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ABSTRACT Evolve and resequence (E&R) experiments, in which artificial selection is imposed on organisms
in a controlled environment, are becoming an increasingly accessible tool for studying the genetic basis of
adaptation. Previous work has assessed how different experimental design parameters affect the power to
detect the quantitative trait loci (QTL) that underlie adaptive responses in such experiments, but so far there
has been little exploration of how this power varies with the genetic architecture of the evolving traits. In this
study, we use forward simulation to build a more realistic model of an E&R experiment in which a quantitative
polygenic trait experiences a short, but strong, episode of truncation selection.We study the expected power
for QTL detection in such an experiment and how this power is influenced by different aspects of trait
architecture, including the number of QTL affecting the trait, their starting frequencies, effect sizes, clustering
along a chromosome, dominance, and epistasis patterns. We show that all of these parameters can affect
allele frequency dynamics at the QTL and linked loci in complex and often unintuitive ways, and thus
influence our power to detect them. One consequence of this is that existing detection methods based on
models of independent selective sweeps at individual QTL often have lower detection power than a simple
measurement of allele frequency differences before and after selection. Our findings highlight the impor-
tance of taking trait architecture into account when designing and interpreting studies of molecular
adaptation with temporal data. We provide a customizable modeling framework that will enable researchers
to easily simulate E&R experiments with different trait architectures and parameters tuned to their specific
study system, allowing for assessment of expected detection power and optimization of experimental design.
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Artificial selection experiments can provide insights into the mech-
anisms that allow populations to adapt to strong selection pressures
(Hill and Caballero 1992; Fuller et al. 2005; Garland and Rose 2009).
When combined with population-level genome sequencing, such
experiments can also help us elucidate the genetic architecture of
the selected traits by revealing the quantitative trait loci (QTL) that

underlie observed adaptive responses (Burke et al. 2010; Schlötterer
et al. 2015). This rationale forms the basis of the evolve and
resequence (E&R) method for QTL detection (Turner et al. 2011;
Long et al. 2015), in which one seeks to identify the alleles that have
systematically changed in frequency over the course of a selection
experiment. Such E&R experiments have now been successfully
performed in a wide range of study systems (e.g., Escherichia coli
(Barrick et al. 2009; Tenaillon et al. 2012), yeast (Parts et al. 2011;
Lang et al. 2013), Drosophila melanogaster (Burke et al. 2010, Zhou
et al. 2011, Turner et al. 2011), other Drosophila species (Seabra
et al. 2018; Kelly and Hughes 2019), Caenorhabditis species
(Teotónio et al. 2017), and mice (Chan et al. 2012; Castro et al.
2019)). For example, with E&R experiments, Tenaillon et al. (2012)
uncovered 600 loci associated with high-temperature tolerance in
E. coli, and Burke et al. (2010) identified several dozen genomic
regions responding to selection for accelerated development in
D. melanogaster.
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In higher eukaryotes, practical constraints typically impose severe
limits on the size of the experimental population and the number
of generations an E&R experiment can be conducted for. Selection
pressure is therefore typically kept high so that an adequate trait
response can still be achieved. One consequence of such small
population size and strong selection is that effective population
sizes tend to be low in these experiments, resulting in high levels of
genetic drift. In addition, because recombination will be less effective
at breaking up linkage in a short experiment, there could be sub-
stantial hitchhiking of neutral alleles (Smith and Haigh 1974) as well
as Hill-Robertson interference (Hill and Robertson 1966) between
selected alleles. All of these factors can limit power and introduce
false positives in E&R experiments (Kessner and Novembre 2015).

The first studies to assess the power of E&R experiments for
QTL detection in higher eukaryotes used forward-in-time pop-
ulation simulations to model evolutionary dynamics at individual
QTL (Kofler and Schlötterer 2014; Baldwin-Brown et al. 2014).
These studies provided important insights into how detection
power is affected by basic population genetics parameters such
as recombination rate, linkage disequilibrium (LD), and the levels
of neutral diversity in the regions surrounding the QTL. In addition,
they explored how different aspects of the experimental design such
as selection strength, population size, duration of the experiment,
and number of experimental replicates can be tuned to maximize
detection power.

However, two assumptions of these early studies have turned
out to limit their generalizability: First, allele frequency dynamics
at individual QTL were modeled as independent selective sweeps,
parameterized by constant selection coefficients. Such models will
often fail to capture key aspects of the evolutionary dynamics of
QTL underlying polygenic traits, where an individual’s fitness is a
function of its trait value instead of some constant selection coef-
ficients at QTL (Burke et al. 2010; Kessner and Novembre 2015;
Franssen et al. 2017). Second, these studies either focused on regions
with high recombination (Kofler and Schlötterer 2014) or mod-
eled only a single QTL (Baldwin-Brown et al. 2014). This tends to
underrepresent the strong genome-wide pattern of linked selec-
tion on neutral loci typical for polygenic adaptation and effectively
neglects the possibility of Hill-Robertson interference between
QTL, which can affect the evolutionary dynamics in complex ways,
thereby impinging on QTL detection power (Hill and Robertson 1966;
Smith and Haigh 1974; Lang et al. 2013; Kessner and Novembre 2015).
Thus, to more accurately describe polygenic trait evolution in E&R
experiments, we need to adopt more realistic quantitative genetic
models in which the selected trait is defined explicitly and the loci
underlying the trait are modeled in the explicit context of a recom-
bining chromosome.

The selection model introduced by Kessner and Novembre (2015)
constitutes an important first step in this direction, but it assumed a
limited set of genetic trait architectures in which only the number of
QTL was variable. In reality, the traits of interest in E&R experiments
could span a considerable variety of genetic architectures, and we
typically know very little about this architecture for any given poly-
genic trait (Hansen 2006; Mackay et al. 2009; Gibson 2012). For
example, in addition to how many QTL control a given trait, these
QTL could be distributed uniformly along the chromosome, or they
could cluster in certain regions. Effect sizes could be similar among
the individual QTL, or they could vary according to some distribu-
tion. The frequencies of the selected alleles might be biased toward
lower or toward higher frequencies, as compared to neutrally
segregating alleles. The effects of these alleles on the trait might be

recessive, dominant, or fall somewhere in between. Furthermore,
there could be epistatic interactions of varying complexity among
specific sets of QTL.

Some of these aspects of trait architecture have previously been
demonstrated to affect the evolutionary dynamics of trait evolution in
E&R experiments. Franssen et al. (2017), for example, showed that
the effect size distribution and starting frequency of QTL can pro-
foundly influence their frequency trajectories in response to selection.
Similarly, Stetter et al. (2018) showed that the effect sizes of QTL
are a key determinant of their frequencies at the end of a selection
experiment. As a result, depending on their underlying genetic
architecture, certain traits might generally be more suitable for
QTL detection in E&R experiments, and for any given trait, there
could be systematic biases in terms of which QTL will be more
easily detected and which will be missed. Due to interactions
among different factors, this is unlikely to only depend on effect
size, so a power analysis considering broader aspects of trait
architecture in E&R experiments is required to properly interpret
results.

A second limitation in previous studies of detection power in E&R
experiments is that they have focused primarily on insect populations
like Drosophila (Kofler and Schlötterer 2014; Baldwin-Brown et al.
2014; Kessner and Novembre 2015), which are well-suited organisms
for such experiments due to their short generation times, relative ease
at which large populations can be reared, and rich genomic resources.
However, for certain questions (e.g., the genomic basis of vertebrate
traits), selection experiments on larger and longer-living organisms
may be necessary despite the additional logistical challenges. E&R
experiments on such organisms will typically be restricted to fewer
generations, therefore requiring even larger selection intensities
to achieve measurable changes in trait value. The greater selection
intensity could lead to characteristic differences in evolutionary
dynamics compared to experiments carried out over larger numbers
of generations and a potential decline in detection power. Neverthe-
less, many short-term selection experiments have been performed on
such larger and longer-living species, even though in many cases
their original intentions were not QTL detection (e.g., mice (van
Oortmerssen and Bakker 1981; Chan et al. 2012; Barrett et al. 2019),
guppies (Houde 1994), silversides (Conover and Munch 2002;
Therkildsen et al. 2019), voles (Sadowska et al. 2008), sticklebacks
(Barrett et al. 2011), and zebrafish (Uusi-Heikkilä et al. 2017)). In
addition, many common human practices, such as animal domesti-
cation and size-selective harvesting (through fishing and hunting),
resemble E&R experiments in key aspects such as high selection
pressure and specific traits targeted by selection (e.g., domestication
of salmonid fish (Christie et al. 2016, Gutierrez et al. 2016) and
chicken (Rubin et al. 2010, Johansson et al. 2010, Fallahsharoudi et al.
2017) or size-selective harvesting in Atlantic cod (Swain et al. 2007,
Therkildsen et al. 2013) and bighorn sheep (Coltman et al. 2003,
Pigeon et al. 2016)). To illustrate the widespread short-term selection
experiments in the literature, we have summarized a set of examples
in Table S1 of the supplementary materials. With high-throughput
sequencing becoming cheaper and more widely accessible, genomic
data can now be obtained from such experiments and practices on a
broad scale. This raises the question of how well time-series data
collected over a small number of generations can help us illuminate
the molecular basis of selected traits in these larger and longer-living
species.

In this paper, we use forward genetic simulations to systematically
assess how different aspects of trait architecture are expected to
affect the evolutionary dynamics and power to detect QTL in E&R
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experiments. Loosely inspired by a size-selection experiment
performed on the Atlantic silverside (Menidia menidia) to examine
impacts of fisheries-induced evolution (Conover and Munch 2002;
Therkildsen et al. 2019), our model setup is comparable to experi-
mental designs applicable to E&R studies in larger and longer-living
species in general (e.g., Sadowska et al. 2008; Uusi-Heikkilä et al.
2017). The specific aspects of trait architecture that we investigate are
the number of QTL contributing to a selected trait, the clustering of
QTL along the chromosome, the effect size distribution among the
QTL, the starting frequencies of the QTL, dominance, and epistasis
patterns. We show that most of these variables can greatly influence
QTL detection power, often in complex ways where the effect of one
aspect of the architecture depends on other aspects of the architec-
ture. We also demonstrate that although short-term selection ex-
periments generally have limited power in detecting the full set of
QTL contributing to the selected trait, some QTL with higher starting
frequency and larger effect size can still be detected, suggesting that
these experiments can be a useful approach for studying the genomic
basis of adaptation in species with longer generation time. Motivated
by these insights, we further discuss how optimal detection strategies,
including detection methods and experimental design, may vary under
different quantitative trait architectures.

METHODS

Simulation of E&R experiments
We used forward genetic simulations to model E&R experiments in
which divergent truncating selection is imposed on a quantitative trait
over four consecutive generations. The analysis pipeline consists of
the following stages:

1. Burn-in to create genetic variation in a starting population
2. Construction of QTL architecture
3. Selection on the trait
4. QTL detection
5. Power analysis

Burn-in to generate genetic variation in the
starting population
To model a population under mutation-drift equilibrium prior to the
selection experiment, we first simulated a 30 Mbp-long chromosome
evolving neutrally in a diploid population ofN = 1,000 individuals for
10N generations. Although a population size of 1,000 may seem small
for most natural populations, it is important to point out that because
we are simulating neutral evolution during this phase, it is primarily
the product Nm that will determine patterns of neutral diversity,
rather than the absolute value of N. We set the mutation rate to
m = 2·1028, corresponding to an expected equilibrium level of
nucleotide diversity of p = 4Nm = 8·1025. While this value of p
is still comparatively small for many species, it was chosen for
computational efficiency and we note that in our analyses of QTL
detection power the value of p is only expected to affect the absolute
number of false positives, but not the false positive rate (i.e., the
probability that any given neutral SNP is falsely detected as a QTL,
also see Figure S1).

More critical to our power analysis is the rate of recombination,
as it will determine the rate at which new allele combinations can
arise during the selection experiments and also affect the amount
of interference between QTL and the level of hitchhiking of neutral
SNPs with selected alleles. We chose a rate of r = 1 cM/Mbp for our
simulations. Under these parameters, linkage disequilibrium (LD), as

measured by r2, decays to 0.5 over a distance of approximately 25 kbp
in our simulated population (Sved 1971).

Assignment of QTL and construction of the
trait architecture
In our standard trait model, we randomly selected n of the existing
neutral SNPs after the burn-in to become the QTL affecting the trait.
We then randomly picked half of these SNPs to which we assigned
a positive effect (+1) to the derived allele and a zero effect to the
ancestral allele. For the other half of these selected SNPs, we assigned
a negative effect (-1) to the derived allele and a zero effect to the
ancestral allele. We note that in the truncating selection design that
we will employ below, it is only the relative difference between the
effect sizes of the derived and ancestral alleles at each QTL that
matters for the selection response. For example, when we select for
larger trait values in the experiment, the +1 derived alleles are selected
for and the corresponding ancestral alleles are selected against,
whereas the -1 derived alleles are selected against and the corre-
sponding ancestral alleles are selected for. We further assumed an
additive dominance relationship (h = 1/2) at individual QTL and also
additive effects across QTL. Under this model, the average trait value
in the population is expected to be zero at the start of a selection
experiment and the distribution of trait values among individuals
should be approximately Gaussian (as long as n is sufficiently large),
consistent with many polygenic quantitative traits in nature (Mackay
2009). We did not model the effect of environmental factors on trait
value (i.e., the broad-sense heritability of the trait is set to a value of
1 in our simulations).

Although many aspects of this standard model are idealistic, our
goal here is not to construct the most realistic trait model but to
qualitatively evaluate how different parameters of the model can
affect detection power. Six key parameters of this standard model
were thus varied to explore different trait architectures: (i) the
number of QTL, (ii) the clustering of QTL along the chromosome,
(iii) the effect size distribution of QTL, (iv) the initial allele frequency
distribution of the SNPs chosen to become QTL, (v) the dominance
relationship between the ancestral and derived alleles, and (vi) the
presence of epistatic interactions among pairs of QTL. The specific
implementations of each of these modified models are described in
the relevant sections below, and Table S2 gives a summary of all
parameters of interest and their values that we have tested.

Selection experiment on the trait
We modeled the selection experiment closely after the silverside
experiment that served as a motivating example for this study
(Conover and Munch 2002; Therkildsen et al. 2019). Specifically,
the population is subjected to divergent truncating selection,
generating two separate lines from the burn-in population: a high-
trait-value line and a low-trait-value line. For the “high” line, we
selected the 10% of individuals with the highest trait values in every
generation to become the parents for the next generation (obtained by
Wright-Fisher sampling). The “low” line was generated analogously
by choosing the 10% of individuals with the lowest trait value as
parents for the next generation. Population size was kept at 1,000
individuals in every generation in each line, and each line was run for
four generations of truncating selection. Because of this short dura-
tion, the impact of new mutations occurring during the selection
experiment should be negligible, and we therefore set the mutation
rate to zero after the burn-in while recombination events continue
to occur at a rate of 1 cM/Mb, which is similar in magnitude to the
observed rates in many species of interest (e.g., 0.63 cM/Mbp in
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mouse (Shifman et al. 2006), 0.97 cM/Mbp in dog (Wong et al. 2010),
1.5 cM/Mbp in zebra finch (Backström et al. 2010), 3.11 cM/Mbp in
three-spined stickleback (Roesti et al. 2013)).

As noted in the introduction, this simulated experimental design
is somewhat atypical among traditional E&R studies in that it lasts
only four generations and does not have replicated populations.
Because of logistical constraints, this is indeed the only feasible design
with many larger and long-living study organisms, but here we
also explored how detection power in our standard QTL model can
improve if an experiment can be conducted for five more gener-
ations and if two or five experimental replicates are included in the
experiment. To model experimental replication, we started with
the same burn-in population at the first generation, constructed the
same trait architecture for each experimental replicate, but simu-
lated the selection experiment with a different random seed for
each replicate. This therefore corresponds to a scenario where
replicated populations are created after the first generation of the
selection experiment. Results from these models are not central to
the main objectives of the paper and will only be shown in the
discussion section.

QTL detection
In each generation, we took a random sample of 50 individuals and
measured the allele frequencies of all SNPs in the sample. Following
Kessner and Novembre (2015), we took the absolute values of
sampled allele frequency differences between the last generations
in the “high” and “low” lines at each SNP (denoted by D) as a
summary statistic for QTL detection (i.e., D = |fhigh - flow|, where
fhigh is the sample allele frequency in the last generation of the
“high” line and flow is the sampled allele frequency in the last
generation of the “low” line). In addition, since alleles that start at
intermediate frequencies tend to generate larger D-values simply
due to genetic drift, we performed an angular transformation on
the sample allele frequencies. We call the absolute values of the
transformed allele frequency differences between the two lines
“transformed-D” (i.e., transformed-D = |2 · sin-1(

ffiffiffiffiffiffiffiffiffiffiffiffið fhighÞ
p

) – 2 ·
sin-1(

ffiffiffiffiffiffiffiffiffiffiffið flowÞ
p

)| / p. The transformed-D summary statistic has the
same scale of 0-1 as D, where 0 signifies no difference in allele
frequency at the end of the two selection lines and 1 signifies alleles
that are fixed in one selection line and lost in the other. Unlike D,
the transformed-D statistic is independent of the starting allele
frequency at neutral loci to a first approximation (Fisher and Ford
1947; Walsh and Lynch 2018; Kelly and Hughes 2019). When there
are multiple experimental replicates involved, we took the average
of transformed-D value (or D value where this was calculated)
across these experimental replicates as the final summary statistics
for each SNP.

Besides these simple and intuitive summary statistics based on
allele frequency differences, several more sophisticated, model-based
detection methods have been developed in recent years that can
take advantage of the full allele frequency trajectory estimated
across subsequent time points (Malaspinas 2016). After a comprehensive
literature review, we selected two representatives of such methods for
comparison with the simple D and transformed-D statistics: WFABC
(Foll et al. 2015) and ApproxWF (Ferrer-Admetlla et al. 2016).We chose
these two methods because they are widely used, require only allele
frequency data, provide extensive documentation, and employ two
contrasting approaches. Both of these methods are based on a classic
selective sweep model parameterized by fixed selection coefficients.
WFABC employs an approximate Bayesian computation framework,
in which a large number of simulations are compared to identify the

simulated datasets that are most similar to the actual data and
compute posterior probabilities of selection coefficients (Foll et al.
2015). ApproxWF uses a “mean transition time approximation” to
discretize the continuous diffusion process and infers the selection
coefficient via a Bayesian approach (Ferrer-Admetlla et al. 2016).

After a series of tests, we adjusted some parameter values in
WFABC from the default to optimize its detection power on our
standard model, by increasing the number of simulated datasets to
1,000,000, lowering the acceptance rate to 0.00, and assigning a
uniform prior to selection coefficients with an upper bound of 1 and
lower bound of -1. With ApproxWF, we used its default Markov
Chain Monte Carlo settings, with 10,000 iterations and 51 frequency
states distributed on quadratic grid, and assigned a normal prior to
selection coefficients, with mean of 0 and standard deviation of 0.1,
truncated at 1 and -1. We also set a fixed dominance coefficient of
0.5 to reduce the computational complexity in ApproxWF.

Both methods output a posterior distribution for the selection
coefficient for each SNP, and from this distribution, we calculated
a mean selection coefficient s for each SNP, as well as a posterior
probability p for s. 0, as recommended by authors of these methods
(Foll et al. 2015, Ferrer-Admetlla et al. 2016). We applied WFABC
and ApproxWF to the high-trait-value line and the low-trait-value
line separately, and then took the average of s and p across the
two lines while accounting for the directionality of selection (i.e.,
s
�
= (shigh – slow) / 2, p

�
= (phigh + (1 - plow)) / 2). Lastly, since +1 alleles

and -1 alleles are not distinguished and both are considered as QTL
in the power analysis, the signs of selection coefficients would not
matter, so we took |s

�
| and |p

�
- 0.5| as the final summary statistics for

each SNP. After testing for the detection power of these statistics, we
chose to use |s

�
| for WFABC and |p

�
- 0.5| for ApproxWF to maximize

their performance.

Power analysis
We calculated receiver operating characteristic (ROC) curves to
evaluate QTL detection performance using 100 simulation replicates
for each scenario. Note that a simulation replicate is different from
an experimental replicate in that it starts from a different burn-in
population and has a completely different set of SNPs and QTL,
therefore representing a different and independent experiment. False
positive rates were defined as the percentage of neutral SNPs iden-
tified as QTL for a given signal threshold. To evaluate power (the true
positive rate) for a given signal threshold, we deployed two different
methods: The first method simply measures the proportion of QTL
correctly identified. In simulations where effect sizes were not equal
among QTL, we also used a simple variation of this method, where
we weighted QTL by their effect sizes. The second method follows
Kessner and Novembre (2015) and measures the proportion of
genetic variance in the first generation explained by the detected
QTL, thereby also taking variation in the allele frequencies into
account. This method would give less weight to the detection of a
low-frequency QTL compared with an intermediate-frequency QTL,
because the latter would have contributedmore to the initially present
trait-variance in the population. Which method is more appropriate
in practice depends on the specific objective of the experiment: if the
goal is to identify QTL that are important to the trait regardless of
their prevalence in nature, the first method should be chosen, whereas
the second method should be chosen if the goal is to identify those
QTL that are most important for explaining trait-variance in the
initial population.We will only report the result from the first method
unless the two methods generate qualitatively different results, in
which case we will present both.
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To produce an individual ROC curve, we first specified 100 evenly
spaced signal thresholds spanning the range of observed per-SNP
values of the given summary statistics (D, transformed-D, |s

�
|, |p

�
- 0.5|)

among all simulation replicates. For each threshold value, we cate-
gorized SNPs with summary statistics exceeding that threshold value
as being detected as a QTL in each simulation replicate. We then took
the mean power and false positive rate across all simulation replicates
to add one point to the ROC curve. This process was reiterated for
each threshold value.

Data availability
All simulations were conducted within the individual-based forward
genetic simulation framework SLiM 2.4.1 (Haller and Messer 2016).
Our simulation pipeline can be used as a flexible tool with which
readers can perform similar analysis based on parameters relevant to
their study system. Two SLiM scripts were created for the simulation,
one for the burn-in process and the other for the selection experi-
ment. Two shell scripts can be used to run each of these SLiM scripts
in a command-line environment, so that repeated simulations can be
automated on either a local machine or a remote server. Parameter
values are also defined through these shell scripts and users can easily
edit them to implement custom simulation scenarios. All data analyses
and visualizations are implemented using R, with packages “tidyverse”
(Wickham and RStudio 2017), “data.table” (Dowle et al. 2019), and
“cowplot” (Wilke and RStudio 2019). The SLiM and shell scripts
for the simulation, along with a detailed user-guide, are available in
supplementary materials and online at https://github.com/MesserLab/
evolve-resequence-simulation. The data used in this paper can easily be
reproduced using these scripts and the scripts can also be customized
for other test cases following the user-guide. The R scripts for data
analyses and visualization are also available in the same GitHub
repository.

RESULTS

Selection response in the standard QTL model
Figure 1A shows the change in average trait value (estimated across
all individuals in the population) for the “high” and “low” lines in
100 simulated experiments under our standard model with n = 100 QTL
(Figure S2 shows results for a model with n = 10 QTL). Average trait
values can be seen to change consistently in the selected direction,
while genetic variance generally declines with diminishing returns
over the course of a single experiment (Figure 1B). Note, however,
that the theoretical maximum/minimum trait value in our standard
QTL model would be +/2100 had all of the +1 or all of the -1 alleles,
respectively, fixed in a population. The maximum trait values achieved
in our simulations were typically less than a third of these maximum
values. This is primarily due to the fact that many low-frequency alleles
at QTL are lost due to drift or interference between neighboring QTL
even when they should have been favored by selection. Overall, these
results demonstrate an effective selection response on the phenotypic
level in our model that is consistent among simulation replicates,
suggesting that we should be able to observe meaningful evolutionary
dynamics in our experimental setup.

Figure 1C shows sampled allele frequency trajectories at all SNPs
in the “high” and “low” lines from a single experiment. As expected,
minor alleles at the individual QTL tend to change in frequency in the
selected direction (e.g., in the “high” line, at those QTL where the
derived allele has an effect size of +1, the derived alleles tend to increase
in frequency while the ancestral alleles tend to decrease in frequency,
and vice versa at those QTL where the derived allele has an effect

size of -1). However, several complexities of the allele frequency
dynamics are revealed in this figure: First, many alleles that should
have been favored by selection do not actually rise consistently in
frequency. This is particularly common for alleles that start at low
frequency, which often get lost in both selection lines. But even after
favored alleles reach intermediate frequency, they can still subse-
quently drop in frequency due to interference with other linked QTL.
On the other hand, neutral alleles and alleles that are disfavored by
selection can consistently rise in frequency when they are located on
haplotypes with a net excess of favored alleles. These linkage effects
produce dynamics that are quite different from a model of in-
dependent selective sweeps in which alleles favored by selection tend
to consistently increase in frequency and neutral alleles tend to
fluctuate randomly in frequency due to drift (Kessner and Novembre
2015). Also, note that under strong selection pressure, many QTL are
already close to fixation after four generations and would likely fix soon
within just a few more generations, so conducting the experiment for
only four generations allows us to better distinguish selection from
drift. Therefore, we chose to keep using four generations in our
standard model, but we will explore a model with more generations in
the discussion section.

Figure 1D shows the distribution of transformed-D across SNPs
over 100 simulation runs of our standard model with n = 100 QTL.
The distribution is heavily peaked at transformed-D equal or close to
zero for both neutral and QTL SNPs, which is expected because
the derived alleles at most SNPs will be at low frequency at the start of
the experiment, and thus prone to being lost to drift in both the “high”
and “low” lines. This will generally limit detection power when
measured as the overall fraction of QTL identified, given that many of
the initially present alleles at QTL will be lost in an experiment.
However, we also see that among those SNPs with high transformed-D
values, QTL are strongly enriched over neutral loci, suggesting that
transformed-D should have some power in detecting QTL under this
experimental setup. Figure 1E shows the distribution of transformed-D
along the chromosome in one simulation run with 100 QTL,
demonstrating that neutral SNPs with high transformed-D values
are not necessarily always close to the QTL, but can be found
across the whole chromosome.

Performance of different detection methods under the
standard QTL model
We first compared the performance of D, transformed-D, WFABC,
and ApproxWF to detect the QTL in our standard model, assuming a
trait comprised of 10 QTL with equal effect size. Even though SNP
density is comparatively low in our standard model (�14,000 SNPs
along the 30 Mbp chromosome), the runtime of the two model-based
methods still exceeded our practical limits, so we further reduced the
nucleotide diversity by a factor of 10 in these simulations (for this
comparison only). We then tested the model-based methods sup-
plying them either with the entire allele frequency trajectory (i.e.,
allele frequency estimates at all five time-points of the experiment),
or only the allele frequencies at the beginning and the end of the
experiment.

Surprisingly, WFABC and ApproxWF typically had lower power
to correctly detect QTL (i.e., lower true detection rate for a given
false negative detection rate) than the simple D and transformed-D
statistics, even when they were provided the full allele frequency
trajectory at all five time points (Figure 2). This may in part be due
to the fact that these methods were not explicitly developed for a
divergent selection scenario resulting in two opposingly selected lines.
However, when we restricted the experiment to only one direction of
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selection, transformed-D still performed better than WFABC and
ApproxWF (Figure S3). One possible explanation for the poorer
performance of the model-based approaches is that the allele fre-
quency dynamics at QTL in our truncating selection scenario may not
typically follow the classic sweep model these methods assume, as has
already been observed in previous studies (Burke et al. 2010; Kessner
and Novembre 2015; Franssen et al. 2017). Consequently, we decided
to use only the transformed-D statistic for all further analyses in
this study.

Effects of trait architecture on detection power

Number of QTL affecting a trait: To test how the number of QTL
contributing to a trait affects detection power, we systematically
varied the number of SNPs assigned to be QTL in our simulations.
Figure 3 shows a comparison of the ROC curves among models with
2, 10, 20, 50, 100, and 200 QTL, while all other aspects of the model
were kept the same as in the standard model. Consistent with previous
results (Kessner and Novembre 2015), we find that larger numbers of
QTL generally resulted in lower detection power, presumably due to
increased interference between QTL. As the number of QTL increases,
individual QTL will tend to be located closer to each other, decreasing
recombination rate between them. Recombination will then be less
effective at creating “optimal” haplotypes that carry a large number
of favored but only few unfavored alleles. A complementary effect is
that more QTL also mean less effective selection on every single one

of them, because the relative contribution of each individual mutation
to the overall variance in trait value gets smaller (Barton and Turelli
1989).

Note that the overall detection power is rather low in our standard
model with 100 QTL. In that case, we detected only �13% of the
QTL at a false positive rate of 0.05 (i.e., 5% of the neutral loci are
falsely identified as QTL). This is because most QTL start out at low
frequency and have a high probability of getting lost over the course
of the experiment. However, since intermediate-frequency QTL are
more likely to be detected, when weighting QTL by their contribution
to genetic variance in the first generation (which should be much
higher for intermediate-frequency than low-frequency QTL), power
improves significantly (Figure S4). For example, at the same false
positive rate of 0.05, the detected QTL were responsible for more
than 40% of the genetic variance present in the first generation
(Figure S4).

QTL clustering: In our standard model the QTL are positioned
uniformly along the chromosome, as we chose them randomly from
preexisting SNPs. However, for some traits, QTL could cluster along
the chromosome. This is frequently observed among domestication-
related traits in crops, for example (Cai and Morishima 2002; Burger
et al. 2008). To test how such clustering affects detection power, we
compared our standard QTL model with a model in which all QTL
were drawn from only those SNPs that were located within a much

Figure 1 Simulation results under our standard model with 100 QTL. (A) Change in the average phenotype values in all 100 simulation
replicates. Each line represents a selection line in one simulation replicate. (B) Change in the distribution of trait values in the population in
one single simulation. (C) Change in sampled minor allele frequencies at neutral loci and QTL in one single simulation run. The left half of the
figure shows the “low” line and the right half shows the “high” line. (D) Distribution of transformed-D per locus across all 100 simulation replicates
grouped by neutral loci (gray bars) vs. QTL (black bars). (E) transformed-D of neutral loci and QTL along the simulated chromosome in one single
simulation run.
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shorter genomic sub-region 3 Mbp in length, located at the center of
the chromosome.

For a model with only 10 QTL, we found that such clustering
lowers detection power compared to a more uniform distribution
(Figure 4A & S5A). This is likely due to increased linkage between
QTL, resulting in an effectively lower rate at which recombination can
create haplotypes with a large number of favored alleles. Clustering
therefore has a similar effect as increasing the overall number of QTL
while keeping the length of the chromosome constant.

However, this behavior becomes more complicated as the number
of QTL increases further. In a model with 100 QTL, we found that the
effect of clustering on detection power depends on what false positive
rate is deemed tolerable. For false positive rates below 0.1, clustering
actually increases detection power (Figure 4B & S5B). A possible
explanation for this is that when there are many QTL clustered within
a short region on the genome, it is more likely that already in the
beginning of the experiment a short haplotype exists on which many
alleles with effects of the same direction are co-located. Unlikely to
be broken by recombination, such a haplotype will be able to quickly
sweep to fixation, giving a very clear signal of being under selection
(Figure 4C, 4D & 4E). Therefore, at a low false positive rate, the
scenario where 100 QTL are clustered on the chromosome tends to
have higher power than our standard model.

Furthermore, we note that clustering has a similar effect as decreasing
the recombination rate in our simulation. Thus, our results contradict

that of Kessner and Novembre (2015), who concluded that increasing
recombination always increases detection power. However, our re-
sults are consistent with a rich body of literature which shows that
increased recombination does not always lead to higher rate of
adaptation because it can also destroy “good” haplotypes that are
initially present (Slatkin 1975; Charlesworth and Charlesworth 1979;
Kirkpatrick and Barton 2006).

Effect size distribution: Our standard model assumes equal effect
sizes of derived alleles of either +1 or -1 at all individual QTL. We
chose this simplistic model because little is known about the actual
effect size distributions of complex traits in most biological systems
and thus there is not a single ideal distribution. Also, results on other
aspects of the trait architecture will be more difficult to interpret if
we add an additional layer of stochasticity to the simulations by
randomly assigning uneven effect sizes. In reality, however, effect
sizes will typically vary among QTL, and one commonly used model
for this is an exponential distribution for effect sizes (Orr 1998; Otto
and Jones 2000).

Figure 5 shows how QTL detection power is affected when effect
sizes in our standard model are no longer assigned equal values, but
instead are drawn from an exponential distribution with means +1 or
-1, respectively. Whether this increases or decreases detection power
depends on how we define our measure of power. If power is defined
simply as the proportion of QTL detected regardless of their effect
sizes, power is lower in the model with exponentially distributed
effect sizes compared with our standard model assuming constant
effects (Figure 5A & 5D). One possible explanation for this is that
in the exponentially distributed model, there will be many QTL
with small effects that are practically neutral and are likely to get
lost due to drift or interference. This means that there would be a
smaller proportion of “effective” QTL that can still be detected
overall.

However, when we weight individual QTL by their effect
sizes, these small-effect QTL will contribute minimally to power,
whereas the few large-effect QTL become much more important

Figure 3 Detection power is lower when more QTL underlie
the trait under selection. Solid vs. dotted lines: see Figure 2
caption.

Figure 2 Detection power varies across detection methods used.
Having the entire allele frequency trajectory slightly improves the
power of WFABC but not ApproxWF, although transformed-D has
the highest detection power regardless. This comparison used the
standard model with 10 QTL and 10-times reduced nucleotide
diversity due to the long run-time of the two model-based de-
tection methods. Dotted lines: in certain simulation scenarios,
multiple QTL and neutral loci get fixed in one selection line and
get lost in the other. This implies that the power and false positive
rate associated with the most stringent summary statistic threshold
can still be quite large, and the dotted line thus represents the
discontinuous transition from the origin (0,0) to the minimum non-
zero power and false positive rate. Solid lines: solid lines can be
interpreted as a continuous relationship between power and false
positive rate, as opposed to dotted lines.
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(Chevalet 1994). Similar to the effect of lowering the number of
QTL as discussed above, these few large-effect QTL will interfere
less with each other because they are less densely distributed on
the chromosome and are more likely to be detected. As a result,
when QTL are weighted by their effect sizes, the model with
exponentially distributed effect sizes yields higher power than
the constant effect size model (Figure 5B & 5E).

When wemeasure the proportion of genetic variance explained by
detected QTL in the first generation, exponentially distributed effect
sizes have two opposing effects. On the one hand, as discussed above,
large-effect QTL are more likely to be detected, and they contribute
more to the genetic variance given the same starting frequency. On
the other hand, large-effect QTL are less likely to get lost due to drift
or interference even when they start at low frequency, so interme-
diate-frequency QTL are less overrepresented among detected QTL
(Figure S6), which would then decrease the proportion of initial
genetic variance explained by the detected QTL compared to our
standard model. When there are fewer QTL, the first effect is
weaker than the second (Figure S6A & S6B), so detection power
becomes similar between the standard and exponential models
(Figure 5C). When there are more QTL, there is also more
interference among large-effect QTL and thus the second effect
becomes weaker (Figure S6C & S6D), resulting in higher power for
the exponential model (Figure 5F).

Allele frequency distribution: In our standard QTL model, we have
assumed that the allele frequency distribution at QTL resemble those
of neutral SNPs. However, prior selection on the trait could drastically
shift this distribution from the neutral expectation. Although selec-
tion is ubiquitous in most traits of interest in natural populations, we
choose not to model selection explicitly in our burn-in stage because
a) we still know very little about what an appropriate assumption on
selection in natural populations would be, and b) selection can
significantly alter the starting population in many aspects, including
the allele frequency distribution, linkage disequilibrium, and effect
size distribution, so it would be difficult to isolate the effect of a single
factor on the detection power.

Nevertheless, we note that theory predicts that certain selection
scenarios tend to drive allele frequencies toward certain directions.
For example, long-term stabilizing selection is likely to keep allele
frequencies at QTL at low frequencies, whereas balancing selection
tends to drive them toward intermediate frequencies. Therefore, we
decide to study two rather extreme cases of allele frequency distri-
bution as an attempt to qualitatively assess how non-neutral processes
prior to the selection experiment can affect QTL detection power
through shifting allele frequency distribution. Namely, we only
selected SNPs with minor allele frequencies above or below a
certain cutoff to become QTL in the simulation. First, we restricted
our selection to SNPs with minor allele frequency lower than 5%.

Figure 4 The clustering of QTL has different effects on detection power depending on the number of QTL underlying the trait under selection.
(A) With 10 QTL, clustering reduces detection power. (B) With 100 QTL, clustering increases detection power except for at very high false positive
rates (.0.1). (C) An example of allele frequency trajectories when 100 QTL are clustered in a small region on the chromosome. Note that many
SNPs on the same haplotype quickly sweep to fixation in tandem in the “low” line, and see Figure 1C for comparison with the standard model.
(D) Such haplotype sweeping results in more QTL with extreme transformed-D values (see Figure 1D for comparison with the standard model).
(E) The distribution of transformed-D along the chromosome after a haplotype sweeping (see Figure 1E for comparison with the standard model).
Solid vs. dotted lines: see Figure 2 caption.
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In this case, detection power decreased consistently regardless
of the method to evaluate power (Figure 6). This is presumably
because these alleles are more likely to get lost due to drift or
interference regardless of the direction of selection.

Conversely, when we restricted our selection to only those SNPs
with minor allele frequency higher than 5%, these minor alleles at
QTL are less likely to get lost. When they are favored by selection,
they are also more likely to be recombined together with other
favored alleles. This is consistent with the observation that a higher
proportion of total QTL can be detected in such a scenario (Figure
6A). However, the result is different when we evaluate power by the
proportion of the starting genetic variance (Figure 6B). The reason
is that in the standard model, QTL that start at intermediate
frequencies are more likely to be detected and their detection
can explain a higher proportion of starting genetic variance (Figure
S7A). When all QTL start at more intermediate frequencies, they all
explain a similar proportion of the starting genetic variance, and the
likelihood of them being detected becomes more independent of
their starting frequencies (Figure S7B), so even though more QTL
can be detected, the proportion of initial genetic variance explained
ends up lower.

Dominance: Previous QTL models have typically assumed additive
effects between the two alleles at individual QTL, which is what
we also adopted in our standard model. However, dominance

effects at QTL, as well epistatic effects among QTL, could play
an important role in many traits (Shao et al. 2008; Mackay 2014;
Chen et al. 2015).

We first tested how dominance relationships affect QTL de-
tection power in our model. Given how our QTL are initially
assigned, derived alleles tend to be the minor alleles in our model.
When these derived alleles are completely dominant, heterozy-
gotes will exhibit the same phenotype as derived homozygotes,
and selection thus cannot distinguish between them. As a result,
positively selected derived alleles tend to first increase in frequency,
but then accumulate at intermediate frequencies. This produces a less
conspicuous signal of selection than for alleles that reach higher
frequencies over the course of the experiment (Figure 7C & 7D). At
low false positive rates, detection power is therefore lower in this
scenario than in the standard scenario where alleles are assumed to be
additive (Figure 7A & 7B). At a higher false positive rate, however, a
crossover pattern in the power curves is observed (Figure 7A & 7B),
since lower frequency alleles are less likely to be lost due to inter-
ference than in the standard model.

When derived alleles are completely recessive, only those with
high starting frequency can form homozygotes and thus be visible
to selection (Figure S8). All other derived alleles behave essentially
like neutral alleles initially (Figure 7C & 7E). As a result, an overall
lower number of QTL can be detected (Figure 7A). However, these
high-frequency QTL are also the ones that contribute most to genetic

Figure 5 An exponential distribution of effect size affects detection power differently depending on how power is evaluated and how many
QTL underlie the selected trait. All comparisons are conducted with the standard model of equal effect sizes. Top: 10 QTL. Bottom: 100 QTL.
(A) (D) Exponential distribution of effect size decreases power when measured by the proportion of QTL detected. (B) (E) By contrast, exponential
distribution of effect size increases power when measured by the proportion of QTL detected, weighted by their effect sizes. (C) (F) When power is
measured by the proportion of genetic variance explained, an exponential distribution of effect size yields similar power when there are 10QTL but
increases power when there are 100 QTL. Solid vs. dotted lines: see Figure 2 caption.
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variance in the first generation. Therefore, the proportion of genetic
variance detected is even higher than in the standard model (Figure 7B).
These results demonstrate again how a relatively simple aspect of the trait
architecture - here the dominance relationship at individual QTL - can
affect detection power in complex ways, where the direction of the
effect depends on the false positive rate and the definition being used
to measure power.

Epistasis: We next tested how epistatic interaction among QTL can
affect detection power. For simplicity, we only considered pairwise
epistasis here. We further restricted our analyses to additive-by-
additive epistasis (i.e., the effects of the two alleles at an individual
QTL are always additive if genotypes at other QTL are fixed). This
helps us avoid the potentially confounding effect of dominance. Under
these assumptions, we tested the effect of epistasis with our 10 QTL
model, where we randomly selected five epistatic QTL-pairs in each
simulation. We explored separately the effect of four major types of
epistasis, including synergistic, antagonistic, sign, and reciprocal sign
epistasis. Within each type, we further created a “weak” and a “strong”
scenario, based on the level of deviation from the non-epistatic model
(Table S3). To evaluate power for a given epistasis scenario, we simply
measured the overall proportion of the 10 QTL we detected, since the
effect of each individual QTL is difficult to quantify.

Our simulations show that pairwise epistasis generally decreases
the power in QTL detection, as would be expected (Figure 8A).
However, a lot of variability exists among different epistasis scenarios.
Within each type of epistasis, the more it deviates from the non-
epistatic case, the less detection power is generally attained. Among
different types of epistasis, synergistic epistasis tends to have higher
power, while sign and reciprocal sign epistasis tend to have lower
power. Since a major effect of epistasis is introducing epistatic
genetic variance and lowering the trait’s narrow-sense heritability
(h2), we examined how narrow-sense heritability varied across our
epistasis scenarios, and found that narrow-sense heritability is a
good predictor of power (Figure 8B). Scenarios that create lower
narrow-sense heritability (or higher epistatic genetic variance) tend
to have lower QTL detection power. However, sign epistasis is an
exception to this rule. It has relatively high narrow-sense heritability
throughout the experiment, but its detection power remained low in
our simulations.

DISCUSSION
In this paper, we constructed an explicit QTL model using a forward
simulation framework to study the power to detect QTL in a short-term

E&R experiment with intense truncating selection. Although in many
ways our model is highly idealized, it allowed us to qualitatively assess
how different fundamental aspects of trait architecture can affect the
expected power of such experiments. This relationship is complex
and often unintuitive, and we demonstrated that few results hold
universally, except perhaps for the fact that as the number of QTL
affecting the trait increases, the power to detect them always decreases
(Figure 3). Other results are often conditional on the false positive
rate, the precise way in which power is measured, and various aspects
of trait architecture. For example, we found that the clustering of QTL
along a chromosome decreases detection power when there are fewer
QTL, but increases power at low false positive rates when there are
more QTL (Figure 4). An exponential distribution in effect size lowers
the proportion of QTL detected compared to when effect sizes are
equal at all QTL, but increases power when QTL are weighted by their
effect sizes (i.e., we have a better chance at detecting a substantial
portion of the genetic basis of a trait, Figure 5). When minor alleles at
QTL are skewed toward lower frequencies, detection power is gen-
erally decreased, but when they start at higher frequencies, detection
power is increased only when it is measured by the proportion of QTL
detected (Figure 6). When derived alleles are dominant, detection
power is increased at higher false positive rates but decreased at lower
(Figure 7). When they are recessive, detection power is decreased only
when it is evaluated by the proportion of QTL detected (Figure 7).
Epistasis tends to always decrease power, although a lot of variation
exists among different types of epistasis (Figure 8). In general, we
found that except for the rare cases where the trait in question has a
very simple genetic architecture, short E&R experiments with intense
truncating selection spanning only four generations tend to have low
power to detect the full set of QTL present in the starting population
and suffer from high false positive rates. However, while such a setup
is clearly not ideal for characterizing the full genomic architecture of
traits, sequencing the preserved specimens in an experiment that has
already been conducted for other purposes can still be useful in
detecting the QTL that contribute substantially to the initial trait
variance in the experimental population.

Our results highlight the complex nature of the mechanisms
involved that determine the detection power of E&R experiments
and thus invoke caution when interpreting the results of such
experiments. Particularly, we demonstrate that certain QTL and
certain trait architectures are more likely to be discovered through
E&R experiments than others. Therefore, making conclusions on the
trait architecture solely based on the detected QTL from an E&R
experiment can be misleading. In addition, simple simulations that do

Figure 6 Starting frequency of minor
alleles affects power differently depend-
ingonhowpower is evaluated. (A) Power
evaluated as proportion of QTL de-
tected. (B) Power evaluated as propor-
tion of genetic variance explained by
detected QTL. Models with 10 QTL
are used in this figure. Solid vs. dotted
lines: see Figure 2 caption.
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not take many aspects of trait architecture into account are often used
for the estimation of false positive rate in E&R experiments. Since
trait architecture plays an essential role in determining the relation-
ship between power and false positive rate, we argue that such an
approach can lead to largely inaccurate estimates.

From the perspective of researchers who plan to perform E&R
studies, a key question might be which experimental designs could
optimize detection power (Kofler and Schlötterer 2014; Baldwin-
Brown et al. 2014; Kessner and Novembre 2015). Our results suggest
that there is not a single optimal value for each experimental design
parameter. Instead, what the best strategy is can depend critically on
the genetic architecture of the trait and other experimental design
parameters. For example, we tested how much our simulated
experiment can benefit from adding replicated populations and
more generations of selection in our standard model with 10 and
100 QTL. We found that having two or five replicated populations
alone does little in improving the detection power (Figure S9A & S9C),
since allele frequencies at both QTL and neutral loci change rather

deterministically (i.e., it is always the same loci that experience high
frequency change) due to the strong selection in our experiment.
Consequently, different replicates often end up showing the same
results (Figure S10). Extending the experiment for five more gener-
ations alone can improve power at higher false positive rate but
reduces power at low false positive rate (Figure S9B & S9D), because
many loci, QTL and neutral ones alike, go to fixation in one
selection line and get lost in the other (Figure S10). A combination
of replication and extension of the experiment, however, can
significantly improve detection power at low false positive rate
(Figure S9B & S9D), because after many QTL go to fixation, dynamics
in neutral allele frequencies become more stochastic and different
replicates start to provide information that is complementary to each
other (Figure S10). This effect is particularly prominent when there
are fewer QTL (Figure S9B, Figure S10A). We do note here that
caution should be taken when interpreting our results with regard
to experimental replications. Since all of our experimental rep-
licates start from the same population at the first generation and

Figure 7 Dominance affects power differently depending on how power is evaluated and what level of false positive rate is tolerated. Top:
ROC curves (A) Power evaluated as proportion of QTL detected. (B) Power evaluated as proportion of genetic variance explained by
detected QTL. Bottom: Distribution of transformed-D over 100 simulation replicates (C) Additive. (D) Dominant. (E) Recessive. Models with
10 QTL are used in this figure. Additive: heterozygotes express intermediate phenotype. Dominant: heterozygotes express the same
phenotype as derived homozygotes. Recessive: heterozygotes express the same phenotype as ancestral homozygotes. Solid vs. dotted
lines: see Figure 2 caption.
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the broad-sense heritability of the trait is one, stochasticity in allele
frequency change is generally low (Figure S10). In reality, differences
in initial allele frequencies and environmental effects are likely to
introduce more stochasticity to allele frequency trajectories, and
therefore replication is expected to improve power more significantly
than in our simulations. In addition, we simply took the average value
of transformed-D across experimental replicates, so other QTL de-
tection methods specifically taking experimental replications into
account (e.g., Kelly and Hughes 2019) may lead to further gain in
power.

In another example, running the selection experiment for an
additional five generations can significantly improve detection power
at higher false positive rate in our standard model with 10 QTL, since
many QTL are still segregating at intermediate frequency after
just four generations of selection. However, the gain in power will
be minimal if derived alleles are either dominant or recessive, because
during the additional generations, selection would become less
effective in the dominant case, while most of the genetic variance
will already have been depleted in the recessive case (Figure 9).

Since the parameter space of our model is vast, the idealized
scenarios presented in this paper can only cover a tiny proportion of
what is actually possible. To allow researchers to study alternative
models, we provide a flexible simulation framework that is highly
customizable with regard to trait architecture, experimental design,
and parameters of the genomic background (described in the Sup-
plementary Materials). When some information on the expected trait
architecture is available, different experimental designs can be sim-
ulated to find the optimal setup for the given architecture. Without
such a priori information, a range of architectures may need to be
simulated to obtain a general sense of the range of power that could be
achieved and what types of architectures are likely to be detectable
under different experimental designs.

While several specialized tools have already been designed for
such applications (Neuenschwander et al. 2008; Zanini and Neher
2012; Kofler and Schlötterer 2014; Kessner and Novembre 2015;
Vlachos and Kofler 2018), we believe that our approach provides key
advantages by implementing its simulations in the flexible SLiM
framework (Haller and Messer 2016, 2019), one of the most widely
used and well-tested frameworks for forward genetic simulation to
date. SLiM simulations are fully scriptable, allowing the user to model
a wide range of evolutionary scenarios that can include high levels
of genetic and ecological realism, while the underlying simula-
tion engine has been highly optimized over the years. All SLiM

configuration scripts developed in this study are provided in the
Supplementary Materials, together with a comprehensive user-guide
explaining how these scripts may be adjusted for custom scenarios.

One perhaps surprising result of our analyses was that a simple
summary statistic, transformed-D, had better performance than two
of the more sophisticated, model-based methods explicitly devised for
detecting positive selection from time-series data. This is presumably
because these methods were built on the assumption that selection
produces independent selective sweeps at individual QTL. However,
when selection operates on a polygenic trait, allele frequency trajec-
tories at its QTL will often be quite distinct from those expected in a
model of individual sweeps with fixed selection coefficients (Burke
et al. 2010; Kessner and Novembre 2015; Franssen et al. 2017). In
addition, QTL are usually not freely recombining, further compli-
cating allele frequency trajectories due to interference effects. There-
fore, simple summary statistics that do not rely on potentially
inaccurate assumptions about the detailed form of the temporal allele
frequency trajectories may actually work better in these scenarios
than some of these more sophisticated model-based methods. We
note that time-series data indeed contain valuable additional in-
formation that is not available from the simple transformed-D statistic
(Franssen et al. 2017), and that some other model-based methods
may be able to capitalize from such information (e.g., Iranmehr et al.
2017; Buffalo and Coop 2019), but it is not our goal in this paper to
exhaustively test all of these methods.

The low detection power in our study partly reflects the limita-
tions common to most E&R studies, namely the high genetic drift
caused by small population sizes and the polygenic nature of most
traits of interest (Long et al. 2015). Compared with earlier power
analyses of E&R experiments, however, detection power was generally
lower in our selection model. This can be attributed to the following
factors. First, selection is quite extreme in our model, while the length
of the experiment is very short. Such an experimental design would
likely be considered as ineffective when working with an insect
species such as flies, but may be the only realistic choice for larger
organisms with longer generation times. Second, our standard model
does not include replicated experiments, which can significantly
improve the power when combined with a longer experiment
(Figure S9). But again, this may be infeasible for larger and longer-
living species. Third, we assumed a higher level of linkage disequi-
librium and thus stronger interference effects than previous studies
that focused on insect systems. We also note that for simplicity we set
the broad-sense heritability to a value of one in our model, which

Figure 8 (A) Pairwise epistasis always
decreases QTL detection power, but
this effect is a lot stronger in certain
epistatic scenarios than others. (B) Es-
timates of narrow-sense heritability for a
given epistasis scenario at a given time-
point are calculated from the breeder’s
equation (Lush 1943), averaged across
all 100 simulation replicates. Solid vs.
dotted lines: see Figure 2 caption.
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should generally lead to an overestimation of power. This can easily
be modified in our SLiM simulations if a more realistic estimation of
power for a specific organism and trait of interest is desired.

CONCLUSION
Overall, we find that although short E&R experiments with strong
truncating selection have low power in general, they can still provide
some utility in identifying at least part of the genetic basis of the
selected trait, especially if the goal is to detect those QTL that
contribute most to the observed trait variance in the population
(i.e., large effect QTL present at high population frequency). How-
ever, we have also shown that detection power can vary substantially
with the genetic architecture of the trait. This presents a problem of
circular reasoning, because the architecture of the trait will likely be
unknown prior to the experiment yet the power to identify its genetic
basis should be biased against certain classes of QTL (e.g., those that
are dominant/recessive, have epistatic interactions, or are present at low
initial frequencies). Thus, caution is warranted when trying to make
general conclusions about the architecture of the selected trait, based
solely on the subset of QTL that were identified in an E&R experiment.
Future studies will hopefully improve our understanding of what types
of trait architectures are more prevalent in nature and thereby help us
build better priors for the interpretation of E&R experiments.
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