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ABSTRACT: The application of green chemistry is critical for cultivating environmental responsibility and sustainable practices in
pharmaceutical manufacturing. Process mass intensity (PMI) is a key metric that quantifies the resource efficiency of a
manufacturing process, but determining what constitutes a successful PMI of a specific molecule is challenging. A recent approach
correlated molecular features to a crowdsourced definition of molecular complexity to determine PMI targets. While recent machine
learning tools show promise in predicting molecular complexity, a more extensive application could significantly optimize
manufacturing processes. To this end, we refine and expand upon the SMART-PMI tool by Sheridan et al. to create an open-source
model and application. Our solution emphasizes explainability and parsimony to facilitate a nuanced understanding of prediction and
ensure informed decision-making. The resulting model uses four descriptors�the heteroatom count, stereocenter count, unique
topological torsion, and connectivity index chi4n�to compute molecular complexity with a comparable 82.6% predictive accuracy
and 0.349 RMSE. We develop a corresponding app that takes in structured data files (SDF) to rapidly quantify molecular complexity
and provide a PMI target that can be used to drive process development activities. By integrating machine learning explainability and
open-source accessibility, we provide flexible tools to advance the field of green chemistry and sustainable pharmaceutical
manufacturing.

1. INTRODUCTION

1.1. Process Mass Intensity. Process mass intensity
(PMI) is a key metric for measuring the efficiency of chemical
processes, as benchmarked by the ACS Green Chemistry
Institute Pharmaceutical Roundtable.1 As drug candidates
advance throughout the drug development lifecycle, PMI
calculations are often used to capture progress toward more
sustainable manufacturing and to drive further development.

PMI for a given synthesis is calculated as

=PMI
total mass of raw materials used (kg)

total product obtained (kg)
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Forecasting what constitutes a “successful” PMI for the
manufacturing process for a given molecule is an unresolved
industry challenge. In the absence of a “target” PMI, it is
challenging for chemists to gauge if the resource efficiency of
the process is on target, exceeding expectations, or in need of
additional optimization. The comparison of the PMI of a
process under development to an ambitious target PMI will
help drive the incorporation of green chemistry and deliver
sustainable manufacturing processes.

Despite not having a precise theoretical way to predict this
feature, its estimates are extremely important in decision-
making and process sustainability evaluation. Recently, it has
been shown that a “target” PMI can be set for a given molecule
through the molecular weight (mw) and the calculation of its
estimated molecular complexity (c).2 This is given by

= × + ×m cSMART PMI (0.13 ) (177 ) 252w

The two variables, overall PMI and molecular complexity,
share a positive linear correlation, where it is generally known
that complex molecules have worse resource efficiency. Thus,
the complexity of an active pharmaceutical ingredient (API)
has far-reaching implications in terms of the challenges and
efficiency of its manufacturing.

1.2. Molecular Complexity. Molecular complexity is
commonly agreed to be an attribute intrinsic to a molecule
that can affect chemical, material, and biological processes such
as synthetic ease3−8 and sustainability.9,10 Generally the term
refers to the intricacy and interactions in the internal structure
of a molecule, however, the multidimensional nature of
molecules represent a challenge to creating one summary
metric of complexity.

Creating a definition of molecular complexity is a multi-
disciplinary problem, with applications and solutions coming
from domains in math, physics, chemistry, and biology. While
many solutions exist, none have been universally adopted.11

Molecules are naturally viewed as graphs; approaches in graph
theory analyze topology to develop graph invariants, such as
the Zagreb or Weiner Indices, that can determine the structural
properties of molecules.12 Information theoretic measures,
such as Shannon entropy, are also widely used in complexity
science to capture diversity or degree of uniformity.13−16

In pharmaceutical chemistry, linear combinations of factors
have been used as a proxy for complexity. Those factors usually
include molecular weight and counts of attributes, such as
stereocenters, rings, and functional groups.3,5,10,17 Increases in
computational power and advances in AI/ML have enabled
researchers to develop data-driven approaches that can model
these complex intuitions. A pivotal method by Sheridan et al.
proposed one such model based on crowdsourced votes on a
diverse set of molecules.18 From the votes of 386 chemists,
they found that the notion of complexity is independent of the
chemistry subfield (i.e., process, analytical, medicinal, compu-
tational, etc.). A different approach focused on creating a
model that is time dependent, asserting that complexity
changes over time with respect to the available synthetic
technology.19

There is a gap between the former theoretical and latter
data-driven approaches to complexity. Theoretical models like
those developed by Bertz, Bonchev, and Proudfoot use our
inherent understanding of graphs or information theory to
create explicit and transparent solutions.13−15,20 The need for
similar transparency in data-driven models is increasingly being
recognized, with suggested standards for AI/ML in pharma-

ceutical development emerging recently from the FDA.21

There is a need for data-driven algorithms to be secure,
reliable, and interpretable; when used in decision-making, the
model should be informative of the mechanisms that drive the
nature of prediction.22−24 Most powerful methods in machine
learning are not interpretable, still some are more interpretable
than others. Posthoc “explainable” wrapper methods have been
developed to approximate the learned mechanisms under the
black box. Reducing the input dimension space can also
dramatically increase understanding while also improving
learning.

1.3. Molecular Descriptors. Experimental and theoretical
molecular descriptors have been used to capture information
about a molecule related to its biological or physical
properties.25,26 Representing a molecule as a vector of
descriptors, rather than as a graph or raw fingerprint, allows
for a clear interpretation of the weighing schemes of
contributing factors.

Zero-dimensional (0D) descriptors are easily observed
features of a molecule derived from the chemical formula.
They include molecular weight or number of heteroatoms and
ring types.

One-dimensional (1D) descriptors encode attributes or
substructures into a binary or hashed vector, known as a
fingerprint. Unlike human fingerprints, however, this repre-
sentation is not unique and can instead represent several
molecules.

Two-dimensional (2D) descriptors use the molecular graph
(topology) as a representation or as an input to a computation
that yields a value. Some 2D descriptors, like the Weiner Index,
also align with experimental measures.27

Three-dimensional (3D) descriptors capture geometric or
topographical information. One such descriptor is the polar
surface area (PSA) that uses the 3D molecular conformation to
evaluate the surface area of polar atoms.28,29 Since these are
inherently sensitive to the conformation of the molecule, they
are less common but are powerful measures containing higher
information content.

Overall, using these descriptors to understand the factors
that define molecular complexity can improve decision-making
and understanding for goal-setting PMI.

1.4. Open SMART-PMI. In this paper, we evaluate the
SMART-PMI and compound complexity tools developed by
Sherer and Sheridan and adapt them for wider community use
in support of green chemistry and process development
acceleration.9,18 The importance of making open-source tools
to support computational green chemistry’s framework cannot
be overstated, as it benefits the broader community by
publicizing previous advancements, encourages embracing
uniform standards in the pharmaceutical industry, and
facilitates the development of cost-efficient and flexible
solutions.

Here, we relate machine learning principles to the retro-
application of molecular complexity and make this knowledge
open source alongside the source code. While we are not the
first to model molecular complexity, we have initiated open-
source collaboration and added interpretability to build upon
the foundations of this important model. We show that the
most successful algorithms, namely, random forest models, can
succinctly model molecular complexity and can provide clear
explainability to the user. The resulting models have different
levels of complexity, with the simplest one using only four
descriptors.
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2. METHODS
2.1. Background. The code for SMART-PMI reported by

Sheridan et al. is publicly available on their GitHub repository
(https://github.com/Merck/compoundcomplexity/).9 The
crowdsourced information for compound complexity pub-
lished by Sherer et al. includes 1775 nonproprietary drug-like
molecules in the Supporting Information.18 The votes on
compound complexity from chemists range from 1 to 5, with 1
representing the simplest and 5 indicating a highly complex
compound. The votes are summarized by the average score per
molecule, denoted as mean complexity. The reported metrics
for their random forest model had an 88% R2 and RMSE of
0.27, while the standard deviation of votes agreement was 0.75.
A four-term linear model was also shown as a simpler
alternative, though with an 80% CV-R2. As the random forest
model is the focal point of both papers and has higher
performance, we use it as the primary point of comparison.
There were two primary complications in using this model.
186 of their 207 descriptors are sourced from the licensed
Molecular Operating Environment (MOE) software, and the
compound complexity package was written in several languages
including Perl, which has waning influence in the field. The
dataset and model were a pivotal step forward in under-
standing the makeup of molecular complexity.

2.2. Data Preparation. RDKit and Mordred are free and
open-source cheminformatics libraries written in Python that
enable easy calculation of many 0D−3D descriptors.30,31

Inputs require the simplified molecular-input line-entry
(SMILES) ASCII string representation, which can be trans-
formed from a molecule’s SDF file. RDKit and Mordred were
used to generate a set of over 1500 initial descriptors.
Throughout this work, the terms “descriptor” and “feature” are
used synonymously.

Of the annotated 1775 molecules from Sheridan et al., 44
(2.5%) were unable to be sanitized by RDKit due to
inconsistent valence electrons and were excluded from
preprocessing and training. Of these molecules, 39/44 came
from the MDL Drug Data Report (MDDR) database. This
dataset was split into a 70:30 training and test set, and the
model would be evaluated with 5-fold cross-validation. To
reduce collinearity and improve model performance, features
were pruned through several preprocessing steps. Mordred
uses a specialized error object encoding; thus, any descriptor
that comprised largely of the latter was removed. All of the
above steps were performed on the entire dataset to capture
the largest set of descriptors that would be unable to be
performed on an incoming molecule. Then, to prevent leakage,
where information from the hold-out dataset is used in training
the model, the following preprocessing involving statistics of
interest was only performed on the training set. The resulting
statistics derived from the training set are later applied to
transformations on the test set and future molecules. Each
feature was scaled using min-max normalization. Normal-
ization is a standard procedure for preparing ML inputs but is
also crucial for comparing coefficients across models. Features
with low information content (defined as variance) less than
10−5 were removed. Post-processing, the dataset consisted of
1196 descriptors.

2.3. Model Selection. Several architectures were tested to
find the optimal algorithm for learning complexity (y) from a
set of descriptors (X). In accordance with the original
SMART-PMI paper, linear and ensemble methods were tested.

Spatial methods and neural networks were additionally
evaluated. Each model takes a different approach to learning
the behavior of mean complexity, and each comes with trade-
offs. While it is important to find a well-performing model,
model simplicity is highly valued, as it is paramount to
understanding the mechanisms driving prediction. A further
discussion of the models and trade-offs can be found in the
Supporting Information.

2.4. Feature Selection. To refine the model and reduce
dimensionality, embedded and wrapper methods were used to
select features. The methods used are complementary to each
other and paint a picture of how features contribute to
prediction. Toward the aim of understanding the modeling
behavior and the contributing factors, we selected descriptors
as chosen by high-performing models and their feature
importance rankings.

Machine learning models typically optimize coefficients for
each descriptor, which can be scrutinized to determine feature
importance. Random forest measures a feature’s mean decrease
in impurity (MDI), which is an implicit method the model
uses to evaluate its importance. Permutation importance
calculates the decrease in model performance when a feature
is randomized and is helpful as it can be computed across
models.

Another method, SHAP (Shapley additive explanations), is
widely employed to add interpretability to a model.32,33

Features are analyzed as players within a game, where the
features compete to influence prediction. SHAP is then able to
allocate the contributions of each feature toward the predicted
value for a particular instance. SHAP values can be aggregated
across all instances to create average absolute scores for each
feature. We can compare model coefficients and SHAP
rankings to identify consensus important descriptors and
eliminate features with little to no effect on modeled
complexity.

2.5. Interaction Terms. Introducing interaction between
terms is another way of modeling nonlinearity. Without
interaction terms, independent variables could be interpreted
as having a unique effect on the dependent variable, each with
its own contribution. As we have a mix of physiochemical and
topographical attributes, we would expect that the effect of one
descriptor varies for different values of another descriptor. To
maintain low computation times, we did not consider all
possible interaction terms. Rather, we focus on product and
quadratic terms that were generated for features filtered
through selection.

2.6. Model Evaluation. It is expected that labeling
molecules at the extreme ends of complexity would be the
most difficult for the model, as the surveyed values of Sheridan
et al.’s mean complexity follow a right-tailed normal
distribution, and so there are the fewest ratings of 1, 4, 4.5,
and 5 (Figure S1). Thus, negative root mean square error
(denoted as −RMSE) was targeted as the primary metric when
comparing models and methods, which gives sensitivity to
large errors. We take the negative RMSE to standardize
interpretation, where higher values indicate better fit, and the
maximum theoretical value is 0. For comparing standard linear
goodness-of-fit, the coefficient of determination R2 is used.
However, R2 increases with the number of dimensions in the
model, which is an important consideration in our modeling.
Accordingly, adjusted R2 was additionally considered as it
corrects for the number of dimensions in the model, where R2

increases accordingly. R2 is given by
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where ŷ is the predicted value and adjusted R2 is
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Fivefold cross-validation was further applied to each metric
to generalize model performance.

3. RESULTS
In summary, we focus on the evaluation of the three models:
our replication of the benchmark model and feature set by
Sheridan et al. (MK-207); the initial model using the full set of
open-source descriptors (GS-1196); a parsimonious model
using only four open-source descriptors (GS-04) (Figure 1).
The model’s naming convention is described by the developer
and the number of features used. Each of the three models is
high performing, with an average squared prediction error that
is lower than the chemists’ vote variability (0.75). Still, each
model comes with unique advantages and trade-offs, and each
informs our understanding in different ways. The initial model
is used to rank the full set of features specifically by their
contribution to the predicted y variable, mean complexity. To
improve accuracy and simplicity, additional interaction terms
are generated for those top features and are used in evaluating

a suite of models. The final parsimonious model has
comparable error to the high-performing baseline and uses
only four molecular descriptors.

The benchmark random forest model shared by Sheridan et
al. was replicated using attributes generated from Merck’s
Compound Complexity repository and a temporary MOE
software license. In a Python environment and hyperparameter
tuning, we were only able to achieve cross-validated R2 scores
around 84%, as opposed to the 88% reported. While
differences could be attributed to the former factors,
hyperparameters such as the optimization function for node
splitting, in conjunction with cross-validation, should be
sufficient for reproducing results. Under the given environ-
ment, the accuracy of the model appears very similar,
accounting for random deviation.

3.1. Feature Selection and Model Initialization. Once
the new feature space was established and processed, we
measured the correlation between descriptors in each of the
previous and open-source spaces to evaluate similarities. Of the
original 207 descriptors, 51 have a correlation coefficient of
over 94% with a new open-source descriptor (Figure 2a).
These include licensed descriptors deemed important in the
work by Sheridan (Figure S2). Further, many of these highly
correlated features map to the same open-source descriptors,
where the 51 original descriptors can be represented by 20
open-source descriptors, as shown in Figure 2a. The larger set

Figure 1. Test set predictions vs true mean complexity for the random forest model trained on each of the three datasets. (a) Our replication of the
benchmark model and feature set by Sheridan et al. (MK-207), (b) the initial model using the full set of open-source descriptors (GS-1196), and
(c) a parsimonious model using only four open-source descriptors (GS-04). The underlying contour plot represents the kernel density estimate,
where the darkness of the rings increases with the density of points.

Figure 2. Coverage of feature sets. (a) Bar chart of open-source features that have over 94% correlation coefficient with an original descriptor.
Several original descriptors can be summarized by an open-source feature. (b) Histogram of the original descriptors from Sheridan et al. Each bar
measures the maximum correlation of an original descriptor with any open-source descriptor. (c) Histogram measuring the maximum correlation
coefficients of an open-source descriptor to any original descriptor. The new set of open-source descriptors represents a larger search space that is
largely independent of the original set.
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of open-source descriptors brings more variance and measure-
ments, while also representing features important for the
original model.

To select meaningful descriptors and initialize model tuning,
we trained a random forest model tuned with grid search. For
the training set of 1384 molecules and 1196 descriptors with 5-
fold cross-validation, the R2 stabilizes around 78% with an
−RMSE = −0.39. Random forest significantly outperformed
other models, despite high dimensionality and limited feature
selection, which served as a useful baseline. SHAP values were
calculated for each instance-descriptor value and aggregated to
summarize each descriptor’s average absolute score.

The SHAP summary plot illustrates a feature’s potential to
raise or lower the predicted complexity (Figure 3a). The chiral
and stereocenter counts, which are similar descriptors, have a
similar influence on the model. Low values (or counts) of these
measures influence a low prediction, whereas very high counts
increase the predicted value. The summary plot is especially
helpful in allocating (the estimated) predictive power to each
contributing feature’s distribution. The most important
descriptors calculated by random forests’ implicit MDI are
shown in Figure 3b. Few features meaningfully contribute to

predicted complexity, and the same features stand out from
both metrics of importance, indicating that the optimal model
for molecular complexity would be relatively consistent. While
permutation importance shows a different ranking, the high
dimension of the input dataset obscures significant decreases in
accuracy (Figure S3).

While it is important to note that these methods are
inherently model-dependent, the results were similar across
several iterations of the model initialization phase, and SHAP
shows a direct relationship of a descriptor to molecular
complexity. The highest ranked 13 of 17 features are in
agreement (spearman ρ = 0.65). Furthermore, all descriptors
selected in this stage show a correlation of above 50% to mean
complexity (Figure S4a). Very few other features have a clear
significant impact on the model, indicating that a parsimonious
model is reasonable. These contributors, a combination of
physiochemical, topological, and graph descriptors, align with
the historical approaches taken by both mathematicians and
domain experts. Since descriptor effects may be magnified in
their interaction with another feature, the highest 15 SHAP-
ranked features are selected for further modeling.

Figure 3. Ranking feature importance. (a) Mean decrease in impurity (MDI) across random forest trees. MDI is measured with the Gini index or
the homogeneity of the resulting nodes and leaves created by a split at a specific feature. (b) Distribution of values contributing to SHAP feature
importance values. The list is sorted by average absolute SHAP value, with the highest contributing feature at the top. The distribution of feature
values is shown next to each, with colors showing the relationship between feature-instance value and the individual SHAP value.

Figure 4. Principal component analysis. (a) Full training dataset for the left figure and (b) top 15 features in the right figure. The first three axes
explain (a) 47% and (b) 90% of the total variance, respectively.
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To visualize the variance captured by the descriptors present
in the dataset, we plot the first three principal components of
the normalized training set and color each instance by its
associated mean complexity. We use this plot to screen for
linear and clustering modeling options and to determine the
amount of noise contributed by extra features. Once the
feature set is reduced to the top 15, we can see the selected
features contain a large amount of variation associated with
molecular complexity. The total explained variance improves
from 47% (Figure 4a) to 90% (Figure 4b).

3.2. Model Selection. In summary, for each dataset, we
trained five algorithms, including partial least-squares, k-nearest
neighbors, support vector machine, multilayer perceptron, and
random forest. This was done for each of the three open-
source datasets: the full descriptor set, the set of top
descriptors, and interaction terms generated from the latter.
Inputs were normalized before training for all models except
for the random forest, where it is not necessary beyond
comparing coefficients. The cross-validated performance
metrics are listed in Table 1.

Reducing the descriptor set increased model performance
across the board, though this is hardly surprising. The high R2

and the negative adjusted R2 in the models trained on the full
feature set suggest that many predictors do not significantly
contribute toward prediction. For the latter two training sets,
the R2 and Adj-R2 are comparable, showing a reasonable ratio
between the R2 and the number of predictors. Interaction
terms from the top feature set, however, decreased model
performance in PLS and SVM. This might suggest that the
nonlinearities are of a different nature than the product and
quadratic terms evaluated here. For the reduced feature sets,
the neural network and k-NN matched the random forest
algorithm’s performance. However, since random forest
models possess more interpretability, explainability, and
model robustness, we continue to use them as the model of
choice.

3.3. Parsimonious Model. Our work shows that a
parsimonious ML model of complexity is possible. Using the
four highest-ranked descriptors, two physiochemical 0D and
two topological 2D descriptors, a random forest model can
predict molecular complexity with MSE = −0.349 and R2 =
82.7% (Table 2). This model, GS-04, has a comparable error
to the licensed MSD-207 model and improves significantly on
GS-1196 while reducing the number of descriptors (Figure

5a). However, MK-207 still has a lower incidence of errors
larger than ±1 as compared to the GS models (Figure 5b). The
physiochemical descriptors included the number of stereo-
centers and the number of heteroatoms (nonhydrogen or
noncarbon atoms). Unique topological torsion was the
foremost ranked feature in every model and seed used.
Topological torsion was developed by Nilakantan et al., to be a
short-range descriptor, capturing information about the
number of substructures containing unique atomic types,
nonhydrogen branches, and pi electron pairs.34 The unique
topological torsion then refers to the number of unique
fragments within a molecule. The last descriptor, chi4n, is a
structural descriptor derived from a set of connectivity indexes
developed by Hall and Kier.35 The several Chi Index variants
capture increasing information about the connectivity of bonds
or atoms. While chi4n was used here, other chi indices were
also effective. Cross-validated performance using other chi
indices in its place differed by a few decimal places.

3.4. App Development. Two applications were developed
to make the final model accessible to both scientists and
modelers. The architecture is summarized in Figure 6. For
rapid estimates of molecular complexity and Open SMART-
PMI, a user-friendly online application requires only the
molecule’s SDF file. The resulting outputs also include the
values of each descriptor factored into the model. The
application uses a one-time installation and can subsequently
be run locally and therefore does not track molecule entries or
results. We have also created a package and command line
application (CLI) in Python for model experimentation,
allowing for changes in training data, simplified model
retraining, and predictions. Like the web app, the CLI can
be locally installed by the user and is stateless to prioritize user
privacy. We encourage users to augment the model and explore
diverse datasets to continue understanding molecular complex-
ity. All materials, including the model and associated apps, can
be found at https://github.com/Gilead-IT-GCDM-PDM/
Open-SMART-PMI. Programmed entirely in Python, the
standard for many cheminformatics and machine learning
tools, open-source accessibility is at the forefront of our
approach.

In this work, we have made three primary improvements:
adding explainability to the search over a large descriptor
space, reducing the number of descriptors while maintaining
performance, and making the model open source in the
language of choice for developers.

4. DISCUSSION
While our findings contribute to refining the calculation of
molecular complexity for SMART-PMI, the remaining
challenges and directions merit discussion. Future progress
involves addressing biases in modeling, exploring the efficacy

Table 1. Model Metrics for Each Algorithm Grouped by Training Set, as an Average of Fivefold Cross-Validation

full feature set top 15 features + interaction terms

rank model R2 Adj-R2 −RMSE R2 Adj-R2 −RMSE R2 Adj-R2 −RMSE

1 random forest 77.8 −64.1 −0.39 84.6a 84.4 −0.329a 85.6a 84.2 −0.318a

2 multilayer perceptron 76.9 −70.8 −0.405 84.6 84.4 −0.329 84.5 83.0 −0.330
3 k-nearest neighbors 28.4 −4.29 −0.716 82.6 82.5 −0.351 82.9 81.2 −0.347
4 SVM 45.0 −3.06 −0.628 82.9 82.7 −0.347 71.4 68.7 −0.451
5 partial least squares 55.0 −2.32 −0.525 74.8 74.5 −0.422 59.6 55.7 −0.536

aTrained on non-normalized inputs.

Table 2. Performance Metrics for Select Models

model Avg CV-R2 Avg CV Adj-R2 Avg CV −RMSE

GS-1196 77.8 −64.1 −0.39
MSD-207 81.3 80.1 −0.36
GS-004 82.7 82.6 −0.349
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of linear models, leveraging graph networks, and refining PMI
estimates for broader industry applications, particularly in
multistep processes. Future research in these directions will
undoubtedly contribute to the landscape of molecular
informatics.

Our effort to select descriptors postmodel training was done
cautiously, as the described approach may introduce bias and
artificially inflate goodness-of-fit. While our evaluation
encompassed both selected and rejected descriptors, mean
complexity, and model building, we acknowledge the inherent
bias of data-driven models toward the training set. Despite the
diversity of the training set, this study is relevant mainly to
pharmaceutical contexts, and more work could be done to
connect molecular complexity across domains.

Surprisingly, introducing nonlinearity with interaction terms
did not improve predictions and, in some cases, may have done
the opposite. This observation suggests the viability of linear
models, and that the complexity of molecular structures may
be effectively captured in a simpler computation. Unique
topological torsion and a chirality measure were similarly used
in Sheridan et al.’s four-term linear model of mean complexity
with an 80% CV-R2. Given the subjectivity inherent in mean
complexity as an average of chemists’ assessment, it is not
expected for model predictions to be 100% accurate. While
they note that mean complexity is a nonlinear variable, this

further suggests that a regression model may still yet be able to
achieve better fit and low error, enabling a better under-
standing of the physical implications of molecular complexity.

For this application, where the molecule is represented as a
set of molecular descriptors, the multilayer perceptron had
comparable performance to the selected interpretable model
and thus presented no discernible advantage. In similar use
cases with complex relationships between numeric input and
output variables, deep learning remains a powerful option with
the potential to capture complicated data trends. However,
large amounts of training data are typically necessary, which
can be an obstacle for chemistry tasks. For more complex tasks,
more powerful algorithms are often necessary. Graph networks,
which can use a graph-structured compound as input, are also
being explored for tasks such as chemical structure prediction
and may translate well to understanding molecular complexity.
This, coupled with an explaining layer, could also be powerful
in identifying molecular features. However, while explainability
approaches like Grad-CAM output annotated molecule
mappings, it may be difficult to discern long-range topological
patterns. More research is currently being done to explore the
viability and interpretability of these models.36,37 Overall, deep
learning remains an attractive option for continuing future
work.

To increase the usage and accuracy of PMI targets for
widespread adoption in industry, more can be done to advance
the utility and ease of tracking the PMI of a manufacturing
process back to the simplest raw material building blocks. This
can be especially challenging in early development where
estimates must be made for the PMI of outsourced materials,
such as simple starting materials. It may be possible to apply
the same model for starting materials and estimate overall PMI
as a linear combination of outsourced and in-house materials.
Vendors could be further encouraged to track and share the
process mass intensity of their materials.

5. CONCLUSIONS
Sustainability is paramount in manufacturing processes.
Process chemists throughout the industry are working toward
this goal by aiming to reduce the raw materials needed for
processing and the waste produced as a byproduct of this
process. Molecular complexity is one of the main indicators of
the resource efficiency of a process, but without a clear

Figure 5. Comparison of model error. (a) Cumulative density functions for absolute error of each model. 80% of predictions are under 0.35 for
MK-207 and 0.42 for GS-04. (b) Corresponding probability densities for the error of each model. The area of each curve integrates to 1, and so the
y-axis represents the probability density of the error rate.

Figure 6. Architecture diagram of the browser and command line
applications.
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definition, it is difficult to create good estimators for this
parameter. Machine learning tools have recently emerged as a
viable method to assist experts with decisions in complicated
domains. While these tools have had success, more is needed
in terms of explaining the basis of the decisions or predictions
generated by complex models.

We have used an existing approach to evaluate molecular
complexity and generated an open-source model with
emphasis on robustness, simplicity, and interpretability.
While our tool builds on the original compound complexity
and SMART-PMI papers, we have made improvements in
terms of interpretability and developed a new model as an
open-source tool available to the larger community. We have
focused on an open-source approach to develop a cost-effective
tool for both internal and external use, as having these kinds of
tools available for use to the larger community fosters rapid
evaluation and selection of best solutions toward setting
common standards.
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