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Abstract
At high latitudes, the climate has warmed at twice the rate of the global average with most

changes observed in autumn, winter and spring. Increasing winter temperatures and wide

temperature fluctuations are leading to more frequent rain-on-snow events and freeze-thaw

cycles causing snow compaction and formation of ice layers in the snowpack, thus creating

ice encasement (IE). By decreasing the snowpack insulation capacity and restricting soil-

atmosphere gas exchange, modification of the snow properties may lead to colder soil but

also to hypoxia and accumulation of trace gases in the subnivean environment. To test the

effects of these overwintering conditions changes on plant winter survival and growth, we

established a snow manipulation experiment in a coniferous forest in Northern Finland with

Norway spruce and Scots pine seedlings. In addition to ambient conditions and prevention

of IE, we applied three snow manipulation levels: IE created by artificial rain-on-snow

events, snow compaction and complete snow removal. Snow removal led to deeper soil

frost during winter, but no clear effect of IE or snow compaction done in early winter was

observed on soil temperature. Hypoxia and accumulation of CO2 were highest in the IE

plots but, more importantly, the duration of CO2 concentration above 5% was 17 days in IE

plots compared to 0 days in ambient plots. IE was the most damaging winter condition for

both species, decreasing the proportion of healthy seedlings by 47% for spruce and 76% for

pine compared to ambient conditions. Seedlings in all three treatments tended to grow less

than seedlings in ambient conditions but only IE had a significant effect on spruce growth.

Our results demonstrate a negative impact of winter climate change on boreal forest regen-

eration and productivity. Changing snow conditions may thus partially mitigate the positive

effect of increasing growing season temperatures on boreal forest productivity.
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Introduction
At high latitudes, the climate has warmed at twice the rate of the global average, and as a conse-
quence, northern forest plants are experiencing environmental conditions that are highly vari-
able compared to in the past. The increase in temperature does not concern only the growing
season. In fact, temperatures during the winter months in Finland have increased even more
than those during the growing season [1]. Increasing winter temperatures have several impacts
on the properties of snowpack, especially due to warm spells and rain-on-snow events. Data
has shown that the frequency of rain-on-snow events has increased in Arctic regions during
the last 30 years [2] and temperatures are projected to increase even further in the future [3]. In
Finland, the duration and thickness of snow cover are expected to decrease and models predict
lower snow water equivalent and higher ice content in the snowpack by the end of the 21st cen-
tury [4]. Although boreal winter conditions are changing rapidly, surprisingly few experimen-
tal investigations exist on the effects of altered snow conditions on boreal forest plants or their
winter survival.

Snowpack properties are of special importance for tree seedlings and understory forest
plants because they are covered by snow for the whole winter. Numerous cellular processes are
suppressed in overwintering plants upon entry into dormancy in the autumn, however mainte-
nance of some metabolism is necessary to sustain defense and rescue processes in dormant tis-
sues [5]. Similar to aboveground parts, maintenance respiration in roots may continue
throughout winter even at near-freezing temperatures, even though root growth is considered
to be limited below about 4°C [6, 7]. Changes in the snowpack alter the environmental over-
wintering conditions of conifer seedlings in two important ways. Firstly, a thinner or a denser
snowpack has a lower insulation capacity, which may considerably decrease subnivean temper-
atures during the winter. The insulating snowpack decouples soil temperatures from air tem-
peratures, allowing soil processes generally to continue throughout the winter and providing
frost protection to soil microorganisms, roots and fauna. Secondly, increasing frequency of
rain-on-snow events and higher winter temperature fluctuations lead to repeated freeze-thaw
events that can create ground ice encasement (IE). The consequences of IE have so far been
investigated mostly in northern agricultural landscapes, where it is known to cause injuries and
kill overwintering cereals [8] and perennial grasses [9, 10].

Ice layers in the snow or on the ground surface restrict soil-atmosphere gas exchange, which
leads to the development of hypoxia and accumulation of trace gases in the subnivean environ-
ment [11, 12]. Return to normoxia after long exposure to hypoxia also represents a major oxi-
dative stress that can be fatal to plants [11]. Although the effects of the above changes in the
snowpack on soil temperatures have been quite well studied, less is known about their influence
on the amount of oxygen in soil, and the potential consequences these might have on overwin-
tering conifer seedlings. Given that the snow-covered period can last more than half a year in
boreal ecosystems, this creates a major gap in the understanding of how climate warming will
affect boreal ecosystem functioning.

We studied the effects of changing snow conditions on soil microclimate and soil properties
as well as on the survival and growth of conifer seedlings in a northern boreal coniferous forest.
The study focused on Norway spruce and Scots pine as they are the two most common and
economically important tree species in Fennoscandian boreal forests. We subjected experimen-
tal plots to several different snow manipulation treatments, which each represented different
scenarios of how winter climate change may affect snow conditions and snowpack properties.
By decreasing soil temperatures or creating hypoxia during the winter, we hypothesized that
snow cover removal, snow compaction and IE will increase winter mortality and decrease the
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regrowth of young conifer seedlings during the following summer, thus inducing negative
effects on both the productivity and the regeneration of forest trees.

Material and Methods

Study site and snow manipulation treatments
We established a snow manipulation experiment following a randomized block design with 10
blocks in a Scots pine forest (xeric- sub-xeric site) near the Arctic Circle close to the city of
Rovaniemi (Tavivaara, 66°25 '35"N 25°41'42"E). The land used for the field experiment
described below is owned by the Rovaniemi parish who allowed us to run the experiment. The
field study did not involve endangered or protected species. The blocks were positioned on an
area of approximately three hectares and organized in such a way that within each block the
understrorey vegetation and tree layer were as homogenous as possible. The size of the blocks
was typically around 100–200 m2 to allow treatment plots (see below) within each block to be
positioned far enough from each other. Each block was fenced to prevent big herbivores to
enter the treatment plots. The forest soil at the experimental site is acidic with a soil pH of
3.76 ± 0.03 (mean ± SE of three sample collections over the growing season, n = 30). The con-
centration of NH4-N, NO3-N and extractable organic nitrogen (N) in the humus layer was
5.7 ± 0.9, 1.2 ± 0.1 and 74.8 ± 7.3 mg kg DW-1 (n = 30), respectively, in ambient (AMB) plots
during the 2014 growing season. Ground layer vegetation is dominated by red-stemmed
feather moss (Pleurozium schreberi) and reindeer lichens (Cladonia spp.) and field layer vege-
tation is dominated by evergreen and deciduous dwarf shrubs (Vaccinium vitis-idaea, V.myr-
tillus, V. uliginosum and Empetrum nigrum). Local temperature, precipitation and snow depth
values were recorded at the permanent weather station of the Finnish Meteorological Institute
at Rovaniemi, Apukka, located 15km north of the field site (World Meteorological Organisa-
tion Station 02813, 66°34’N 26°00’E 106 m a.s.l.). The long-term (1981–2010) mean annual
temperature in Apukka is 0.4°C with a mean precipitation of 556 mm [13] (S1A Fig). Decem-
ber, January and February are the coldest months of the year. The first permanent snow typi-
cally appears in mid-November, the snowpack is the highest in April with 60 cm (in open
areas) and the average ending date of permanent snow cover is in early May. Forests typically
have less snow cover than open areas [14]. To estimate the local effect of tree canopies and
stand structure on the snow cover at the experimental site, we measured the depth of intact
snow cover at our field site in winters 2015 and 2016 (19 March and 14 April 2015, 19 Febru-
ary, 31 March and 4 April 2016). Comparison with the data in the WMO station of Apukka
showed that as an average, the snow cover in our filed site was about half that in the open area
in Apukka (54.0 ± 8.7%, n = 5). Recording of air temperature (2-m height) showed that during
November 2013–July 2014 the temperature was 0.61°C colder at our forest site than in the clos-
est WMO station in Apukka during the same period.

Five study plots with similar exposure, hydrological status and vegetation were selected
within each of the 10 blocks and randomly assigned to the following treatments: 1) ambient
(AMB) with no treatment, 2) prevention of IE formation during winter (NoICE, plastic shelters
were placed on a wood structure to cover the plot in case of a naturally occurring rain-on-snow
event), 3) induction of IE (IE, artificially created by snow watering), 4) no snow cover (NoS-
NOW: roofs and low walls made of translucent white plastic (thickness 0.2mm) were posi-
tioned over the plots to prevent natural snow fall or drifted snow) and 5) compaction of snow
cover (COMP: snow compaction by hand to reduce the insulating capacity of snow). Plots
were located below tree canopies that were as similar as possible. Plots (1 m x 3 m) were divided
into three sections: two subplots (A and B, both 1 m x 1 m) separated by a buffer zone (1 m x 1
m; Fig 1). The treated area extended 0.5 m beyond the edges of the plot. A subplots were used
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to take soil and biochemical samples from the seedlings in the beginning of the 2014 growing
season for further analyses. B subplots were used to record seedling growth and health during
the 2014 growing season (this study).

Snow watering was done by applying cold tap water using plastic watering cans over the
extended plot area (in total 8 m2, Fig 1). Snow watering was conducted three times over the
winter. The first watering was performed on December 13, 2013 (3.75 l m-2) but a warm
spell prevented ice formation and thawed most of snow and ice away. A second watering
was performed on December 17, 2013 (7.5 l m-2). A third watering was done on January 9,
2014 (7.5 l m-2). Watering corresponded to a total of 18.75 mm of rain. Snow compaction
was applied by hand on December 13, 2013, January 9 and January 29, 2014 with care not to
damage the seedlings. Our aim being to mimic mainly early winter warming, the snow
manipulation treatments were done not later than January and natural snow was covering
the IE and COMP plots after snow manipulation. Plastic shelters on NoICE plots were put
up several times over the winter during natural rain-on-snow events: November 14–20,
December 11–12, December 25, 2013, January 3, March 7–8 and 13–14, 2014. The plastic
roofs over the NoSNOW plots were set in place on October 24, 2013 and removed on April
25, 2014. To limit any possible greenhouse effect, the open sides were widened by cutting
the upper part of plastic walls in early March when it was considered unlikely that wind
would blow any snow into the treated area. The white color of the translucent plastic roofs
allowed maintaining the albedo of the NoSNOW plots similar to the snow-covered plots
until the end of April. Temperature loggers were installed 30 cm above the ground on
December 17, 2013 in AMB and NoSNOW plots in three blocks to check for any effect of
the plastic roofs on air temperature. Temperature was recorded every 10 min; the difference
between AMB and NoSNOW treatments was computed for each time point and averaged
per hour. The results showed that the presence of the plastic roofs increased the mean daily
air temperature on average by 0.144 ± 0.004°C (n = 18008 measurements).

Ambient air (2-m height), ground surface and humus (2-cm depth) temperature were
recorded at 1.5-h intervals using temperature loggers (EL-USB-1, Lascar electronics) installed
in every plot of three randomly selected blocks. Soil frost depth was followed by installing frost
tubes filled with methylene blue solution in silicone tubes (2 m long) placed into tight PVC
guide pipes inserted vertically into 2-m deep holes dug in the soil [15]. The soil frost probes
were placed in the center of the buffer zone, close to the air sampling tube and temperature log-
gers (Fig 1). Frost depths were recorded on a weekly basis from early December to mid-June.

Pictures from all subplots A (n = 50) were taken on April 24, 2014 with a digital camera
(Sony α-300). The perspective of the planted area was corrected in Photoshop (CS3 version

Fig 1. Plot design.Red dot = temperature logger; tube = air-collecting silicon tube inserted in humus layer;
triangle = Norway spruce seedling; can = Scots pine seedlings; blue area = treated area.

doi:10.1371/journal.pone.0156620.g001
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10.0.1). Snow covered-areas were manually selected in ImageJ1.49B and the proportion of
snow cover was calculated as the ratio of snow-covered pixels to the total pixel number.

Soil gas sampling and analysis
O2 and CO2 concentrations in soil were measured regularly over the winter from December 4,
2013 to May 14, 2014 when soil was fully thawed. The method of soil gas diffusion into silicon
tubes was used [16]. In autumn 2013, silicon tubes (internal diameter 1.0 cm, wall thickness 0.3
cm, length 100 cm, V = 78.5 cm3) closed on both ends with silicon stoppers were installed hori-
zontally in the middle of the buffer zone at a 2 cm depth in the humus layer. Bended stainless
steel tubes (internal diameter 1 mm) inserted into a silicon stopper in one side of the silicon
tubing allowed connecting it to the surface. The steel tubes were equipped with a three-way
stopcock to allow gas sampling 1 m above the soil surface and outside of the plot to avoid tram-
pling when sampling. Gas samples of 30 ml were taken with polypropolene syringes equipped
with a three-way stopcock, stored at -20°C for a maximum of 24 h and analyzed by gas chro-
matography (Agilent 6890N) using a ShinCarbon ST 100/120 mesh 2 m x 1mm ID micro-
packed column (Restek). The effect of storage at -20°C in a polypropolene syringe on O2 and
CO2 concentrations was tested using standard gas mixtures (N2, CO2) or soil samples with
high CO2 concentrations but no effect was found for storage up to 48 h (data not shown). Sam-
ples were injected with a 1-ml loop. Running conditions were as follows: 45°C 3 min, 45°C to
150°C at 120°C min-1, flow 15ml min-1 (He), TCD (200°C). In addition to soil gas sampling,
two atmospheric air samples were collected every time and used as technical controls for qual-
ity of GC analyses. A gas mixture of 1% CO2, 19.8% O2 in N2 was used as a standard. Gas con-
centrations were expressed as % per volume.

Soil sampling and analysis
Ten to twelve organic layer samples were collected using a soil corer (diameter 3.5 cm) from
every subplot A on April 24, June 4 and August 30, 2014. Soil cores were pooled to form one
composite soil sample per each subplot per sampling date, resulting in 50 soil samples per date.
On average, across all blocks and treatment plots (n = 50), the humus layer was 2.55 ± 0.08
(mean ± SE) cm thick and no statistically significant differences were observed between the
blocks or the treatments (F4, 36 = 1.9, p = 0.132). Fresh soil samples were transported to the lab-
oratory in an icebox immediately after sampling. As soil was still frozen at the time of April
sampling, samples were stored at +4°C overnight to allow slow thawing before processing. To
analyze soil and microbial biomass N, one sub-sample of about 3 g soil was extracted with 50
mL of 0.5 M K2SO4. Another subsample was extracted using the same method following chlo-
roform fumigation for 18 h [17]. The concentration of NH4-N was determined from fresh soil
extracts according to the standard protocol (SFS 3032, Shimadzu UV-1700 spectrophotometer)
and the concentration of NO3-N via flow analysis (FIA Perstorp). The total extractable N in
both soil and fumigated extracts was oxidized to NO3 [18] and then analyzed as NO3-N (FIA,
Perstorp). Microbial N was calculated by subtracting the total extractable N of the soil extracts
from that of the fumigated extracts. Soil moisture was determined by drying the samples
(105°C, 12 h). Soil pH was measured in 3:5 v/v soil:water suspensions (Denver Instrument
Model 220).

Seedling material and inventory of seedling condition and growth
Container seedling material for the experiment was grown by Fin Forelia Oy (Rovaniemi,
Northern Finland). Seedlings of local origin were grown in PL121F (121 cells per tray, 816
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cells m-2, cell volume 50 cm3) trays filled with fertilized (N, P, K and micro nutrients) and
limed sphagnum peat.

One-year-old Scots pine (Pinus sylvestris, average height 7–12 cm) and two-year-old Nor-
way spruce (Picea abies, average height 27 cm) seedlings were planted on treatment plots in
September 2013 as described in Fig 1 (10 seedlings of both species in each of the 100 subplots,
in total 2000 seedlings) using planting tubes to place the plug in mineral soil.

An inventory of seedling health and survival was done one month after planting on October
22, 2013 to record seedling status before winter: only 4 seedlings were visibly qualified as dead
(3 pine, 1 spruce seedling, in AMB plots (2 seedlings) and COMP plots (2 seedlings)).

Seedlings in AMB, IE, COMP and NoSNOW plots were inventoried during the 2014 grow-
ing season. As soil and seedling samples in A subplots were collected in the beginning of the
2014 growing season for further biochemical analysis, only seedlings in B subplots could be
inventoried. Because shelters in the NoICE plots prevented rain-on-snow but not snow com-
paction occurring during warm spells, the NoICE plots were considered to be similar as con-
trols and were not used for seedling inventory. The status of seedlings was recorded on June 6
(beginning of growing season), July 11, (after cessation of the annual main shoot height
growth) and September 30 (end of growing season), 2014 for the following parameters: length
of the current (2014) annual shoot, health class of the current (2014) annual shoot (0: healthy,
1:<50% brown needles, 2:> 50% brown needles, and 3: dead) and seedling health class (0:
healthy, 1:<50% brown needles, 2:> 50% brown needles, 3: dead).

Statistical analysis
Data was analyzed by means of a linear mixed model, where treatment and sampling date were
fixed factors and block was a random factor. Sampling date was a repeated factor with the treat-
ment plot as a subject. Seedlings that were dead already in October 2013 were excluded from
the analysis. Also seedlings with broken shoots (likely due to snow manipulation) were
excluded from the dataset: a total of 10 seedlings were broken, with 8 in COMP and 2 in IE
plots. For growth, seedling health and shoot winter survival, treatment-wise means per treat-
ment plot were first computed for statistical analysis (i.e. n = 10 per treatment per sampling
date). Shoots from all living seedlings, whatever their health conditions, were included when
computing the mean height growth (a living seedling can have a dead shoot and a new shoot
may grow the following year). Seedlings dead before winter were excluded from the dataset as
well as seedlings dead in June (June growth data) and July (July growth data). Seedlings dead in
July were also excluded from the September growth data as no seedling health inventory was
done in September. To test whether seedlings in snow manipulation plots were statistically dif-
ferent from seedlings in AMB plot estimated marginal means were computed and compared
under the linear mixed model. In case of the length of the current (2014) annual shoot and the
proportion of dead shoots the data for the final status (Sept. 30) only was included in the analy-
sis (i.e. date was excluded from the mixed model). Correlations were computed by means of
Pearson correlation coefficients (r). All statistical analyses were carried out with SPSS 22.0 for
Windows (SPSS, Inc., Chicago, IL, USA).

Results

Weather conditions during the experiment and snow cover data
The 2013–2014 winter was characterized by unusually warm temperatures in December, Feb-
ruary and March (S1A Fig) with temperatures 4.1, 9.4 and 4.0°C higher than the long-term
averages (1981–2010), respectively. This led to a high number of days with daily air tempera-
tures above freezing (7, 2, 7 and 11 days in December, January, February and March,
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respectively, in Apukka). December 2013 was also characterized by high precipitation,
mainly in the form of rain due to warm spells in early December (S1B Fig). In late winter
2014, the snow cover was thinner than the 30-year average in open areas (S1C Fig). Presence
of trees and stand structure influences snow cover distribution and thermal properties due to
interception of light and precipitation [14]. In the specific case of our experimental forest, we
estimated that the snow cover is about half that in open area in Apukka (S1C Fig). Neverthe-
less, the snow depth was lower than average in winter 2013–2014 at the experimental site.
Snow manipulation affected the snowpack thickness, particularly the IE treatment where a
strong decrease in snow depth was measured in February (S2A Fig). The effect was lesser
later in March due to the natural snow that covered the plots after the snow manipulation.
The lighter snow in the NoICE plots (prevention of rain-on-snow) was the first snow to melt
by the end of April (S2B Fig).

Soil frost and temperature
The winter 2013–2014 was characterized by two cold spells (air temperature below -20°C at the
field site: December 6–9, 2013 and January 14–19, 2014) and two warm spells (air temperature
above 0°C for more than 5 consecutive days, December 25–30, 2013 and March 5–14, 2014; Fig
2A). The beginning of the 2013–2014 winter was unusually warm with very little snow in early
winter due to a warm spell and rain from December 25, 2013 to January 6, 2014. Due to the
low snow cover in early December, the soil frost went deeper than 50 cm during the first cold
spell in AMB plots (S1 Table).

The soil then completely thawed during the warm spell in early January 2014 to freeze again
later in January. The warm spell in mid-March was followed by a decrease of the soil frost
depth a week later (as measured on March 20, S1 Table), however not leading to complete soil
thawing as the surface froze a few days after the warm spell. Subsequent freezing temperatures
led to deepening of soil frost to levels similar to those before the warm spell. Finally, the soil
started to thaw from the surface in the second part of April and complete soil thawing was
observed in AMB plots during the third week of May (S1 Table).

Fig 2. Air temperature and effect of snowmanipulation on soil temperature.Mean daily air (2-m height) and soil (humus layer) temperatures during
winter 2013–2014 (a) and close-up at the time of snowmelt (b). Values are mean of 3 blocks. Snow watering occasions are indicated. Blue arrows = cold
spells, red arrows = warms spells.

doi:10.1371/journal.pone.0156620.g002
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During warm spells, the frost depth in NoSNOW plots decreased faster than in other plots
and in late spring, the NoSNOW plots were all among the first to be completely thawed (S1
Table).

Being independent of soil physical properties, the ground surface and humus temperatures
showed less heterogeneity between the blocks than soil frost. During the cold period of winter
2013–2014, snow removal, but also IE to a smaller extent, led to lower soil temperature than in
AMB, NoICE and COMP plots in the humus layer (Fig 2A). However, plotting the difference
in temperature between the treated and AMB plots as a function of air temperature (S3 Fig), it
appeared that IE and snow compaction did not significantly decrease soil temperature under
the snowpack. The natural snow that covered the plots after treatment likely provided sufficient
insulation. Soil temperature in NoSNOW plots mirrored ground frost depth, and a strong cor-
relation between the freezing air temperature and temperatures of both ground and humus
were detected (r = 0.73 and 0.65, respectively; S3E Fig).

Snow-covered area
The calculation of snow-covered area at the end of April suggested a later complete snow melt
due to IE compared to ambient conditions (S2B Fig). The temperature records support a later
date of snowmelt in IE compared to other plots (appearance of diurnal fluctuations in the tem-
perature in the humus layer are linked with the date of snow melt; Fig 2B).

Soil gas composition
Analysis of gas samples collected in the humus layer (2-cm deep) throughout the winter
showed large seasonal changes in CO2 and O2 concentrations and, above all, strong treatment
effects (Fig 3). In AMB plots, the CO2 concentration started to increase from the beginning of
March, up to a maximum concentration of 2.3 ± 0.5% on April 16, 2014. Similar changes were
measured in the NoICE plots. Snow manipulation had a clear and statistically significant effect
on soil gas composition from early March to early May (Table 1 and Fig 3).

IE led to development of hypoxia and to a strong accumulation of CO2 under the snowpack
with concentrations of 7.3%, close to 200 times the atmospheric concentration. An intermedi-
ate situation was observed in COMP plots with concentrations between those in AMB and IE
plots (Fig 3). No CO2 accumulation was measured in the NoSNOW plots. The arbitrary thresh-
old of 4% (100 times the atmospheric concentration) was measured during 0, 12 and 45 conse-
cutive days in the AMB, COMP and IE plots, respectively. Alternatively, the CO2

concentration was above 5% [19] during 0, 1 and 17 consecutive days in the AMB, COMP and
IE plots, respectively.

The O2 concentration decreased in close correlation with accumulation of CO2 (r = -0.93).
In AMB plots, the lowest O2 concentration was 13.7 ± 2.2%. It was lower than 16% for 9 and 41
days in the COMP and IE plots, respectively. No O2 decrease was observed in the NoSNOW
plots. Seasonal variation in soil gas concentration under the snowpack was partly related to
changes in air temperature: warm spells were followed by increases in CO2 concentration
(decrease in O2 concentration) and inversely, cold periods were followed by decreases in CO2

concentration (increases in O2 concentration; Fig 3). The extreme values in April were related
to the seasonal increase in air temperature in spring.

Soil properties
Forest soil at the study site is acidic with a typical pH ranging from 3.6 and 3.9 depending on
the season. Time of sampling had a significant effect on pH (S3 Table): higher pH values were
measured in early June (3.85 ± 0.04) compared to April (3.77 ± 0.05) and August (3.66 ± 0.03)
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in AMB plots (mean ± SE, n = 10). Although treatment had no significant effect on pH (S3
Table), a tendency for lower pH was observed in IE compared to AMB plots in April and June
(S4 Fig).

The snow-manipulation treatments had statistically significant effects on soil moisture and
N content (S3 Table), but only the NoSNOW plots were significantly different that AMB plots.
A decrease in soil moisture due to prevention of snowfall (-20% compared to AMB plots) as
well as a decrease in total extractable N (the sum of NH4-N, NO3-N, and extractable organic N;
S2 and S3 Tables) were detected in April but not later during the growing season. All forms of
N were similarly affected by snow removal.

Fig 3. Effect of snowmanipulation on CO2 and O2 concentrations 2-cm deep in humus layer.Mean daily air temperature at field site is depicted.
Snow watering occasions are indicated by blue diamonds. For better clarity, one-sided error bars are depicted. Values are means ± SE (n = 10).

doi:10.1371/journal.pone.0156620.g003

Table 1. Statistical significance tests (linear mixedmodel for treatment, date and their interaction) for CO2 (log transformed) and O2 concentra-
tions (%).

log CO2 O2

df F Sig. df F Sig.

Treatment 5 / 104 40.7 <0.001 5 / 162.1 19.4 <0.001

Date 22 / 520 23.3 <0.001 22 / 497.7 10.4 <0.001

Treatment*date 77 / 517 3.57 <0.001 76 /504.2 2.95 <0.001

doi:10.1371/journal.pone.0156620.t001
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Seedling winter survival
In general, seedling winter survival was high in ambient conditions (AMB plots) with 94% of
spruce seedlings and 80% of pine seedlings being healthy in mid-July. One winter of snow
manipulation significantly affected the survival of seedlings (Fig 4 and Table 2). IE was the
most damaging treatment with only 50% of spruce and 19% of pine seedlings still healthy in
mid-July. Compared to the situation in AMB plots, those values represent 47% less spruce and
76% less pine seedlings healthy. Likewise, COMP was less damaging to spruce than pine (79%
of spruce and 49% of pine seedlings were healthy in July) but the NoSNOW treatment affected
both species similarly (70% of spruce and 69% of pine seedlings were healthy in July).

The proportion of dead seedlings did not change significantly until mid-July for spruce
seedlings but increased from June to mid-July for pine seedlings (16 spruce and 34 pine seed-
lings were dead in mid-July). This was particularly true in NoSNOW plots where more than
90% of the dead pine seedlings in July died between early June and mid-July (Fig 4). None of
the heavily damaged spruce seedlings (class 2) recorded in June, including those in IE plots,
died within the next month and most of them recovered to a better health class (7 out of 9 seed-
lings, among which 7 were in IE plots). The situation was different for pine, as among the 19
class 2 seedlings inventoried in June (10 in IE plots); 50% died during the next month and only
4 improved in health.

Fig 4. Effect of snowmanipulation on spruce (a) and pine (b) seedling survival and health the following summer. Seedlings were inventoried on
June 6 and July 11, 2014. Class 1: <50% brown needles, class 2: > 50% brown needles. An asterisk indicates a statistically significant difference in
proportion of healthy seedlings with AMB plots at p < 0.05. Values are means (n = 10).

doi:10.1371/journal.pone.0156620.g004
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Current-year shoot survival and growth
All treatments tended to increase the number of dead shoots compared to AMB conditions but
in case of spruce only IE, and in case of pine IE and No SNOWwere significantly different
from AMB (Fig 5A, S5 Table). In both species, almost all the shoots dead at the end of the
growing season were already dead in early June (S4 Table). Seedlings in IE, COMP and NoS-
NOW treatments tended to grow less than seedlings in the ambient conditions (Fig 5, S5
Table). At the end of the growing season the height growth of spruce seedlings was significantly
(p = 0.004) lower that in the ambient, and in the COMP marginally so (p = 0.054). In case of
pine the height growth in the IE was only marginally (p = 0.08) lower than in ambient. Mea-
surement of terminal shoot length in July and September showed that all seedlings had com-
pleted their annual height growth by mid-July and that treatments did not cause any delay in
growth (S4 Table).

Discussion
In line with our hypothesis, altered snowpack had strong consequences on the overwintering
conditions of plants and conifer seedling survival. As expected, IE but as well snow compaction
limited gas exchange at the soil-atmosphere interface, inducing development of hypoxia and

Table 2. Statistical significance tests (linear mixedmodel for treatment, date and their interaction) for proportion of healthy spruce and pine seed-
lings in June and July.

Spruce Pine

df F Sig. df F Sig.

Treatment 3 / 60.25 19.03 <0.001 3 / 57.69 38.19 <0.001

Date 1 / 60.25 7.47 0.008 1 / 57.69 19.8 <0.001

Treatment*date 3 / 60.25 0.41 0.745 3 / 57.69 0.63 0.60

doi:10.1371/journal.pone.0156620.t002

Fig 5. Effect of snowmanipulation onmain shoot winter survival (a) and shoot growth (b) at the end of the growing season (September
30, 2014). An asterisk indicates statistically significant difference with AMB plots at p < 0.05. Values are means ± SE (n = 10).

doi:10.1371/journal.pone.0156620.g005
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accumulation of CO2 in the subnivean environment. Accumulation of CO2 was detected also
in ambient plots (AMB), and in NoICE plots to a lesser extent, but the major consequence of
IE was a higher maximum CO2 concentration (7.3%, more than three times higher than in
AMB plots) and a longer duration of high CO2 concentration. The 5% threshold for induction
of growth and metabolic symptoms in the case of flooded roots [19] was exceeded for 17 conse-
cutive days in IE plots but not recorded at all in AMB plots in the 2013–2014 winter. In con-
trast to our hypothesis, snow compaction and IE had no clear effect on soil temperature but
showed only a tendency of lower temperatures compared to AMB plots during the coldest peri-
ods. This result is likely due to the natural snow that covered the plots after snow manipulation
in January. By contrast, snow removal exerted a considerable influence on soil temperatures
and removal of the insulating snow cover led to deeper soil frost as previously described [20–
23]. However, deeper soil frost did not delay soil warming during warm spells or soil thawing
in spring, likely due to fast soil-atmosphere heat exchange and low albedo due to lack of snow
cover. Consistent results have been previously reported in a complete snow removal experi-
ment in a boreal forest site [20]. Instead, partial snow removal that maintained albedo similar
to reference plots led to extension of soil frost duration [24, 25]. Our results also indicated a
delay in snow ablation due to IE which is in agreement with Rixen et al. [26] who reported a
positive correlation between date of snow melt and snow density. We also detected a tendency
of lower pH in IE conditions compared to AMB plots in April. A decrease in pH in relation to
CO2 accumulation has been previously measured in natural CO2 vents [27] or after CO2 injec-
tion in soil [28]. However, the reported concentrations were much higher than the values
reported in our study and whether the small drop in pH we measured is a consequence of CO2

accumulation during winter remains to be proven.
Microbial, faunal and plant root respiration that decrease O2 and increase CO2 concentra-

tions in the soil environment continue over the winter under the snowpack where temperatures
are maintained close to zero throughout the winter [29]. Particularly, soil microbial respiration
may constitute a major wintertime source of CO2, because soil microorganisms in cold envi-
ronments are adapted to efficiently function at close-to-zero or even sub-zero temperatures
[30, 31]. Higher CO2 concentrations in the organic layer in the plots receiving IE or snow com-
paction treatments could either be related to a decrease in CO2 soil efflux due to the trapping
of gases under the ice layer and in the frozen soil, or to higher microbial production of CO2.
Although we did not directly analyzed the effects of the changing subnivean environment on
soil microbial activity, increasing CO2 production under IE and compacted snow are most
likely not due the minimal or even cooling effect on soil temperature. Soil microbial activity is
also governed by carbon availability to soil microorganisms and we cannot exclude that the
possible higher fine root mortality due to snow manipulation (see below) has an impact on soil
microbial activity. However, we suggest that the kinetics of soil gas efflux through the snow-
pack, rather than CO2 production, were affected in IE conditions due to the hermetic ground-
ice layers and the efficiency of ice in trapping gases inside the soil environment. This hypothe-
sis is supported by the large flux of CO2 measured at the time of snowmelt [32] and finding
that microbial activity during the following growing season was lower in the IE treated-plots
(S. Stark, unpublished). Accumulation of CO2 in soil due to limited soil-atmosphere gas
exchange under snow cover has been previously measured even at the depth of 35 cm in mon-
tane soil [12] and in high elevation forest soil [33]. The maximum CO2 concentrations reported
in our study in ambient conditions are higher than the values reported in these previous stud-
ies. This likely resulted from the wet weather conditions during winter 2013–2014 and the nat-
urally occurring IE. Previously, Yanai et al. (2011) reported development of hypoxia under the
snowpack but they did not monitor CO2 concentrations [34].
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In line with our hypothesis, changes in the snow-cover significantly affected winter survival
and growth of conifer seedlings. In general, the survival rate of conifer seedlings was high with
94% of spruce and 80% of pine seedlings being healthy in mid-July in ambient conditions. IE
induced the most damaging effect with only 50% of spruce and 19% of pine seedlings still
healthy in mid-July. Only IE showed significant effect on height growth. Contrary to other
studies [24, 35], growth was not significantly affected by snow removal. Increased shoot mor-
tality in response to IE was previously found in Vaccinium species, but not in a dominant ever-
green dwarf shrub in boreal systems, Empetrum nigrum, suggesting high species-specificity in
plant responses to IE [36]. Soil gases were not however monitored in that study. The same
authors exposed the above-ground part of the same species to hypoxia or high CO2 concentra-
tions within the snowpack for 14 days to simulate ice layer on top of the snowpack and species-
specific symptoms were observed in response to high CO2 only [37].

Because snow manipulations changed the environmental conditions for conifer seedlings in
multiple ways (e.g. low freezing soil temperature, early soil thaw due to complete snow
removal, hypoxia, high CO2 accumulation and delayed snow melt due to IE), it is difficult to
determine which of these factors had the most important influence on seedling survival and
growth. Both direct and indirect mechanisms are probably involved in the different treatment
effects. Nitrogen availability was unaffected by IE or snow compaction, so it cannot explain the
symptoms observed under those snow conditions. Winter–induced symptoms in boreal zone
are typically related to the effect of temperature such as frost damage, winter desiccation or
photoinhibition [38]. Without any protective snow cover, seedlings are more exposed to freez-
ing temperature, freeze-thaw cycles and direct sun light which typically lead to stronger photo-
inhibition than in seedlings under the snow cover [39]. As we did not measure photochemical
efficiency in this study, we cannot evaluate the role of photoinhibition in the damages observed
due to snow manipulation, and particularly snow removal. However, we suggest that in absence
of snow, lower soil temperature is a determinant factor leading to damage. Low soil tempera-
ture in early winter did not affect the seedlings in AMB plots (-10°C minimum soil temperature
in early December) suggesting that early-winter low freezing temperatures do not induce sig-
nificant abiotic stress for the dormant seedlings but that soil frost later in winter is more criti-
cal, in relation to freeze-thaw cycles and root damages in snow free soil [40]. Furthermore,
seedlings outplanted in late autumn do not grow roots before winter (Luoranen, unpublished),
which might increase the risk of damage during snowless winter or dry spring, as it is the case
in absence of snow. A snow removal experiment for two consecutive winters showed that Nor-
way spruce seedlings heavily suffered from winter desiccation and had lower growth during the
following summer [35]. Unfortunately root biomass was not investigated. Partial snow removal
also increased root exposure and decreased post-winter survival of saplings from different spe-
cies, the effects being species-specific [41]. More specifically, complete or partial snow removal
has been shown to increase fine root mortality in trees by direct cellular damage and indirect
damage to the roots by mechanical processes related to freeze-thaw cycles and consequent frost
heaving [24, 40, 42–44]. Reduced terminal bud growth usually reflects root growth and root
damage [24], which could explain the growth reduction detected in the present study. The
effects are however expected to depend on tree age (seedlings versus mature trees). For exam-
ple, deep soil freezing after snow removal was not detrimental for fine roots of mature Norway
spruce [45], but for spruce seedlings soil freezing has been shown to affect shoot and root
growth in the following growing season [46, 47]. In Scots pine seedlings, freezing soil has been
found to strongly increase root mortality [43]. In both species, damage is likely not caused by
direct exposure to low temperatures but rather the consequence of dehydration. In that sense,
the duration but as well the intensity of frost appear as critical parameters and so the rooting
depths of seedlings versus adult trees.
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IE induced more detrimental effects on conifer seedlings than snow removal, and its effect
on seedling and shoot health appeared earlier during the growing season. Ice encased seedlings
experienced slightly lower soil temperatures than those in ambient conditions during cold
spells but, more importantly, they experienced hypoxic conditions with high CO2 concentra-
tions under the ice layers. Snow compaction led to concentrations of soil gases and to seedling
and shoot health damage at intermediate levels between IE and ambient conditions. Plant
response to hypoxia is well known in connection with waterlogging and flooding [48, 49], but,
compared to waterlogged conditions, IE is formed at below or near freezing soil temperatures
when trees have a low metabolic status. Low oxygen demand in dormant trees may partly miti-
gate the harmful effects of overwintering under ice layers [48] but, on the other hand, dormant
trees have no or limited photosynthesis to allow for energy supply to the hypoxic roots. The
effect of high soil CO2 concentration on plants has been studied, e.g. in connection with the
development of carbon capture and storage (CCS) technology. For example, CO2 injection into
soil during the growing season led to leaf discoloration in several crops species within a week
[50]. An increased of CO2 concentration in soil from 0.035% to 0.7% has been shown to
decrease Douglas fir root respiration by 50% [51], but generally very little information is avail-
able on the impact of soil CO2 on the roots of woody plants. The effects of high soil CO2 on
plants depend mainly on root characteristics (root length, porosity and resistance to CO2

movement across exodermis) [19]. At the cellular level, an increase in internal CO2 partial
pressure has been shown to lead to cytoplasm acidification, running the risk of adverse effects
on metabolism or cell structure [52], and consequently root functioning. However, the water
and nutrient uptake that is coupled to active CO2 uptake in e.g. flooded roots are nonexistent
or low in winter months and make this winter situation typical. Hypoxia and CO2 accumula-
tion are tightly linked and whether hypoxia or high CO2 concentration is the most damaging
agent behind the observed seedling damage remains to be proven [19]. Castonguay et al. [53]
exposed perennial grasses to different O2 and CO2 concentrations during winter. They
observed that low O2 concentration reduced regrowth more than high CO2 alone, but a combi-
nation of high CO2 and low O2 concentrations seemed to be more damaging than low O2

alone. The exposure of above ground part of sub-arctic dwarf shrubs to either high CO2 con-
centration or hypoxic conditions in the snowpack for 14 days revealed that CO2 alone caused
damages, whereas dwarf shrubs were able to tolerate hypoxia (low O2 alone) [37]. In this later
study, responses were however species-specific. Although different underlying mechanisms are
hypothesized to explain the difference between IE and snow removal effects, one major differ-
ence between those treatments is the conditions seedlings experienced at the very beginning of
the growing season. Date of snowmelt is indeed essential for plant growth as it regulates soil
moisture [54] and nutrient availability. In spring, both air and soil temperatures trigger the
beginning of the active growing period [55, 56]. In our study, snow removal led to low soil
moisture, early soil thaw and consequently to higher risk of drought and spring frost damage
(last frost observed on May 15, 2014). In contrast, IE led to later soil thaw and snow melt,
which represent a high risk of winter desiccation due to limited liquid water availability in fro-
zen soil and aboveground conditions allowing photosynthesis resumption in seedlings emerg-
ing from the thin snow cover. Excessive delay in soil thawing compared to the increase in air
temperature in spring can impair growth of above- and below-ground organs of trees and
potentially lead to death [20, 45, 57, 58]. The severity of stress also depends on the length of the
delay in thawing [57]. So, both snow removal and IE led to highly stressful conditions at the
time of spring regrowth which could affect growth but potentially survival as well. Our results
also suggest that all three snow manipulation levels have more significant effects on seedling
survival and health than on growth. Whether growth reduction is the direct consequence of
health weakening remains to be studied. For example, different environmental factors, date of
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snowmelt and elevation, appear to be determinant for survival and growth, respectively, of
seedlings planted above the Alpine treeline [59].

Among IE, snow compaction or absence of snow, IE appeared to be the most harmful winter
conditions to both conifer species. The frequency of warm spells and rain-on-snow events
causing snow compaction and ice layers under or within the snowpack are projected to increase
in the future [3]. The total absence of snow cover is outside the range of natural variation in
Northern Finland (66°N) but is part of the anticipated climate change variation in Southern
Finland [4]. Our results revealed for the first time that by modifying the snow conditions in
boreal forests, changing winter climate might have adverse effects on growth and winter sur-
vival of conifer seedlings. These effects could influence forest regeneration with important
implications for boreal forest ecology and the associated economy. This is particularly true for
afforestation as planting costs represented 58 million euros for 84000 ha, 2/3 of the regenerated
forest area in Finland in 2012 [60]. Although further studies are needed to determine which of
the winter stresses caused the most damaging effects, our results suggest that denser snowpack
or lack of snow cover due to winter warming could have a major impact on forest ecosystems.
Understanding the physiological mechanisms behind the observed seedling decline and death
are needed in order to find tools for mitigating the effect of IE on boreal forest ecosystem func-
tioning. So far, models forecasting growth and productivity of boreal forest under climate
change scenarios only consider changing conditions during the growing season. Our results
indicate that the possible consequences of winter climate change should be taken into consider-
ation in these models. Winter climate change might have a negative effect on forest growth and
productivity that could partially counteract the positive growth effects due to increasing grow-
ing season temperatures.
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