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ABSTRACT The Churchill-Doerge approach toward constructing empirical thresholds has received
widespread use in the genetic mapping literature through the past 16 years. The method is valued for
both its simplicity and its ability to preserve the genome-wide error rate at a prespecified level. However,
the Churchill-Doerge method is not designed to maintain the local (comparison-wise) error rate at
a constant level except in situations that are unlikely to occur in practice. In this article, we introduce the
objective of preserving the local error rate at a constant level in the context of mapping quantitative trait loci
in linkage populations. We derive a method that preserves the local error rate at a constant level, provide an
application via simulation on a Hordeum vulgare population, and demonstrate evidence of the relationship
between recombination and location bias. Furthermore, we indicate that this method is equivalent to the
Churchill-Doerge method when several assumptions are satisfied.
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The accurate detection of significant quantitative trait loci (QTL)
remains an area of active research in the genetics mapping com-
munity (Falke and Frisch 2011; Manichaikul et al. 2007; Müller
et al. 2011; Wei et al. 2010). In studying linkage populations, the
process of performing a genome scan to detect QTL may be in-
terpreted within a hypothesis-testing framework. Traditionally, at
each point in the genome a statistical test is performed, resulting in
a P-value representing the evidence for the presence of a QTL at
that location. As the number of analysis points grows, so does the
number of statistical tests performed, and the chance of incorrectly
declaring a QTL at a given marker (committing a Type-I error)
increases.

The multiple-testing problem is well studied in both the scientific
and statistical literature (Dudoit and van der Laan 2007; Falconer and
Mackay 1996; Lehmann and Romano 2005; Lynch and Walsh 1998;
Seaman and Muller-Myhsok 2005; Storey and Tibshirani 2003). While
several different types of error rates may be considered (e.g., the false
positive rate or false discovery rate), this article is concerned with

methods that provide control of the genome-wide error rate
(GWER).2 Of such methods, by far the most widely used is the
permutation-based method of Churchill and Doerge (1994).

We first briefly review the steps involve in the application of the
Churchill-Doerge (CD) method (Churchill and Doerge 1994). For
demonstration purposes, we take the example of single marker anal-
ysis, although the discussion is also applicable to interval mapping.
For each marker, a user seeks to compare the observed log-of-
odds (LOD) score with some underlying distribution in order to
calculate a P-value representing the level of statistical evidence
present for a genetic effect. Churchill and Doerge (1994) propose
comparing the LOD score at a marker to the empirical distribu-
tion of the maximum LOD score across the genome, under the
null hypothesis of no QTL present in the genome (or a QTL
present but not linked with the given marker.) The empirical dis-
tribution of the max LOD score under the null is estimated by
repeatedly sampling the magnitude of the max LOD score across
random permutations of the phenotype data.

The CD method is attractive for several reasons. First, the method
is simple to apply and is currently implemented in a range of popular
QTL analysis software packages: R/qtl (Broman et al. 2003), GenStat
(VSN International 2011), MapQTL (Van Ooijen 2009), QTL Cartog-
rapher (Basten et al. 2002), etc. Second, the method is empirically
driven, and so will more accurately represent the characteristics
of the observed data than other methods relying on parametric
assumptions. Finally, the method can be demonstrated to strongly
control the GWER at a prespecified level.

2Known in the statistical literature as the family-wise error rate (FWER).
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However, under certain conditions, the CD method may result in
upwardly or downwardly biased estimates for the Type-I error in
specific regions of the genome—a property we refer to as location
bias. Such behavior may be expected to occur when the location-
conditioned distributions of the LOD (not max LOD) score are not
identical. Several relevant examples are presented in Peirce et al.
(2007, 2008), and the respective authors provide evidence for the
consideration of linkage as a possible causal factor of location bias.

The primary focus of this article is in deriving a multiple-testing
procedure that not only preserves the GWER but also maintains the
local error rate at a constant level across the genome. The method
presented possesses the property that Type-I errors are no more likely
to occur at a given locus than at an alternative. For simplicity, we
confine our attention to the technique of marker regression, although
this work is easily extended to any approach in which a finite
number of single hypotheses are considered (e.g., interval mapping
on a finite grid).

The derived method is motivated by the following considerations.
Suppose that the distribution of the maximum LOD score is not
identical across the genome. That is, for two non-identical markers, it
is possible that the distribution of the maximum LOD score at the
first marker is not identical to the distribution of the max LOD
score at the second marker. For a given marker, we propose a
comparison of the associated LOD score with the distribution of
the maximum LOD score at that marker. Thus the comparison is
with a conditional—rather than a marginal—distribution.

Proceeding with the comparison of the observed LOD scores with
the appropriate conditional max LOD distributions, we seek to
construct a threshold that preserves the GWER at a prespecified
level, while maintaining the local error rate at a constant level.

NOTATION AND METHODS
In this section, we introduce the mathematical notation relevant to the
remainder of this work, and we present a derivation of the proposed
method.

Denote the number of markers in the genome scan as nm, and
define nobs to be the number of individuals for which we possess
phenotype information. Throughout the remainder of this article, we
assume that the observed genotype data are complete (i.e., no miss-
ing values); a discussion on the implications of missing data are
presented in File S1. We represent an observation of the maximum
LOD as M, where M is defined as the pair ðd; lÞ, with d the mag-
nitude of the max LOD value and l the location (marker index) of
the max LOD value. A threshold T is defined as a sequence of non-
negative values indexed from 1 to nm.

We next present the candidate method—referred to as the
location-dependent threshold (LDT) method—for constructing
empirical thresholds similar to those of Churchill and Doerge
(1994), while accounting for local properties of the genome. Our
goal is to construct a threshold TLDT such that for a desired
GWER g, P d.TLDT ; l ¼ i ¼ g

nm
:

on
The LDT method relies on

generating observations of M under random permutations of the
observed phenotypes. However, unlike the CD method, which
relies on the marginal distribution of d, the proposed procedure
necessitates the derivation of estimates of the empirical distribu-
tion function of d conditioned on l. Estimating these conditional
distributions requires that we generate many more samples (the
number of samples denoted as np) than the Churchill-Doerge
procedure, enough so that npP l ¼ i � 1000gf for all i. Although
the computational burden is significantly increased, the additional

resources are needed to accurately estimate and account for loca-
tion bias.

To begin, let T be an arbitrary threshold and fix g at the desired
GWER. For each i define ai ¼ ½nmPfl ¼ ig�21, and a function Hi

such that HiðTiÞ is the unique value satisfying

P
�
di .Ti

��l ¼ i
� ¼ P

�
di .Hi

�
Ti
���l ¼ i

�
ai :

Note that, for a collection of nm markers, HiðTiÞ exists if and only
if g, min

i

1
ai ;g�

otherwise, the equality in the above equation
does not hold. Let Tl be a sequence of location-dependent threshold
values such that P di .Ti

ljl ¼ i ¼g�
g: Then HðTlÞ, the sequence

generated by the evaluation of HiðTi
lÞ for all i, is a threshold that

preserves the GWER at level g (see Appendix).
The role of the function H is to adjust the threshold in the pres-

ence of location bias. For example, when ai is greater than one, there
exists a positive bias away from location i; by dividing by ai we are
shrinking the numerator in Equation 1 toward zero, and so must
decrease the threshold accordingly. Thus, we adjust for the presence
of a positive location bias by decreasing the corresponding significance
threshold. Similarly, we adjust for the presence of a negative location
bias by increasing the threshold.

Example of controlling the local error rate
As an example, suppose we observe genotype information at 34
markers for 200 individuals from a backcross population. A demon-
stration of the presence of location bias in this synthetic population is
given in Figure 1.

Consider the problem of constructing a 20% genome-wide
threshold for the sample of maximum LOD scores corresponding to
this population; such a construction is given in Figure 2. The figure
illustrates the difference between the CD method (the construction of
a constant genome-wide threshold that places 20% of the observed
max LOD scores above the line) and the LDT method, which distrib-
utes 20% of the observed max LOD scores above the line, while
assigning a constant percentage above the threshold at each marker,
and thus varies with location.

Figure 1 Plot of the empirical location distribution of l for a single
chromosome of a synthetic double-haploid population of 200 individ-
uals, with 34 markers. Observe that the distribution of l has a tendency
toward smaller probabilities in areas of dense markers, while l has
larger probabilities in areas of sparse markers.
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Although the CD method controls the GWER in a marginal sense,
e.g., P d.TCD ¼ ggf , it is not difficult to show that the CD method
does not control the joint location-magnitude in a local sense (in the
presence of location bias.) For the proposed method, the GWER is
preserved both in a global and local sense with regard to the joint
location-magnitude:

Pfd . TLDT ; l ¼ ig ¼ g

nm
:

Physical linkage
In accordance with Peirce et al. (2008), one potential justification
for the presence of location bias is the existence of physical linkage
between markers, i.e., differences in recombination rates between
markers. We illustrate the plausibility of such a hypothesis by
considering the following experiment.

Suppose that we have a set of 10 equally spaced markers,
representing observations for 200 individuals from a backcross
population. Consider a sequence of 11 simulations, such that for
each simulation the recombination rate between each marker is
incremented by 0.03 units (starting at a recombination rate of 0.01.)
Thus for the first simulation, we observe 10 markers, with re-
combination rates of 0.01, while in the final simulation, the rates are
increased to 0.31. For each simulation, we compute vectors of the
alpha-values for 300 independent samples of genotype data. For each
individual sample, we perform a Chi-squared test for deviation from
the uniform distribution and present the associated box-plots in
Figure 3. The results support the hypothesis that as the recombina-
tion rate increases, the less severe the deviation of the alphas vectors
from uniformity (the presence of location bias decreases.) As the
LDT method accounts for location bias, we can then make the case
that the method at least partially accounts for differences in recom-
bination rates between markers.

Barley example
In this section, we illustrate the performance of the proposed method
applied to a double haploid empirical barley population derived from
a cross of ‘Steptoe’ and ‘Morex’ (Kleinhofs et al. 1993). Phenotype and

genotype data were downloaded from the GrainGenes website
(Mather 1995). For this example, we considered the average of grain
yield across 16 environments (P. M. Hayes et al. 1993) for 150
double haploid lines, with genotype data observed for 223 markers
set across seven chromosomes.

For the comparison, a single sample consisting of 1,000,000
observations of M was generated and used to construct both the CD
and LDT thresholds. Figure 4 indicates the presence of an observable
location bias. We calculate thresholds at the 0.01, 0.10, and 0.40
levels for both the CD and LDT methods. The data (File S3) and
R code (File S2) for the analysis are provided.

DISCUSSION
The results of the threshold constructions for the barley example are
presented in Figure 5. We first observe that the LDT thresholds appear
centered about the thresholds provided by the CD method. This be-
havior is consistent with Equation 1, to the extent that if the location-
conditioned distributions are all identical, the average of the LDT
threshold across the genome will be the CD threshold.

Figure 2 Plot of the LOD score constructed for the synthetic
population associated with Figure 1. Thresholds preserving the GWER
at 20% are displayed for both the CD method and the LDT method.
Note that the CD threshold remains constant across the genome,
while the LDT threshold varies with location.

Figure 3 Plot of the relationship between recombination rate and the
presence of location bias. The figure illustrates that as the recombi-
nation rate between markers increases, the deviance from uniformity
decreases, indicating a decrease in location bias. The red line indicates
the 95th percentile for a Chi-squared statistic with nine degrees of
freedom.

Figure 4 Plot of the empirical location distribution of l for the average
yield trait of the barley population.
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Although the CD threshold may be viewed as the approximate
average of the location-dependent threshold, in the event that an
investigator desires to construct adjusted P-values, e.g., (Lystig 2003),
the two methods produce different results. However, it is important to
note that the LDT thresholds only preserve the GWER at levels in the
range mini 1

aig
�

to 1.
For example, consider the marker associated with the highest LOD

peak on chromosome 2 (Figure 5). The CD-adjusted P-value is 0.3176,
while the LDT-adjusted P-value is larger, at 0.4352. Similarly, marker
on chromosome 1 has a CD-adjusted P-value of 0.8370, while the
LDT-adjusted P-value is smaller at 0.5676 (Figure 5). In comparing
the relative evidence for a QTL linked to the marker on chromosome
1 vs. chromosome 2 (i.e., the ratio of the adjusted P-values), the LDT
method results in twice as much relative evidence as that derived by
the use of the CD method.

While the presented location-dependent methodology has the
potential to provide more accurate QTL detection (in the sense of
preserving the local Type-I error rate at a constant level), the
methodology is not without criticism. First, it should be recognized
that the number of required permutations (npÞ is much greater than
the number required for the CD method. In accordance with
Churchill and Doerge (1994), we suggest enough so that there are
at least 1000 observations of the max LOD score at each marker
location. Thus, while Churchill and Doerge suggest a sample size of
1000 for their method (to maintain precision at the 0.05 level), the
LDT method requires a suggested number of 5000 � nm samples to
account for moderate location bias.

Also, one might suggest that for markers that never or rarely
attain a maximum LOD score, it is not reasonable to compare
observed LOD score with the distribution of the maximum. Rather,
an investigator might choose to compare the observed score to a
mixture distribution of LOD score order statistics, e.g., Simonsen
and McIntyre (2004).

Furthermore, as previously indicated, the LDT thresholds only
preserve the GWER at levels within a range determined by the observed
location bias ð0;mini 1

ai Þg�
. When controlling the GWER at levels that

approach the maximum of this range, the magnitude of the LDT-
adjusted P-values will be driven entirely by the location parameter, as
opposed to a mixture of the location and magnitude parameters.

Although the above criticisms are valid, it remains desirable to
consider QTL detection methods—within the hypothesis-testing
framework—that preserve both the GWER as well as the local
error rate at a constant level. Failing to account for location bias
leaves an investigator susceptible to a varying and unquantified
level of bias in the estimation of the Type-I error rate for different
regions of the genome. It should also be noted that, in the event
that the location-conditioned distributions are identical and no
location bias exists, the LDT threshold is equivalent to the CD
threshold. More generally, the proposed location-adjusted P-values
are obtained through simple linear transformations of the P-values
for the location-conditioned distributions (see Appendix.)

CONCLUSION
The method of Churchill and Doerge (1994) provides investigators
with an approach to QTL detection that maintains control of the
GWER at a prespecified level. However, the presence of location bias
has implications for the accurate assessment of local Type-I error rates
throughout the genome.

The introduction of the LDT method provides investigators with
an approach that controls the GWER, while also maintaining the local
error rate at a constant level. Through simulation, we have dem-
onstrated evidence that the method accounts for the presence of
physical linkage. We have provided an application of the method to
an empirical barley data set to better illustrate the method’s per-
formance on data derived under realistic experimental condi-
tions. Finally, we have observed that, in the presence of identical
location-conditioned distributions and the absence of location bias,
the method is equivalent to the approach of Churchill and Doerge.
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APPENDIX

In this appendix, we prove that the LDT method preserves the GWER
at a prespecified level g.

First, choose g such that g ,mini 1
ai :g�

Then,

Pfd.HðTlÞg ¼ Pnm
i¼1

P
�
di .Hi

�
Ti
l

�
 
��l ¼ i

�
Pfl ¼ ig

¼ Pnm
i¼1

Pfdi .HiðTi
lÞ  jl¼ig

ai aiPfl ¼ ig

¼ Pnm
i¼1

P
�
di .Hi

�
Ti
l

�
 
��l ¼ i

�
ai

1
nm

¼ 1
nm

Xnm
i¼1

P
�
di .Ti

l

��l ¼ i
� ¼ 1

nm

Xnm
i¼1

g ¼ g:

In addition, the adjusted P-values for the method can be rep-
resented as a point-wise linear transform of the P-values for the
location-conditioned distributions. Let Li represent the LOD score
observed at marker i. Then,

pi ¼ P
�
di .H21

i

�
Li
�
 
��l ¼ i

� ¼ Pfdi .HiðH2 1
i ðLiÞÞ  jl¼ig
ai

¼ Pfdi . Li  jl¼ig
ai :
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