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Abstract

Today, while many researchers focus on the improvement of the regularization term in IR algorithms, they pay less concern
to the improvement of the fidelity term. In this paper, we hypothesize that improving the fidelity term will further improve
IR image quality in low-dose scanning, which typically causes more noise. The purpose of this paper is to systematically test
and examine the role of high-fidelity system models using raw data in the performance of iterative image reconstruction
approach minimizing energy functional. We first isolated the fidelity term and analyzed the importance of using focal spot
area modeling, flying focal spot location modeling, and active detector area modeling as opposed to just flying focal spot
motion. We then compared images using different permutations of all three factors. Next, we tested the ability of the fidelity
terms to retain signals upon application of the regularization term with all three factors. We then compared the differences
between images generated by the proposed method and Filtered-Back-Projection. Lastly, we compared images of low-dose
in vivo data using Filtered-Back-Projection, Iterative Reconstruction in Image Space, and the proposed method using raw
data. The initial comparison of difference maps of images constructed showed that the focal spot area model and the active
detector area model also have significant impacts on the quality of images produced. Upon application of the regularization
term, images generated using all three factors were able to substantially decrease model mismatch error, artifacts, and
noise. When the images generated by the proposed method were tested, conspicuity greatly increased, noise standard
deviation decreased by 90% in homogeneous regions, and resolution also greatly improved. In conclusion, the
improvement of the fidelity term to model clinical scanners is essential to generating higher quality images in low-dose
imaging.
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Introduction

Computed tomography (CT) is one of the most commonly used

diagnostic imaging modalities in modern medicine. CT enables

rapid, non-invasive image acquisition at high resolutions. Howev-

er, CT also exposes the patient to radiation [1,2]. CT dosage can

be decreased by lowering either the voltage or the flux. Lowering

the voltage implies that the emitted photons are less energetic,

reducing their ability to penetrate through the body. Lowering the

flux reduces the number of photons emitted, further degrading the

signal-to-noise ratio of the acquired data. Therefore, the conse-

quence of low-dose CT imaging is that the resulting images are

considerably noisier than images acquired with todays clinical

doses [3].

The drive towards lower dose CT imaging (while maintaining

the diagnostic quality of CT) has been an area of focus for the

entire CT community [4–9]. Numerous approaches to dose

reduction have been implemented in commercial systems includ-

ing the use of filters [10–12], collimators [13], dose modulation

[14,15], prospective triggering [6], patient-specific protocols

[16,17], and more [12,18]. One additional component to the

current repertoire of low-dose CT scanning techniques is the use

of new image reconstruction techniques.

Through recent studies, iterative reconstruction (IR) algorithms

have been shown to be more robust than FBP algorithms in

regards to the presence of noise and artifacts [8,19–25]. Numerous

researchers have discussed different aspects of formulations [26–

31] and optimization approaches [32–36]. However, we have

found that having a high fidelity model of the imaging system is

also a critical factor in the reconstruction of high quality images;

this is an aspect of iterative reconstruction algorithms which has

often been either neglected or substantially simplified [37,38].

A critical component of tomographic IR algorithms is the

accuracy of the forward system model. In positron emission

tomography (PET), the forward system model consists of a

geometric projection matrix and a sinogram blurring matrix,

which can be either measured or simulated [39,40]. It is shown

that the combined model improves resolution and contrast-to-

noise ratio in PET imaging [41]. It is also possible to reuse the
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stored system matrix to improve computation time because the

PET scanner is stationary, making it relatively easy to factorize the

system model based on symmetric geometry. A similar method is

applied to single photon emission computed tomography (SPECT)

for the estimation of the depth-dependent component of the point

spread function (PSF) [42]. However, it is a challenging task to

derive an explicit system matrix in clinical CT for the following

reasons: i) each scan has a different scan length and pitch based on

the scanning protocol, and ii) it is very hard to find symmetries in

cone beam helical CT scans because the source-detector set has a

functional misalignment (i.e., a quarter of a detector offset [43])

and view-by-view deflections of the X-ray source spot (i.e., flying

focal spot (FFS) [44]).

In this paper, we show the systematic implementation of

accurate system modeling for an IRT in clinical CT. A similar

approach for PET [45] was derived from an analytical formula for

calculating error propagation in a reconstructed image from the

system matrix. In addition, in the cone-beam CT, the beam

divergence and the rotation of the X-ray source and detector unit

give space-variant effect on image. Since we do not use a system

matrix as in PET, we integrate all the functional misalignment and

fabrication limitations with on-the-fly calculation method so that

the space-invariant nature is embedded in the forward model.

Therefore, when we run image reconstruction algorithm, we set

up on/off parameters for each modular model. That is one of

major differences of our results compared to the previous 2D or

phantom simulation works.

Also, there are algorithms (ASIR, IRIS, iDose, VEO, etc.)

implemented in clinical scanners by vendors, but the technical

description and detailed methods are not available to the research

community. In this paper, we systematically demonstrate the

necessity of implementing focal spot area, flying focal spot, and

detector area in the forward system model to generate higher

quality images. We also compare our raw-data-domain IRT with a

mathematical formulation of image domain iteration called

Iterative Reconstruction in Image Space (IRIS). The purpose of

this paper is to examine the role of high-fidelity system models in

the performance of the iterative image reconstruction approach

minimizing energy functional. This paper is organized as follows.

In section 2, we mathematically describe iterative image recon-

struction and the components of proposed system models. In

section 3, we present some initial results on phantom and in vivo

data. In section 4, we summarize our findings and conclusions.

Methods

In this section, we describe the mathematical formulation of

IRT and a detailed forward system modeling method. The

forward system modeling method can be decomposed into a series

of components to increase modeling accuracy. We structure a

three-component model that incorporates the most important

elements of the system model. Each component can be replaced by

a specific scanner parameter or vendor-specific model. The

accuracy of this system model is critical in the improvement of

image quality of a reconstructed image.

On-the-fly System Modeling and Reconstruction
Formulation for Clinical Scanner

We assume a transmission CT system with a field of x-ray

attenuation coefficients x and projection operator H as modeled

by:

y~Hxzg ð1Þ

Figure 1. Focal spot area diagram: The length (FSL), width
(FSW ), and height (FSH~FSL|sin(7)) of the focal spot area
(rectangular shape) are denoted in the diagram.
doi:10.1371/journal.pone.0111625.g001

Figure 2. Flying Focal Spot (FFS) modeling: (a) a{FFS model shows deflected FFSs to the angular direction and (b) z{FFS model
shows z-directional deflections.
doi:10.1371/journal.pone.0111625.g002
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where y denotes the projection sinogram, and g denotes noise. We

formulate our reconstruction problem by the following equation:

x̂x~ argmin
x

Ed (y,x)zaE(x) ð2Þ

where Ed (y,x) is the data fidelity term between image x and

sinogram y via the projection process. The second term E(x) is the

prior, or regularization term, and a is the weighting term. We

formulate the fidelity term as:

Ed (y,x)~Ey{HxE2
2 ð3Þ

where H is the system matrix, or projection process. One example

of the regularization term E(x) is the Lp norm:

E(x)~ELxEp
p~(ELxEp)p~((DLx1DpzDLx2Dpz � � �zDLxnDp)

1
p)p ð4Þ

When L~+ and p~1, E(x) becomes a Total Variation (TV)

regularizer, which is commonly used to suppress noise and

preserve edges in the image [46,47]. From a modeling perspective,

we make the assumption that H, the system matrix, can be

decomposed into a series of component models:

H~AdetAfsPgeom ð5Þ

The models include a geometric projector (Pgeom), a focal spot

model (Afs), and an active detector response function (Adet). By

decomposing a system matrix H into sub-components, the

implementation of complex clinical scanner modeling becomes

more feasible. This approach also increases the usability of a single

developed code across multiple CT systems, as opposed to

requiring entirely different projectors for each system.

In this paper, we used the least-squares (LS) solution without the

regularization term and TV solution in Equation (2) and (4) for

comparison. The lagged diffusivity fixed-point method [46,48],

where we iteratively approximated the cost by a weighted

quadratic cost and then solved the resulting linear normal

equations using pre-conditioned conjugated gradient (CG) itera-

tions, is used to minimize the energy functional in Equation (2)

[49].

Focal Spot Area Modeling
A focal spot is the region where electrons transfer their energy to

target atoms in order to generate X-rays. In many cases, the focal

spot is approximated as a point model, but in reality, the focal spot

consists of a finite area (i.e., 0.3 mm to 0.8 mm) [50]. Furthermore,

the size of this area changes with scanner settings (kVp or mA), an

important consideration in regards to image reconstruction of low

dose scans. Figure 1 illustrates the focal spot area with the length

(FSL), width (FSW ), and height (FSH~FSL|sin(7)) of the area in

the diagram. This sub-module should be included for accurate

forward system modeling.

Flying Focal Spot (FFS) Modeling
The detector elements form an equiangular concentric cylin-

drical structure with 32 rows and 672 channels (i.e., 1st generation

Dual Source CT, Siemens, Definition) with FFS models as shown

in Figure 2. We assume the active area of all detector elements

(i.e., 32|672~21504) is identical for all elements according to

manufacturer specifications. In Siddon-type ray-based projectors,

a single ray sum is calculated for a single detector element by using

the ratio of intersections of the ray with equally spaced parallel

lines [51]. For our IR technique, we calculate a bundle of rays to

simulate the virtual ray, which shapes the volume from the focal

spot area to the active detector area. The ratio of the active

Figure 3. Diagram of active area of detector element: (a) Siddon-type ray-based projector calculates the ratio of intersections of the
ray (i.e., d=l), (b) Gray area is the active region of single detector element, Left: single element model, middle: multiple elements by
limiting active area of detector, right: multiple elements by assigning rays to the boundary of active area of detector element.
doi:10.1371/journal.pone.0111625.g003
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detector area to physical spacing between detector elements was

provided to us by the scanner manufacturer as 85% in the angular

direction and 80% in the z-direction as shown in Figure 3. These

ratios can be changed for different systems.

The Siddon projector calculates only the weighted sums of the

portion of the ray that intersects through each voxel without

considering and compensating for the neighboring voxels,

generating aliasing artifacts [52]. Multiple rays in the volume

beam can be used to compensate for this aliasing effect at the

expense of over-sampling the image grid [53]. We have

additionally implemented a version of the Siddon projector which

does not require recursion [54], thus making it amendable to

parallel implementations [55].

Figure 3-(b) shows how we divide active sub-elements to

compute ray-sums. In Figure 3-(b), a single element model, as

well as a multiple element model that strictly limits the active area

of the detector (i.e., middle sub-figure), is depicted. We have

noticed, however, that applications with reconstructions on voxel

Figure 4. Modular system model effects: (a) Images are displayed in ½{1000,500� HU and (b) difference maps are displayed in
dynamic contrast range. ½FS,FFS,DM�: FS: Focal Spot model, FFS: Flying Focal Spot model, and DM : Detector model.
doi:10.1371/journal.pone.0111625.g004
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sizes that are finer than the detector size itself requires a greater

over-sampling of the detector. In this case, not only does the

computational demand increase, but the gap between the active

areas of two adjacent detectors begin to introduce artifacts. As

such, we have implemented the active area model depicted in the

right sub-figure of Figure 3-(b), where the rays intersect the major

boundary points, leading to a higher quality reconstruction.

Figure 5. A modeling effect comparison on LS and TV images: (a) Coronal view of soft contrast section of phantom, (b), (c), and (d)
show axial views of line A, B, and C respectively. The FFS only model (so called Siddon Model, (0,1,0)) shows circular line artifacts in LS and TV
as well. In contrast, the proposed model ((1,1,1)) shows high quality image even in LS without regularization term and significant noise suppression
effect on TV.
doi:10.1371/journal.pone.0111625.g005
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Results

We show two experimental results in this section. For the

phantom study, we focus on the comparison between the effects of

each model on the LS images with a cone beam phantom (QRM,

Moehrendorf, Germany) with respect to conspicuity improvement,

noise statistics, and resolution. In an in vivo study, we show clinical

evidence that supports the proposed approach with subjective

assessment. The proposed method is compared with conventional

FBP and image domain IR (IRIS) algorithms in a low dose scan.

In this case, we used the same raw data for image reconstructions.

Phantom Study
A cone beam phantom with a spatial resolution section with 14

circularly aligned line-patterns varying from 4 to 30 lp=cm was

scanned on a dual source 64-slice multi-detector row CT

(Definition, Siemens Healthcare, Forchheim, Germany) using

the following parameters: detector collimation = 0:6mm, table

speed ~3:8mm per gantry rotation, gantry rotation ~330msec,

tube current ~515mA, and tube voltage ~120kV .

In the following sections we demonstrate the impact of our

various system modules. We will use the following notation: the

triplet (FS,FFS,DM) to denote with a 1 or 0, whether the focal

spot model, flying focal spot model, and detector model,

respectively, are turned on (~1) or off (~0). Thus, for example,

(FS,FFS,DM)~(0,1,0) indicates that the flying focal spot model

is turned on, while the other two system models are turned off.

Figure 4 shows the LS solutions reconstructed using all

permutations of (FS,FFS,DM). Additionally, the differences

between these permutations and the case in which all models

are turned on ((FS,FFS,DM)~(1,1,1)) are shown. All recon-

structed images are shown with a windowing level of ½{1000,500�,
and difference images are shown with the full dynamic range of

each difference so that patterns of artifacts are visible. The model

without FFS generates the stellar shape artifact from the center of

the rotation and it causes major deterioration of image quality.

Therefore, FFS modeling is one of the most important compo-

nents of clinical system modeling. The image quality evaluations in

analytic reconstruction methods are shown in papers [44,56]. In

analytic reconstruction methods, the locations of X-ray source and

detector elements are the only models that can be implemented in

the algorithm, so it is easy to overlook the importance of FS and

DM.

In Figure 4, we can visually compare image qualities of Siddon-

type model with FFS (0,1,0) and the proposed method (1,1,1)
including focal spot and detector models to acquire a more

accurate system model and to remove Moire patterns. There are

only small differences between the two models, especially around

the edges of the image, but eventually these will cause a significant

change in the final image (i.e., TV regularization), especially in low

dose scans. To suppress noise in low dose imaging, we frequently

use regularization terms in Equation (2) with which we suppress

noise by keeping the structure components of the image. When

there are small model discrepancies related to the fidelity term in

Equation (3), the mismatches can be concealed by noise and may

cause resolution degradation and eventually poor contrast.

To compare artifact propagation, we compare the LS and TV

images with a soft contrast section of the phantom. The three

cross-sections of the soft contrast region are displayed in Figure 5-

(a). Figure 5-(b), (c), and (d) show the axial views of line A, B, and

C respectively. The top images are from Siddon-type model with

FFS(0,1,0) and the bottom images are from the proposed method

(1,1,1). By the number of iteration (i.e., LS: 10,20, and 40
iteration, TV: 10 iteration), we can observe circular line artifacts

on LS and TV, as well as on the Siddon-type model. It is especially

more obvious in a very low contrast case (Figure 5-(b)). However,

the images reconstructed by the proposed method show high

quality images without any artifacts in both LS and TV. As

expected, the TV images show significant noise suppression.

To observe the effects of iterations, we simulated a Siddon-type

projector with proper FFS model (0,1,0) without FS and DM,

and a complete model (1,1,1) including all modular models in

Section 2. Both methods used the same optimization algorithm

Figure 6. Consecutive error plot of Siddon (0,1,0) and the proposed method (1,1,1). The NRMSEs of two consecutive images are calculated
and displayed in log-log plot. The proposed method exhibits smaller consecutive errors after 15 iterations compared to Siddon method and reaches
smaller modeling error.
doi:10.1371/journal.pone.0111625.g006
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and code (C++ and Open MPI) to reconstruct images and

consecutively calculate the NRMSE (Normalized Root Mean

Square Error):

e~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
(EXn{Xnz1E2)P

(EXnz1E2)

s
ð6Þ

where Xn is the n{th iteration result of LS-solution with L

elements.

Figure 6 compares the consecutive errors with iteration for

Siddon (0,1,0) and the proposed method (1,1,1) in the log-log

scale. The Siddon-type projector shows similar updates to the

proposed method until iteration-15, where it plateaus and then

fluctuates. The resulting image from the Siddon projector does not

provide the best image even though it reaches the solution of

Equation (3). In contrast, the NRMSEs for our proposed method

become smaller even after 15-iterations because the modeling

error decreases with increasing iterations. However, the high

frequency and noise components of the 30 iterations become

dominant in the system modeling.

Note that the proposed method exhibits significant modeling

error reduction in terms of visual evaluation and NRMSE taking

into account the nonlinear scaling of log-log plot.

Conspicuity Improvements. In Figure 7, we display a

contrast resolution section of QRM phantoms scanned in the

clinical system. We show four groups of circles with different

attenuation coefficients in Hounsfield Units (HU) ({60,{90,{120,

and {200 HU) in tissue equivalent background (35 HU) at 120kVp.

Each group consists of 14 circular inserts with different diameters

(2,4,8,16, and 32mm). We used the same raw data for the

comparison of four different reconstruction methods: Figure 7-(a)

FBP with sharp kernel filtering, (b) FBP with soft kernel filtering, (c)

Least-Squares (LS) solution after 30-iterations, and (d) Total

Variation (TV) image after 10-iterations with (c) initialization.

We found that it is difficult to detect low contrast circles (for

example, 2mm circles in {60 and {90 HU groups) visually as

shown in Figure 7-(a), (b), and (c). Notice that there is no

improvement of conspicuity in small circles with low contrast even

Figure 7. Soft contrast and conspicuity comparison for (a) FBP with sharp kernel filtering, (b) FBP with soft kernel filtering, (c)
Least-Squares solution after 30-iteration, and (d) Total Variation (TV) image after 10-iteration with (c) initialization ½{200,300�.
doi:10.1371/journal.pone.0111625.g007
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with the smoothing kernel, Figure 7-(b). Basically, it suppresses

high frequency noise components on the image without keeping

small and low contrast information, which is key to the evaluation

of low contrast tissues and lesions in most soft tissues such as the

brain, liver, spleen, and lymph nodes, given subtle or low

differences in HU values between organs and several of these

legions (i.e., neoplasms and infarcts).

However, we can easily identify 2mm circles in {60 and {90
HU groups from Figure 7-(d). The TV image can be initialized on

FBP image and can replace the LS solution.

Noise Statistics. Figure 8 compares noise patches from five

noise regions for each image in Figure 7: one from each tissue

equivalent region at the center of the Phantom and four 32mm

circles from different HU groups ({60,{90,{120, and {200
HU). Each sampled region is concatenated with dividing columns

(zeros) and displayed in a dynamic contrast window to show

noticeable differences. The FBP with sharp kernel filtering and LS

solutions show similar noise patterns. As shown in Table 1, a

smoother and lower spatial frequency kernel FBP with soft kernel

filtering has lower noise compared to that of a sharper and higher

spatial frequency kernel FBP (sharp kernel). However, TV shows a

strong noise suppression capability and retains visibility of small

and low-contrast circular objects that are, in our opinion, from

accurate system modeling.

The image reconstruction formulation in Equation (2) empha-

sizes that the energy functional aggregates a fidelity term and a

regularization term. When the system model is not accurate

enough to model details of the system, the TV-regularization

(Equation (4)) of the energy functional (Equation (2)) smears or

even loses the signal components associated with lower HU rather

Figure 8. Noise patches comparison for the four images in Figure 8. Each sampled region is concatenated with dividing columns (zeros) and
displayed in dynamic contrast window to show noticeable differences. From left to right, FBP with sharp kernel filtering, FBP with soft kernel filtering,
IRT (LS), and IRT (TV).
doi:10.1371/journal.pone.0111625.g008

Table 1. Shows the measurements of noise mean (m) and standard deviation (s) for each patch from four difference
reconstruction images.

FBP(sharp kernel) FBP(soft kernel) IRT(LS) IRT (TV)

Patch a m 35.41 35.67 43.09 40.82

s 28.39 17.78 26.60 2.31

Patch b m 283.25 284.19 278.41 278.92

s 21.81 13.14 22.35 2.04

Patch c m 226.99 227.02 224.23 224.58

s 20.25 12.09 23.11 2.05

Patch d m 2163.35 2164.98 2163.40 2163.64

s 19.07 11.66 21.90 2.29

Patch e m 254.57 254.60 251.37 252.48

s 21.04 12.40 21.60 1.28

FBP (soft kernel) has smaller standard deviation than FBP (sharp kernel) and IRT (LS) but the IRT (TV) shows the smallest noise standard deviation.
doi:10.1371/journal.pone.0111625.t001
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than noise when enforcing the smoothness constraint (i.e., L1-

norm) as in Equation (4). This can even occur to greater signal

components in low dose CT data, when the system model is

inaccurate and iteration proceeds to suppress amplified noise.

On the other hand, the accurate system model sustains small

signal components in the fidelity term so that it eventually reveals

hidden signal components under the noise components.

Resolution. The reconstruction parameters of FBP and the

proposed IRT method (1,1,1) are set to be the same as slice-

thickness (0:6mm).

The spatial resolution bar patterns are displayed in Figure 9

with a ½800,2300� contrast window. FBP (sharp kernel) and FBP

(soft kernel) had similar resolutions, so only the better FBP (sharp

kernel) is displayed in Figure 9-(a) and compared to the TV with

Figure 9. Spatial resolution bar pattern comparison: (a) FBP (sharp kernel) and (b) TV with high fidelity term image with proposed
model (111) are displayed in ½800, 2300� HU. (a) shows clear separations of 4, 6, and 8 lp=cm and (b) presents improved resolution showing 10
and 12 lp=cm bar patterns. (c) compares profiles of spatial resolution inserts.
doi:10.1371/journal.pone.0111625.g009
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advanced model in Figure 9-(b). Note that the arrows in Figure 9-

(b) indicate 10 and 12 lp=cm inserts, which points to clear

improvement of spatial resolution on the TV with advanced

modeling image.

In vivo study
In the in vivo study, we only show clinical evidences of the

proposed approach with subjective assessment. The proposed

method is compared with conventional FBP and image domain IR

algorithm (IRIS) in a low dose scan. In this case, we used the same

raw data for image reconstructions. This study was conducted in

compliance with the Health Insurance Portability and Account-

ability Act (HIPAA) and used a scan protocol approved by the

Massachusetts General Hospital Institutional Review Board (IRB).

We obtained written informed consent as per Federal U.S.

guidelines. All procedures in this study were performed in

accordance with the approved protocol.

A patient was scanned on a dual source 64-slice MDCT (1st

generation DSCT Definition, Siemens Medical Solutions) using

routine abdominal CT protocols. The scan parameters were

120kV , 177mA, and 0:5 second gantry rotation. The reconstruct-

Figure 10. Comparison of reconstruction methods on half-dose images: (a) Reconstructed images, with (L) FBP, (M) IRIS, and (R) TV
with advanced system modeling, (b) Zoomed images from different slices; each sub-figure shows (L) FBP, (M) IRIS, and (R) TV with
advanced system modeling. Display in ½5,155� HU.
doi:10.1371/journal.pone.0111625.g010

Table 2. SNR comparison of the three reconstruction
methods for the half-dose dataset in Figure 10.

FBP IRIS TV with high fidelity term

m 173.43 169.78 169.60

s 43.66 20.99 13.17

SNR (dB) 27.59 41.81 51.11

doi:10.1371/journal.pone.0111625.t002

Table 3. CNR comparison of the three reconstruction
methods for the half-dose dataset in Figure 10.

FBP IRIS TV with high fidelity term

SA{SB 192.24 192.40 198.52

s 35.78 18.55 6.88

CNR 5.37 10.37 28.84

doi:10.1371/journal.pone.0111625.t003
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ed images show low dose image quality by reconstructing images

with only half the data (i.e., detector A).

For this case, images with the volume 512|512|100 were

reconstructed. For FBP, the sharp kernel on the scanner was

utilized. For Iterative Reconstruction in Image Space (IRIS)

[57,58], the corresponding sharp kernel was chosen. IRIS is

developed on a novel mathematical algorithm through iterative

formation. The image domain iteration is initiated after it

reconstructs a master volume, which is reconstructed based on

how the scan projections provide image detail information, while

reducing noise and enhancing object contrast step by step. IRIS

utilizes well-established convolution kernels so that it is very fast

compared to raw data domain iterative reconstruction.

In this experiment, we compare three different reconstruction

approaches: the conventional FBP method, image domain

iterative IRIS, and raw data domain IRT with the proposed

methods. We have used 10-iterations with a~25 for IRT

reconstruction with the proposed system modeling method.

To compare images, we defined a priori the regions of

comparison. For SNR, the signal is defined over the region

containing the hepatic artery, while the background standard

deviation is chosen from patches (over 45 slices) of the liver without

vasculature. We define CNR as:

CNR~
DSA{SBD

s
ð7Þ

where SA and SB are mean signal intensities of signal producing

structures of the liver (SA) and the mean signal of the camper’s

fascia (SB), respectively. To obtain CNR background statistics, the

standard deviation of the camper’s fascia over 45 slices was

computed, and is denoted by s by in Equation (7).

A comparison of reconstruction algorithms for the half-dose

scan is shown in Figure 10. Although the added noise associated

with this low-dose scan is apparent, no undesired texturing

appears in this set of images either. The proposed method shows

better visual impression compared to FBP and IRIS.

We also tabulate the SNR and CNR of the low-dose scans, in

Table 2 and 3, respectively. The proposed method preserves the

signal/contrast at much reduced noise for the low-dose acquisi-

tion. In this paper, we choose the regularization parameter based

on clinician’s feedback so it can be improved by processing more

cases with broad feedback from multiple radiologists.

In this study, we showed the efficacy and impact of the proposed

method in the real clinical scanner.

Discussions and Conclusions

Modern CT systems are highly complex, and different

reconstruction algorithms go to various lengths to model such

complexities. In this paper, we show that the accurate modeling of

system components such as focal spot area, flying focal spot, and

active detector area can make a significant difference in the quality

of reconstructed images.

Our phantom and patient studies show that the proposed

technique can improve image quality (low contrast, noise statistics,

spatial resolution, and visual impression). We have introduced a

modular system modeling framework for a sophisticated clinical

CT scanner. Even within the same system, some functions can be

turned off or manipulated for clinical purposes. The advanced

functions of state-of-art CT scanners need to be modeled

accordingly for high quality image reconstruction. These param-

eter changes are meticulously recorded in the header files of raw

data. None of these functions can be ignored for accurate system

modeling to develop high-fidelity characteristics of an iterative

algorithm.

As shown in Figure 4, there are sub-modules of the system that

cause a small mismatch in system modeling, but these can be

propagated through iterations, making them very hard to correct

or compensate for by post-processing or utilization of regulariza-

tion terms. Many studies claim that they can produce high quality

SNR images with simple phantoms (having a few high density

structures with homogeneous background) in low dose imaging;

however, it is very hard to contain the small low-contrast structure

in the final results without advanced system modeling. Without

satisfying the fidelity term of the energy functional in Equation (3),

we cannot guarantee that the reconstructed image is ‘‘the only

stable solution’’ of this ill-posed image reconstruction problem.

At 50% dose, both IRIS and the proposed TV with advanced

system modeling were found to be diagnostically acceptable.

Although the proposed TV provided objectively superior images

in terms of SNR and CNR, this image quality was achieved

through a significant amount of processing. As a technique that

achieves fast computations while maintaining good image quality,

a hybrid method (such as IRIS) may potentially be a promising

approach.

Future work will also address a variety of dose reductions on

cadavers, and we anticipate being able to reduce computation time

for the proposed advanced system modeling by implementing it on

parallel computing architectures.
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