
2015). To allow for a comparison between productivity, species 
richness, and the plant trait composition of grassland communities 
across Switzerland under varying climatic conditions, we combined 
databases on species occurrence, plant trait composition, grassland 
productivity, temperature, and precipitation. We processed all data 
in the software R (R Core Team, 2019) and ArcGIS 10.4.1 software 
(ESRI, Redlands, CA, USA, 2008).

2.1 | Species occurrence data

We acquired species occurrence data from the Biodiversity 
Monitoring (BDM) Program (BDM, 2014). The BDM program 
(http://www.biodi​versi​tymon​itori​ng.ch) collects species occur-
rence data of vascular plants along transects of 2,500  m length 
within 474 1-by-1  km plots spread across Switzerland (Figure  1) 
(BDM, 2014). Each year, a subset of one fifth of all plots is sur-
veyed. Since biodiversity monitoring protocols strongly improved 
from 2009 onwards, we processed the data of the entire set of 
BDM plots recorded between the years 2009 and 2013. The data 
consisted of a matrix of documented presences and absences of 

F I G U R E  1   The 474 BDM plots 
distributed across Switzerland. The 
Biodiversity Monitoring Program of 
Switzerland collects species occurrence 
data of vascular plants in all 474 1-by-1 km 
BDM plots shown with black crosses 
(BDM, 2014). In this study, we solely 
assess grassland-harboring BDM plots 
(277 plots shown with black dots)

http://www.biodiversitymonitoring.ch


     |  9909van 't VEEN et al.

all occurring vascular plant species per BDM plot. This allowed 
us to calculate species richness per BDM plot across Switzerland 
by summing the amount of species present in each plot. To as-
sure that solely grassland species were assessed, we filtered non-
grassland species from our data. Nongrassland species included 
shade-tolerant species (below 10% relative illuminance), as well as 
species that inhabit forests, wetlands, and rocks. We based this on 
the characterization of all vascular plant species of Switzerland by 
the Flora indicativa of Landolt et al. (2010).

2.2 | Functional trait data

We assembled plant trait data of both the Flora indicativa of 
Landolt et al. (2010), covering the entire Swiss Flora, as well as the 
Plant Trait Database (TRY) of 2016 (request no. 2256). The TRY da-
tabase provides a global catalogue of curated plant traits (Kattge 
et  al.,  2011, 2020). We filtered the TRY database for grassland 
species using the list of grassland species created earlier (Kattge 
et  al.,  2020; Landolt et  al.,  2010). The TRY database included 
60.2% of the grassland species of the Landolt database (2,438 
species). We used specific leaf area (SLA) data of the TRY database 
in our analyses, as this trait allowed us to distinguish fast-growing 
competitive species from slow-growing stress-tolerant ones (Díaz 
et al., 2015). Besides this, we chose to assess the influence of the 
nutrient preference (NPref) of grassland species, for which we de-
rived data from the Flora indicativa of Landolt et al.  (2010). The 
nutrient preference indicator of the Flora indicative is an ecologi-
cal indicator, also commonly called EIV-N or nutrient value N. The 
indicator is based on expert opinion as well as literature (Landolt 
et al., 2010). It is an ordinal variable consisting of 5 classes, rep-
resenting a gradient from nutrient-poor soils (1) to nutrient-rich 
soils (5), mainly nitrogen (Landolt et al., 2010). Both SLA and NPref 
are related to productivity (Lavorel & Garnier, 2002; Peter, Gigon, 
Edwards, & Luscher, 2009). In each BDM plot, we assessed the fol-
lowing trait variables: mean NPref and SLA, the functional diver-
sity of NPref and SLA, and the functional evenness of NPref and 
SLA. To calculate the mean of NPref and SLA, we used the func-
tion “mean” of the R-package “base,” while we used the function 
“dbFD” of R-package “FD” to calculate functional diversity and 
evenness. The “mean” function calculates the arithmetic mean, 
while the “dbFD” function calculates functional richness (FRic), 
functional evenness (Feve), and functional divergence (FDiv), as 
well functional dispersion (FDis), Rao's quadratic entropy (FraoQ), 
a posteriori functional group richness (FGR), and the community-
level weighted means of trait values (CWM) (Botta-Dukát, 2005; 
Laliberté & Legendre,  2010; Petchey & Gaston,  2006; Villéger, 
Mason, & Mouillot, 2008). In this study, we use functional even-
ness, Rao's quadratic entropy, and the arithmetic mean because 
the BDM program only provides presence–absence data and no 
abundance data (BDM, 2014).

2.3 | Climate data

Besides the effect of functional traits on productivity, we as-
sessed the relative effect of the climatic variables temperature 
and precipitation. MeteoSwiss, the federal office of meteorology 
and climatology, provides data on temperature and precipitation 
for weather stations across Switzerland (MeteoSwiss,  2016a, 
2016b). We used mean temperature and the sum of precipitation 
for each year for the growing season (April to September) through-
out Switzerland from Daymet interpolated climate data at a 100-m 
resolution and aggregated to 1-km resolution to match our bio-
diversity data (Thornton, Running, & White, 1997). We used the 
spatial representation of the average temperature and the sum of 
precipitation over the growing season in Switzerland per year to 
extract temperature and precipitation values per BDM plot per 
year. Because temperature is highly linearly correlated with eleva-
tion in Switzerland (R2 = .9457, p-value < .005), we did not include 
elevation data in our analysis.

2.4 | Grassland productivity data

We used the Normalized Difference Vegetation Index (NDVI) data 
as a proxy for the productivity of grasslands (Gandhi, Parthiban, 
Thummalu, & Christy, 2015; Pettorelli et al., 2005). We computed 
median NDVI values across Switzerland in a 30-m resolution from 
a cloud-free Landsat time series for the duration of the growing 
season (April-September, four images per growing season) for the 
years 2001 to 2013. We used SWISSIMAGEs (compiled ortho-
photos forming a mosaic of Switzerland) from the Federal Office 
of Topography to manually distinguish grasslands from other land-
cover types (Swisstopo, 2015). Before we initiated our analyses, 
we assessed our assumption that the variation in productivity 
between BDM plots is higher than the variation in productivity 
within BDM plots. With a median of 430.62 of differences in NDVI 
between BDM plots and a median of 316.07 of differences in NDVI 
within BDM plots, this was the case. We, furthermore, tested the 
saturation of NDVI values (Appendix S1, Figure 2) and observed 
no saturation. We discarded all Landsat pixels (30-by-30 m) that 
were not associated with grassland within each 1-by-1  km BDM 
plot by hand. Of all 474 plots, 197 BDM plots did not contain more 
than 10% grassland. These plots were excluded, leaving 277 BDM 
plots for productivity assessment. For these 277 plots, we ex-
tracted the median NDVI values (NDVI is hereafter referred to as 
productivity) of all grassland points per year, that is, for 2001 to 
2013 (four images per growing season). These values were subse-
quently averaged for each plot. They were also used to determine 
the temporal variance and coefficient of variance in productivity 
per BDM plot. The coefficient of variance was calculated as the 
standard deviation of productivity per BDM plot divided by the 
mean productivity per BDM plot.
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2.5 | Data organization

In total, we created three dataframes. One dataframe included total 
grassland productivity (values for each assessed year), one tempo-
ral variance in productivity (over all assessed years) and one the 
coefficient of variance in productivity (over all assessed years) as 
a response variable. Each dataframe, furthermore, included mean 
temperature and sum of precipitation (April to September), species 
richness and functional trait data per BDM plot as explanatory vari-
ables. Functional trait variables included mean NPref and SLA, the 
functional diversity of NPref and SLA, and the functional evenness 
of NPref and SLA. We used Rao's quadratic entropy as a measure of 
functional diversity and referred to this with FDiv. The dataframe 
including total productivity has varying values of productivity, tem-
perature, and precipitation per year but fixed values for species 
richness and functional traits. The dataframes including temporal 
variance and the coefficient of variance in productivity have fixed 
values for temporal variance and the coefficient of variance in pro-
ductivity, variance in temperature and variance in precipitation per 
year, as well as fixed values for species richness and functional traits. 
This allowed us to test the effect of climate, species richness, and 
plant trait composition on grassland productivity and temporal vari-
ation in grassland productivity across Switzerland.

2.6 | Statistical analyses of productivity

We built linear mixed-effects models (LMMs), using the function 
“lmer” of the R-package “lme4” to test the effect of climate, spe-
cies richness and plant trait composition on grassland productivity. 
LMMs contain both fixed effects and random effects (Nakagawa & 
Schielzeth, 2013; Vonesh, Chinchilli, & Pu, 1996). We chose LMMs 
for our analyses because of the strong heterogeneity in spatial and 
temporal scales in our data, which may influence the results. Unlike 
general linear models, LMMs account for this unobserved heteroge-
neity (Nakagawa & Schielzeth, 2013; Vonesh et al., 1996). All models 
included mean temperature and the sum of precipitation over the 
growing season (April to September) corresponding to the year of 
observation, as well as species richness or one specific plant trait 
variable. All variables were scaled using the function “scale” of the 
R-package “base,” which centered and scaled our data to allow for 
comparison. We added the BDM plots and years as random fac-
tors in the models to exclude their potential effects on the results. 
Because we observed quadratic relationships between productivity 
and temperature, as well as between productivity and mean NPref, 
mean SLA and functional diversity of NPref, we added a quadratic 
term in addition to a linear term for these variables in the model.

A variance partitioning analysis was carried out to determine the 
relative contribution of species richness, individual trait variables, and 
the combined impact of temperature and precipitation on the total 
productivity of grasslands in Switzerland. As input for every vari-
ance partitioning analysis with grassland productivity as a response 

variable, we used three linear mixed-effect models that included: 
(a) climatic variables and species richness or one trait variable, (b) 
climatic variables alone, or (c) species richness or one trait variable 
alone as explanatory variables. We calculated the R-squared of all 
three models, using the function “r.squaredGLMM” of the R-package 
“MuMIn,” which was also used for the variance partitioning analysis. 
The “r.squaredGLMM” function calculates both the conditional and 
marginal coefficient of determination. Marginal R-squared concerns 
the variance explained by the fixed factors in the model, while the 
conditional R-squared concerns variance explained by both fixed and 
random factors (Nakagawa & Schielzeth, 2013; Vonesh et al., 1996). 
We were, therefore, able to derive the total R-squared of the linear 
mixed-effect model, the R-squared of the climatic variables and spe-
cies richness or the plant trait variable together, the R-squared of the 
climatic variables, the R-squared of species richness or the plant trait 
variable, and the residuals (unexplained variance). We, furthermore, 
tested the significances of temperature (using ANOVA), precipita-
tion, species richness, and plant traits, using the function “ANOVA” 
of the R-package “car.”

2.7 | Statistical analyses of the variance in 
productivity

General linear models were built to test the contribution of species 
richness, plant trait composition, and climatic variables on the tem-
poral variance and the variance coefficient in productivity of grass-
lands across Switzerland, using the function “lm” of the R-package 
“stats.”

We build general linear models because we accounted for the 
effect of both years and plots by calculating the variance in pro-
ductivity and climatic variables between 2009 and 2013. All the 
models included the temporal variance or coefficient of variance 
in temperature and precipitation as climatic variables, and species 
richness or one specific trait variable as explanatory variables. To 
account for a normality deviation observed in both the raw data and 
residuals, the variance in productivity was log-transformed. All vari-
ables were scaled using the function “scale” of the R-package “base.” 
Because we observed quadratic relationships between the variance 
in productivity and mean NPref, as well as mean SLA, we added a 
quadratic term in addition to a linear term for these variables in the 
model. As for productivity, a variance partitioning analysis was car-
ried out to determine the relative contribution of species richness, 
individual trait variables, and the combined effects of the variance 
and coefficient of variance of temperature and precipitation on the 
variance and coefficient of variance in productivity of grassland.

2.8 | Model averaging

Using a model averaging approach, we determined the model 
that most consistently explained grassland productivity, using the 
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function “AICc” of the R-package “MuMIn”. AICc (Akaike Information 
Criterion for small sample size) calculated the out-of-sample pre-
diction error of models for every combination of the explanatory 
variables provided. In total, we included all climatic and biodiversity 
variables in the model to understand which variables are contribut-
ing most to grassland productivity.

3  | RESULTS

3.1 | Relationship between productivity and 
biodiversity or functional trait composition

We found that temperature and, to a lesser extent, precipitation 
were positively associated with grassland productivity at the land-
scape-scale, jointly explaining 19.8% of the variation in productivity 
(Table 1). Species richness was negatively associated with productiv-
ity, adding 2.4% explanatory power to a linear mixed-effect model 
that includes climatic variables (i.e., temperature and precipitation) 
(Table 1). Mean plant nutrient preference (NPref), mean specific leaf 
area (SLA), and the functional diversity of NPref were positively as-
sociated to grassland productivity (Figure 2, Table 1). The full models 
including climate variables and either mean NPref, mean SLA or the 
functional diversity of NPref, explained 44.6%, 38.3%, and 30.8% of 
the variation in productivity respectively (Table  1). Independently, 
mean NPref, mean SLA, and functional diversity of NPref increased 
the explanatory power of the climatic linear mixed-effect model 
with an additional 24.8%, 18.6%, and 11.0%, respectively. When all 
variables were considered, the model that explains grassland produc-
tivity best was a model that includes the evenness of NPref (Feve 
NPref), the functional diversity of NPref (FDiv NPref), mean NPref, 
mean SLA, and temperature (Appendix S2). The highest mean NPref 
and SLA values are located in intensive agricultural areas in the north 
of Switzerland. A relatively low functional diversity of NPref can be 
observed in intensively managed agricultural areas in the lowlands 
of Switzerland.

3.2 | Relationship between variance in 
productivity and biodiversity or functional trait 
composition

Compared with total productivity, both the temporal coefficient 
of variance and the variance in productivity were relatively poorly 
explained by the models that include climatic and functional trait 
variables (Tables  2 and 3). A model that solely includes climatic 
variables explained 1.3% and 1.7% of the temporal coefficient of 
variance and variance in productivity, respectively. Functional di-
versity of NPref only added 3.0% and 3.1% of explanatory power 
to the temporal coefficient of variance and variance models, 
respectively, while mean SLA only added 1.5% and 2.4% of ex-
planatory power (Tables  2 and 3). Species richness is positively 
related to the temporal coefficient of variance and variance in TA
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productivity and added 5.4% and 5.1% of explanatory power to 
the climatic models, respectively. Only mean NPref showed a 
higher signal and was negatively associated to the temporal coef-
ficient of variance in productivity, explaining 5.8% and 7.0% of 
the temporal coefficient of variance and variance in productiv-
ity respectively, while accounting for variance in temperature and 
precipitation (Tables 2 and 3).

4  | DISCUSSION

4.1 | Relationship between productivity and 
biodiversity or functional trait composition

Our landscape-scale analyses indicate that biodiversity variables, 
in particular trait variables, help explain productivity patterns 

F I G U R E  2   Productivity (NDVI) against temperature for the years 2009–2013 with the values of mean nutrient preference (mean NPref), 
mean specific leaf area (mean SLA) (mm2/mg), and the functional diversity of nutrient preference (FdivNPref) plotted using a color gradient 
from orange (low values) to dark blue (high values). It can be observed that productivity values increase with temperature until temperatures 
of approximately 13°C after which productivity drops. This could potentially be related to a loss in functional diversity of nutrient 
preference, which reduces niche complementarity (Hector et al., 1999)
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better than climatic variables alone. This is interesting given the 
large gradient of climatic variables (Figure  2). Mean SLA alone 
explains variation in productivity better than climatic variables. 
The strong effects of functional traits on productivity might re-
sult from historical effects or management practices, which af-
fects the species pool and functional compositions of grasslands 
(Cadotte, Cavender-Bares, Tilman, & Oakley, 2009; Chalmandrier 
et al., 2017). Hence, functional traits displayed by species may be 
used as predictors of niche complementarity (Díaz & Cabido, 2001). 
Overall, the effect of plant trait composition on grassland produc-
tivity found in our study is in agreement with experimental studies, 
which showed that the trait composition of grassland ecosystems 
is a stronger determinant of ecosystem processes than species 
richness (Cadotte et al., 2009; Tilman et al., 1997). The weak re-
lationship between species richness and productivity may be 
explained by elevation gradients, which causes a simultaneous 
change of species richness and composition with the environment 
(Wohlgemuth, Nobis, Kienast, & Plattner, 2008), an effect that is 
usually not included in experimental field studies (Tilman, Reich, 
Knops, & Mielke, 2001).

The association between productivity and NPref, as well as 
SLA, can be explained by productivity enhancement through fer-
tilization and seed mix application in agricultural areas (FSO, 2015). 
In managed grasslands, farmers tend to introduce plant species 
that are highly palatable for cattle (Salomon, Engström, Nilsdotter-
Linde, & Spörndly, 2019). Therefore, a direct or indirect selection 
of plant species with high SLA or plant species with preferences for 
rich soils may occur. In contrast, nutrient-poor—but species-rich—
grasslands are less productive. Our analysis shows that highest 
mean NPref and SLA values are located in the relatively warm in-
tensive agricultural areas in the north of Switzerland as fast-grow-
ing species with a higher mean NPref and mean SLA outcompete 
more nutrient stress-tolerant but slow-growing species in condi-
tions of high nutrient availability (FSO, 2015; Wang et al.,  2007) 
(Figure 3). Grassland productivity is also related to climate, and we 
show that it is lower in the relatively colder areas of Switzerland lo-
cated at high elevation (Figure 3). Moreover, some of the variance 
in our models was shared between climate and functional traits, 
which is likely due to changes in functional trait composition with 
climatic variables (Figure 2). Stress-tolerant species with a low SLA 
and low NPref are more frequent at higher elevations, and their 
lower productivity can be explained by the slower growth of those 
species and the more stressful climate they occur in (Körner, 1989). 
Hence, at a landscape-scale, our results indicate that a combina-
tion of climate and functional composition of grasslands influences 
productivity.

Our results contrast with the results of Oehri et al. (2017) and 
Grace et al. (2016). They show a positive relationship between spe-
cies richness and productivity across the Swiss landscape. Oehri 
et  al.  (2017), however, include all ecosystems at once, while we 
focus specifically on grasslands. Besides this, Oehri et  al.  (2017) 
did not investigate functional traits and quadratic terms were 

not included in the statistical models, while the relationship be-
tween climate and productivity is not always linear (Whittaker 
1970; Zhang & Wei, 2017). In our dataset, we observed a non-
linear effect between temperature and productivity. We assume 
that this effect results from a saturation of growth in the warm-
est, but also the driest regions of Switzerland. Moreover, although 
Oehri et al.  (2017) based their analyses on the same plant diver-
sity data as in our study (BDM), they analyzed the relationship of 
species richness on productivity across all ecosystems present in 
the BDM plots, whereas our study solely focusses on grassland 
productivity. The contrast between our study and the study of 
Grace et  al.  (2016) may be explained by the differences in scale 
(Grace et al., 2016 assessed effects of species richness on a global 
scale). Besides this, they did not assess the impact of functional 
traits; hence, it is unknown whether these affect productivity on 
a global scale. The effects of trait composition rather than species 
richness on productivity found in our study are in agreement with 
Winfree et  al.  (2015) who showed that not species richness but 
the presence of a few abundant species drives ecosystem func-
tioning in natural ecosystems. Van der Plas (2019), furthermore, 
indicated that metrics of functional diversity are stronger predic-
tors of ecosystem functioning than species richness in naturally 
assembled communities. This could explain why Grace et al. (2007) 
did not find a significant effect of biodiversity on productivity at a 
landscape-scale when solely species richness was considered. The 
contrasting results among studies highlight the complexity of ana-
lyzing the effect of biodiversity on productivity in real landscape, 
due to the strong interrelation of variables. For instance, we ob-
served a relatively higher species richness and larger variation in 
productivity in the alpine regions of Switzerland compared with 
the lowland regions.

Although productivity increases with temperature, a sudden 
decrease in productivity can be observed at temperatures above 
13°C (Figure  2). Regions with average growing season tempera-
tures above 13°C are situated in the intensive agricultural areas 
in the northern lowlands of Switzerland, where the highest values 
of mean NPref and mean SLA are found (Figure 3). With the ex-
pected global change-induced temperature increase (IPCC, 2013), 
it is crucial to determine the response of grassland productivity 
of grassland communities around the world to prevent economic 
losses for livestock farmers. In addition, although precipitation 
in our study is momentarily relatively poorly related to produc-
tivity, the expected global change-induced decrease in precipita-
tion is projected to affect Switzerland in the near future (Meehl & 
Tebaldi, 2004). Overall, the drop in NDVI may be due the high-in-
tensity management that takes place in the agricultural regions in 
Switzerland with higher rates of cutting but further studies are 
necessary to confirm this. Future studies could assess the impact 
of management intensity on functional trait composition at a land-
scape level in Switzerland to better understand the drop in pro-
ductivity above 13°C and whether this is related to biodiversity 
or other variables.
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4.2 | Relationship between variance in 
productivity and biodiversity or functional trait 
composition

The mean of NPref was negatively associated to the coefficient of 
variance in productivity, indicating that grasslands composed of spe-
cies with affinities for high nutrient availability have both a higher 
and more stable productivity. Thus far, farmers have adopted the 
most efficient management strategy, but the low functional diver-
sity in those grasslands may only be able to weakly buffer the ef-
fects of future climate change on fodder production. The observed 
weak but negative effect of functional diversity of NPref on vari-
ance is in agreement with the observation of several experimental 
studies showing that plant functional composition might modify 

the temporal stability of productivity due to a functional turnover 
and niche complementarity (Isbell, Polley, & Wilsey, 2009). Overall, 
compared with the total productivity, the variance in productivity 
is relatively poorly explained by the models and the results should 
be interpreted with caution. The poor explanation of variance in 
productivity by species richness and functional trait composition 
by our models contrasts with the consensus that more species are 
needed to ensure a stable delivery of ecosystem services upon spa-
tiotemporal variations in weather and climate (Hooper et al., 2005). 
It is possible that nonpermanent grasslands were considered in our 
analyses, and turnover in the use of those land patches might blur 
the relationships. Artificial grasslands found in the warmest regions 
of Switzerland are cut four or five times a year in intensely man-
agement grasslands, which could result in an artificial reduction of 

F I G U R E  3   Maps of Switzerland on which temperature (°C), mean nutrient preference (NPref), mean specific leaf area (SLA) (mm2/mg), 
and the functional diversity of NPref (Fdiv NPref) is plotted per grassland-harboring plot of the Biodiversity Monitoring Program (BDM) in 
Switzerland. The size of the dots increases with from the lowest to the highest values for mean nutrient preference (NPref), mean specific 
leaf area (SLA) (mm2/mg), and the functional diversity of NPref (Fdiv NPref). The highest mean NPref and SLA values are located in intensive 
agricultural areas in the north of Switzerland, which is likely due to fertilization and seed mix application (FSO, 2015). The relationship 
between productivity and mean NPref and mean SLA is furthermore influenced by elevation, since soils at higher elevation are more 
nutrient-poor than soils at lower elevation (Peter et al., 2009). Therefore, solely stress-tolerant species with a low SLA and NPref are able 
to grow at higher elevations, resulting in relatively low mean NPref and mean SLA values in the Swiss Alps (Körner, 1989). A relatively low 
functional diversity of NPref can be observed in intensively managed agricultural areas in the lowlands of Switzerland. This supports the 
hypothesis that a bias in the species pool toward more productive species occurs in these areas
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grassland productivity in this region, and might explain the sudden 
decrease in productivity at temperatures of about 13°C. However, 
when assessing the variations in productivity per geographic region 
(Appendix S1, Figure 1), the mountain areas showed a higher varia-
tion than the lowland areas (Appendix S3, Figure 1). This indicates 
that the effects of management may be smaller than the effects of 
climatic variations in temperature and precipitation.

4.3 | Limitations

Because this study relies on remote sensing, there are several limi-
tations regarding the processed data, as well as the methodology. 
First, this study relies on 277 grassland-harboring 1-by-1 km plots 
across Switzerland to derive conclusions about the entire country. 
Moreover, since the TRY data did not contain all grassland species 
of Switzerland, not all species are included in this study to calcu-
late the functional composition of the plant communities. We found 
that the amount of missing species in the TRY database is relatively 
equally spread across the bioregions of Switzerland. Of the grass-
land species found in the BDM plots, above 60% were present in 
the TRY database for all biogeographical regions (Appendix S4, 
Figure 1). It is likely that subordinate species (i.e., species that never 
attain dominance but are found in most plots (Mariotte, 2014)) or 
rare species are missing from the list with relatively low mean SLA 
and mean NPref values. Because of more extreme environments, 
more subordinate species may be found in the high Alps. We did 
not find a strong skewness toward low mean SLA and mean NPref 
values, except for the mean NPref of the Southern and Eastern Alps 
(Appendix S5, Figures 10 and 12), indicating that the effects of ex-
treme environments on the distribution of SLA and NPref values are 
limited. However, it could be that species with low mean SLA and 
mean NPref were excluded, which would explain the lack of skew-
ness. When assessing the variance in mean NPref and mean SLA be-
tween biogeographical regions, we observed higher variance in the 
mountain regions (Appendix S6, Figures 1 and 2). This indicates that 
sufficient species with low mean NPref and mean SLA values are 
included in our sample to allow for large variations in mean NPref 
and mean SLA values across Switzerland. Based on this, we may as-
sume that we take subordinate species into account in our analy-
ses. Second, temperature and precipitation data were interpolated 
across Switzerland using climate data from Meteoswiss weather sta-
tions. This is more specific for temperature, since it is interpolated 
with elevation as a proxy, while mapping precipitation is a more chal-
lenging task. Third, the management intensity in the BDM plots is 
unknown. Therefore, it is uncertain how management intensity (e.g., 
irrigation, mowing, grazing, and fertilization) influences the results of 
this study, especially as irrigation of grassland could affect the statis-
tical outcome of precipitation. Unfortunately, we did not find data on 
management intensity across Switzerland of a sufficiently low spa-
tial resolution to assess the effect on productivity, species richness, 
or traits per BDM plot. Fourth, the BDM program solely records the 
occurrence of species and not their abundance (BDM, 2014). Taking 

species abundance into account would likely have improved our re-
sults because the most dominant species attribute most to the NDVI 
signal. Finally, the use of NDVI as a proxy for productivity is cur-
rently under debate, since NDVI is found to saturate at high biomass 
values (Santin-Janin, Garel, Chapuis, & Pontier, 2009). However, our 
study assesses grasslands, which are relatively low in biomass com-
pared with forests. Therefore, we do not expect to reach these high 
values and we, furthermore, did not find an indication of saturat-
ing of NDVI (Appendix S1, Figure 2). In addition, NDVI signals are 
influenced by repeated grassland mowing (Kolecka, Ginzler, Pazur, 
Price, & Verburg, 2018), which may have influenced our productivity 
estimations in agricultural areas of Switzerland.

5  | CONCLUSION

The relationships between functional traits and grassland produc-
tivity found in our study indicate the importance of including func-
tional trait variables to explain productivity on a landscape-scale. 
The contrast between the results of our study and those of highly 
controlled experimental studies may be explained by the large land-
scape-scale approach of our study compared with the generally 
small scale of diversity experiments. Unlike experimental studies, 
diversity at the landscape level is determined by multiple commu-
nity assembly processes, such as variations in the natural species 
pool and environmental heterogeneity. Besides this, diversity in ex-
perimental studies is only slightly influenced by randomly occurring 
anthropogenic and climatic perturbations, while these processes 
exert a strong influence on diversity at a landscape level. This in-
dicates the importance of a landscape-scale assessment to deter-
mine the real-world effects of biodiversity on productivity and 
other ecosystems services. The results of our study, furthermore, 
advocate for the inclusion of functional traits to enhance produc-
tivity in grasslands, which may secure resistance and resilience in 
fodder production. Our results show a strong bias in the species 
pool due to the indirect selection of the fastest-growing and most 
nitrogen-rich grassland species by farmers. However, both perma-
nent grasslands and seed mixtures for artificial grasslands should 
be adapted by promoting plant trait compositions that may enhance 
resilience of grasslands to global change (e.g., drought events). This 
can be done by, for instance, increasing the diversity of species in 
seed mixes and reducing the amount of fertilizer applied to the land. 
More data are necessary to further unravel the real-life relation-
ships between biodiversity and productivity, as well as to under-
stand the unexplained variance in productivity.
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