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ABSTRACT
Objective: Biases within probabilistic electronic phenotyping algorithms are largely unexplored. In this work, we characterize differences in sub-
group performance of phenotyping algorithms for Alzheimer’s disease and related dementias (ADRD) in older adults.

Materials and methods: We created an experimental framework to characterize the performance of probabilistic phenotyping algorithms under
different racial distributions allowing us to identify which algorithms may have differential performance, by how much, and under what condi-
tions. We relied on rule-based phenotype definitions as reference to evaluate probabilistic phenotype algorithms created using the Automated
PHenotype Routine for Observational Definition, Identification, Training and Evaluation framework.

Results: We demonstrate that some algorithms have performance variations anywhere from 3% to 30% for different populations, even when
not using race as an input variable. We show that while performance differences in subgroups are not present for all phenotypes, they do affect
some phenotypes and groups more disproportionately than others.

Discussion: Our analysis establishes the need for a robust evaluation framework for subgroup differences. The underlying patient populations
for the algorithms showing subgroup performance differences have great variance between model features when compared with the pheno-
types with little to no differences.

Conclusion: We have created a framework to identify systematic differences in the performance of probabilistic phenotyping algorithms specifically
in the context of ADRD as a use case. Differences in subgroup performance of probabilistic phenotyping algorithms are not widespread nor do they
occur consistently. This highlights the great need for careful ongoing monitoring to evaluate, measure, and try to mitigate such differences.

LAY SUMMARY
This study aims to investigate biases within probabilistic electronic phenotyping algorithms used for Alzheimer’s disease and related dementias
(ADRD) in older adults. We developed an experimental framework to assess the performance of these algorithms across different racial distribu-
tions, with the goal of identifying potential variations in subgroup performance and understanding the conditions under which they occur.
Using rule-based phenotype definitions as a reference, we evaluated probabilistic phenotype algorithms created through the Automated PHeno-
type Routine for Observational Definition, Identification, Training and Evaluation framework. The results revealed that certain algorithms exhibited
performance variations ranging from 3% to 30% across different populations, even without race as an input variable. While not all phenotypes
were affected, the performance differences disproportionately impacted specific phenotypes and groups.
The findings underscore the need for such a robust evaluation framework to address subgroup differences in algorithm performance. Our frame-
work helps to identify systematic differences in the performance of probabilistic phenotyping algorithms, particularly in the context of ADRD.
While subgroup performance differences were not widespread or consistent, the study highlights the importance of continuous monitoring and
efforts to evaluate, and measure, such variations.
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INTRODUCTION

Machine learning (ML) algorithms are computational tools that
enable computers to learn patterns and make predictions or deci-
sions without being explicitly programmed, but rather learned
from the underlying data. The widespread adoption of ML

algorithms for risk stratification has unearthed plenty of cases of
racial/ethnic biases within algorithms—from x-ray images to
electronic health records (EHRs) and clinical notes.1–5 When
built without careful weightage, calibration, and bias-proofing,
ML algorithms can give wrong recommendations, thereby
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worsening health disparities faced by communities of color.
Medical researchers in fields like dermatology,6 pharmacovigi-
lance,7 and clinical-decision support,8 to name a few, have
started to examine biases inherently embedded within ML algo-
rithms via the features used, quality of datasets, types of ML
algorithms, and design decisions. Until the beginning of 2023,
there have been over 600 published papers in PubMed, that
address the evaluation and mitigation of racial bias in clinical
ML models,9 with some pieces providing very insightful ideas
(eg, dividing bias in statistical and social),10 listing challenges
(eg, adaptive learning, clinical implementation, and evaluating
outcomes),11 as well as strategies (eg, reporting clarity, using
denoising strategies, explainability, among others12 on how to
think about bias, where can it be present,13 and how it can be
mitigated. On the implementation/deployment side, researchers
have proposed how to introduce/represent these models to end-
users14 and some best practices within the field.15–18

In the broader ML community, Kleinberg et al19 showed
that a probabilistic classification to be “fair” to different
groups should satisfy 3 inherent conditions: (1) calibration
within groups, (2) balance for the negative class, and (3) bal-
ance for the positive class. However, these conditions cannot
be satisfied all at once, which has led to the development of
numerous other “fairness measures”20–22 that overlap and
create confusion.23 While most of these metrics apply to algo-
rithms directly, they have not been analyzed in the context of
medicine24–26 until late 2019, with mixed and at times contra-
dictory findings. When applied to medicine, other factors
need to be considered, such as the clinical utility and benefit
of the model.27

Rule-based phenotyping has been the de facto method for
identifying cohorts of patients belonging to any given condi-
tion/phenotype.28 This method requires clinicians to agree on
a set of clinical elements organized in logical rules that best
represent the targeted phenotype. Two of the biggest disad-
vantages of this approach are that: (1) the rules are rigid,
meaning that they do not allow patients that have missing key
data points to be included and (2) these definitions are expert-
driven and very time-consuming/expensive to construct. Most
recently, different ML-based approaches have gained traction,
because they are data driven and allow more flexibility for
patient inclusion.29 Specifically, patients are assigned proba-
bility scores, rather than a binary label. In this work, we used
a probabilistic score approach to examine racial bias in EHR
data of disease phenotypes that impact older adult patients.
Other analytical approaches for phenotyping like latent class
analysis30,31 and unsupervised clustering algorithms have
been used in this context, but out of scope of our evaluation.

The National Institute on Aging has defined Alzheimer’s
disease and related dementias (ADRD) as a series of complex
brain disorders that affect millions of Americans, more specif-
ically an estimate of 5 million in 2014, which is projected to
grow to 13.9 million by 2060.32 This growth will have a dele-
terious impact on individuals, their families, long-term care
facilities, health care providers, and health care systems. The
negative impact of ADRD on minority older adults cannot be
overstated. In this study, we selected ADRD phenotypes as
they impact all older adults, and especially in communities of
color.33–36 We utilize electronic phenotyping to characterize
subgroup performance, which could lead to algorithmic
biases (if any) in this context. A review of existing literature
identified only one study by Straw and Wu37 presenting a
sex-stratified analysis of ML models for liver disease

prediction. In this work, instead of a sex-stratified analysis,
we build a more detailed and robust gender-stratified analysis
to identify bias from a broader perspective, nicely providing
an additional view of the problem than Straw and Wu. Addi-
tional prior research has examined racial bias in the context
of dementia.38 To our knowledge, this is the first study to
evaluate the impact of racial subgroup performance, within
probabilistic phenotyping models, on older adults in the con-
text of mild cognitive impairment (MCI), Alzheimer’s disease,
and Parkinson’s disease. Moreover, our study, which uses a
larger EHR dataset, found very different conclusions on racial
subgroup performance in dementia, thereby demonstrating
the usefulness of our evaluation framework that was built for
EHR data in the Observational Medical Outcomes Partner-
ship (OMOP) Common Data Model (CDM) format. This
CDM has over 700 million patient records, across the world,
converted to it.

OBJECTIVE

In this study, we characterized the racial subgroup in perform-
ance of probabilistic electronic phenotyping algorithms devel-
oped from EHR datasets. Without using race as a modeling
variable, we hypothesized that (1) probabilistic algorithms
perform differently for different racial groups, (2) the differ-
ence in performance is tied to data availability for different
racial groups, and (3) not all algorithms show the same level
of racial subgroup performance differences.

MATERIALS AND METHODS
Dataset

The dataset utilized for this work is from deidentified data
from the Stanford Medicine Research data Repository, consist-
ing of over 3 million patients with clinical data from 2008 until
the end of 2018. This dataset has been converted to the OMOP
CDM version 5.3 and used in multiple Observational Health
Data Sciences and Informatics (OHDSI) studies over the years.
Table 1 shows the overall demographics of the dataset. Of par-
ticular interest is the underlying racial distribution, which will
be highlighted throughout the rest of this study.

Rule-based algorithms as our gold standard

We used the rule-based phenotype algorithms validated and
available on the Health Data Research UK (HDR UK) Pheno-
type library39 for the following conditions: dementia40 and
Parkinson’s disease.41 We adapted them into OHDSI ATLAS
cohort definitions for their application on our OMOP-
converted data. The rule-based phenotype definitions for
MCI were adapted from Jongsiriyanyong and Limpawat-
tana,42 and for Alzheimer’s disease we used the clinical defini-
tion by Holmes.43

Manually curated and clinically validated sets of patients
are more robust but also significantly more time and resource
intensive. Thus, community-approved rule-based definitions
from organizations like the Phenotype Knowledgebase44 and
the HDR UK Phenotype library45 have become the commun-
ity approved methodology to computationally identify pheno-
types.28,46 These rule-based definitions, while clinically
validated, are quite rigid and show less flexibility than other
approaches,28 this leads to many potential patients being
excluded if certain codes or conditions are just not presented
in their health record because of lack of coding or errors. One
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major limitation of these rule-based definitions is that they
could have any hard-coded biases due to lack of representa-
tive subgroup data when they were built or due to different
coding practices of subgroup members. However, our
approach will not encode these as the probabilistic definitions
are data driven as explained in the following section.

Probabilistic phenotypes with APHRODITE

Instead of relying on rigid rules to define medical condition
phenotypes, newer data-driven approaches leverage ML to
build statistical models to classify patients. These approaches
have gained traction in the last few years,28 because they allow
subjects to have a degree of probability of belonging to a phe-
notype, making them more flexible and able to catch people
that have clinical codes missing or incomplete data. The meth-
odology used for this work, Automated PHenotype Routine
for Observational Definition, Identification, Training and Eval-
uation (APHRODITE), was designed with this flexibility in
mind. Specifically, it relies on building statistical models for
phenotypes based on an initial cohort of patients selected using
high-precision keywords/clinical codes. The models were built
using weak supervision where the patient’s entire clinical
record up until the first appearance of the selected keyword/
clinical code. This approach is semisupervised as only an initial
keyword/clinical code is needed and everything else is data
driven. This approach was introduced by Agarwal et al47 and
was made into an R package48 which works on standardized
data to the OMOP CDM format. In this work, we will use all
data from: Conditions, Procedures, Medications, Diagnosis,
and Observation codes as variables for modeling.

Experimental framework

In order to identify racial subgroup performance variations
within the probabilistic models, we built the following steps
into a framework that we can later reuse for a wider variety
of phenotypes. We started by selecting 3 of the most popular
classical ML models to evaluate: LASSO,49 since regression-
based classifiers are widely used for statistical learning pur-
poses with EHR/medical data,50 Random Forest (RF),51 and
support vector machines (SVMs).52 Note that the 3 models

listed above are the ones supported by default by APHRO-
DITE; however, any model supported by caret R package can
also be included.53 Next, we selected matched cases and con-
trols to build our probabilistic models. The patients were
matched by age, race, gender, and length of clinical record.
We then stratified by the patient’s race for our multipronged
evaluation, which consists of: traditional model (all races
merged together), balanced model (we balance based on equal
distribution of patients for each race), single race only model,
and the leave-one-out combinations, which take one race out
of the model building process in a systematic way. Following
our usual practice, we used 75% of the data to train the
model and a 25% unseen set to test the model, in addition to
5-fold cross-validation.

For evaluation, we used the traditional metrics: accuracy,
which is the fraction of assignments the model identified cor-
rectly; sensitivity, which is the proportion of positives that are
correctly identified; and specificity, which measures the pro-
portion of negatives that are correctly identified. In addition,
we used variation in order to measure difference between
models in the following way:

Variation ¼
�
�
�1� current model

base comparison model

�
�
�:

This measurement allowed us to evaluate the first 3 metrics
in a similar context and show how different models are com-
pared with each other. Note that while phenotyping algo-
rithm performance is important, this is not the key point of
this work, we present general model classification accuracy in
order to put performance variance between phenotypes in
context.

RESULTS
Phenotyping algorithms

First, we checked that the probabilistic phenotyping algo-
rithms performed well when compared against their rule-
based definitions. Table 2 shows APHRODITE’s performance
to select and identify the “gold-standard” patients identified
by the rule-based phenotype definitions.

Our results show that APHRODITE and its probabilistic
models are successful at identifying almost the same patients
for each phenotype when compared with the rule-based defi-
nition, which served as our gold standard.

Table 3 shows the demographics of the patients identified
for each phenotype. While our gender classes are almost bal-
anced, due to the large imbalance in the race categories, the
performance of ML models will vary because of the smaller
training sample sizes.

A few things to note are that: (1) the racial distributions for
some of the categories like Native American and Pacific
Islanders are very low and (2) there were many patients listed
as unknown race, which were removed from our evaluation.

Our evaluation framework produced over 1200 plots and
charts evaluating the performance of probabilistic models built
under multiple conditions. Figure 1 presents model classifica-
tion accuracies for the 4 phenotypes and the 3 ML algorithms
we utilized (ie, 15 parameters) for the 12 different data subsets
evaluated. This figure sets the precedent of the importance of
the model variance evaluation and how it will change models
from being potentially useful, to highly unreliable.

Table 1. Demographics of patients from 2008 to 2018

Overall

n¼3 113 080

Gender (%)
Missing 5806 (0.2)
Female 1 673 410 (53.8)
Male 1 433 864 (46.1)

Race (%)
Asian 303 800 (9.8)
Black 97 399 (3.1)
Native American 6819 (0.2)
Other 393 466 (12.6)
Pacific Islander 23 142 (0.7)
Unknown 1 071 563 (34.4)
White 1 216 891 (39.1)

Ethnicity (%)
Hispanic/Latino 338 820 (10.9)
Non-Hispanic 1 602 753 (51.5)
Unknown 1 171 507 (37.6)
Age (mean [sd]) 46.7 (25.11)
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These results demonstrate that most full models (ie, the
classical ones), which are the purple bars, have 70%–90%
classification accuracy for the given phenotype. These results
are only for illustration purposes and to put the following fig-
ures of model variance in perspective. We are not trying to
find the best performing models in general, but rather show
their subgroup variation, when races are stratified.

Evaluation Scenario 1: Building models with

individual racial subgroups

In Figures 2 and 3, we show the classification and sensitivity
variance for the RF models between our models built for indi-
vidual races and compared across all races evaluation. These

figures are designed as heatmaps to visually highlight the
severity of the variance and place the attention of the
researcher on the more relevant sections. For example, we
built models using only White patients, and compared their
performance when classifying patients from all other races.
We used RF as our choice algorithm to illustrate our results
due to its solid average performance during our experimenta-
tion, and due to the more explainable nature of its models.

Figure 2 shows some very interesting results for the demen-
tia and Alzheimer’s disease phenotypes, illustrating that the
variance between models is not that pronounced (<8% at the
worst case). This shows that models built with the individual
races are generalizable enough across races, at least for these

Table 2. Rule-based and APHRODITE phenotype selection overlap

Phenotype

Cases identified

by rule-based

definition

Cases identified

by APHRODITE

keywords

Initial

overlap

(%)

Classified by

APHRODITE model

(prob over 90%)

Total

overlap

(%)

Dementia 13 213 16 998 95.95 471 99.52
MCI 7915 8292 94.14 399 99.18
Alzheimer’s disease 11 401 12 828 89.04 1137 99.02
Parkinson’s disease 5989 6644 79.50 896 94.46

Table 3. Patient demographics for the evaluated phenotypes

Phenotype Cases Controls

Gender Race

Female

(%)

Male

(%)

Asian

(%)

Black

(%)

Native

Amer. (%)

Pacific

Island (%)

White

(%)

Unknown

(%)

Dementia 16 998 16 998 56.22 43.78 11.07 4.96 0.27 0.80 60.33 22.57
MCI 8292 8292 49.82 50.18 11.73 3.88 0.22 0.92 60.06 23.19
Alzheimer’s disease 12 828 12 828 60.05 39.95 12.08 4.85 0.25 0.69 63.03 19.11
Parkinson’s disease 6644 6644 39.30 60.70 12.06 1.34 0.23 0.32 63.11 22.95

Figure 1. Model classification accuracy result (y-axis) for all ML algorithms and all phenotypes. In this context, accuracy is defined as the fraction of

assignments the model identified correctly.
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2 phenotypes. For the remaining 3 phenotypes the variance
increases up to 27%, rendering a classification model with an
accuracy of less than 80%, almost equal to random picking.
These results showcase the need to evaluate these combina-
tions carefully, particularly before deployment of any pheno-
typing model.

The sensitivity variance for the models in Figure 3 shows a
similar trend as Figure 2—that is, less variance for the demen-
tia and Alzheimer’s phenotypes. However, there is a consider-
able increase in the variance of the Native American model,
most likely due to the fact that this racial group is highly
underrepresented in the dataset used; thus, this model is
unable to properly generalize across races, particularly when
measuring sensitivity.

Evaluation Scenario 2: Full models, balanced

models, and leave-one-out

We now switch to evaluate the models in a more traditional
sense of using a model with all data available—one that bal-
ances the classes but limits the number of samples to the mini-
mum available in any given class. Note that we did not use
SMOTE54 or any sampling techniques in this work, as this is
not ideal when using clinical data,55,56 since depending on the

method used, it adds nonrepresentative extra data. The other
scenarios we evaluated include leaving one class out in the
model building process. We then applied the built models to
the individual classes of patients in the testing set (fully unseen
patients). Figures 4 and 5 report these results for classification
accuracy and sensitivity.

We again see very similar patterns for the dementia and
Alzheimer’s disease phenotypes, where the variance is quite
low. One thing to note is that there is always variance here as
the calculation is performed on the base comparison model
performance only classifying the given class (on the unseen
test set) versus the base comparison model performance of all
classes on the unseen test set. One very interesting result here
is that for the phenotype models with less subgroup variance,
taking out certain classes brings their overall performance
down by considerable amounts (up to 26%) sometimes,
which could be mostly due to removing the data-dominant
race. In other scenarios, the accuracy variance is not that
high, particularly when classifying the races with very small
representation in the original models.

Figure 5 shows that classification sensitivity variance is also
affected in a similar way as for the classification accuracy in
almost the exact same way with the variance trends being

Figure 2. Classification accuracy variance for the RF algorithm for our 4 phenotypes. In this heatmap, the higher tone of red a cell has, represents bigger

variance from the base comparison, or in other words more bias.

Figure 3. Classification sensitivity variance for the RF algorithm for our 4 phenotypes. In this heatmap, the higher tone of red a cell has, represents bigger

variance from the base comparison, or in other words more bias.
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very similar. This also reinforces the original finding, namely
that 2 of the phenotypes show small variance, across our
experimental evaluation and the other 3 have different, but
increasing, degrees of variance. These results demonstrate
that probabilistic phenotype models need to be carefully
examined and improved before they can be used in a clinical
setting.

DISCUSSION

We designed our experimental framework to provide a fully
automated and standardized (on top of the OMOP CDM and
using APHRODITE R package) way to demonstrate if any
given probabilistic phenotyping model has racial subgroup
variance and estimate how much. As shown in the “Results”
sections, we have 2 different evaluation scenarios, which build
probabilistic models in different stratified ways to provide
flexibility and insight into how the differently built models

will vary given popular ML metrics. Note that any identified
anomaly in subgroup performance does not automatically
translate into the algorithm leading “harming” subgroups, as
addressing or “fixing” those anomalies might actually pro-
duce worse performing algorithms for all subgroups as found
by Pfohl et al.57 In some cases having different algorithms for
subgroups or a human in the loop might58 be a better
approach to not affect any group of patients.

For the phenotypes of our case study, the first scenario
clearly demonstrates that 2 phenotypes: dementia and Alz-
heimer’s disease present the least amount of subgroup var-
iance (Figures 2 and 3), both in terms of classification
accuracy and sensitivity. This is highlighted by their 2 var-
iance figures showing the least amount of red cells. Racial rep-
resentation in those cohorts could be one possible reason
these phenotypes show less subgroup variance, but while they
have some of the highest numbers of cases used for training
(Table 2), their racial representation is nearly the same as in

Figure 4. Classification accuracy variance for the RF algorithm for our 4 phenotypes. In this heatmap, the higher tone of red a cell has, represents bigger

variance from the base comparison, or in other words more bias.

Figure 5. Classification sensitivity variance for the RF algorithm for our 4 phenotypes. In this heatmap, the higher tone of red a cell has, represents bigger

variance from the base comparison, or in other words more bias.
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the whole dataset. An interesting observation is that accuracy
shows very little variance whereas the sensitivity results show
a higher amount of it. This might indicate that while the
stratified models do well as a whole, there might be additional
small variance when trying to detect the positive class. How-
ever, this can also be explained as an artifact of building the
model with the Native American patients, which had the least
representation in the full dataset (>0.25%). A common solu-
tion to address underrepresentation has been to oversample
this class or undersample some of the others. However, our
second scenario shows that this does not significantly improve
the level of subgroup variance, as other researchers have
shown, at least for predictive tasks.55,56 Rather, we recom-
mend using federated learning, as this is starting to be more
accepted in large research networks,59 or use ensembles using
multiple datasets, when available within a single site or
research facility.60 The second evaluation scenario shows that
the full model and the balanced model perform very consis-
tently for the phenotypes of dementia and Alzheimer’s disease,
which have less subgroup variance. However, it also shows
very striking results on the leave-one-out models, particularly
when removing the racial groups with the larger representa-
tions and when removing a particular racial group and then
trying to classify only patients of that group (Figures 4 and 5).
These results show the need to consider such detailed analyses
before trying to use any of these models in clinical practice.

Regarding the phenotypes—MCI and Parkinson’s dis-
ease—with more subgroup variance, we observed some very
dramatic variance changes (average of 10%) between most of
the experimental models. This indicates that those phenotypes
are quite sensitive to any of the racial groups being removed,
particularly shown by the leave-one-out models from the sec-
ond scenario (Figures 4 and 5). These figures also show that
even for the full model and balanced scenarios, predicting on
individual classes brings considerable accuracy and sensitivity
variance. These findings translate to how sensitive these mod-
els are to any type of shift in the underlying dataset that is
used to train the model and how to evaluate them. We theo-
rize that this sensitivity is due to higher variance in coding
practices between racial groups for these 2 phenotypes. These
results strongly demonstrate the need for rigorous experimen-
tal evaluation before any kind of deployment or testing in
production environments (eg, hospitals). While there are
plenty of experimental evaluations to analyze, our framework
automates the work for researchers, and it only needs human
interpretation of its findings.

The limitations of this work are the following: we evaluated
3 ML algorithms based on their popularity and level of use
within the field. However, with new algorithms constantly
being introduced, the results could vary dramatically when
other algorithms are introduced. We decided to keep the same
algorithms as in our previous works48,61 since we know how
those perform to build probabilistic models using APHRO-
DITE. The flexibility behind APHRODITE allows for other
models to be evaluated within the presented framework as
long as they have an R package available. We decided to only
evaluate the variance metric as it gives a stronger and more
interpretable signal on how the model differs from each other.
For this study, we needed to keep the number of evaluations
and experiments to a reasonable amount to be able to explain
this work and its merits. However, any other metric can be
configured into our framework. Lastly, our case study pheno-
types were evaluated on a single dataset, and, in future work,

we plan to fully leverage the OHDSI community to conduct a
network study examining racial bias of phenotypic algo-
rithms.62,63 One major item to note is that self-reported race
is usually error prone and very often incomplete (missing in
up to 23% of the patients selected for the phenotypes eval-
uated), these factors could lead to some of the results being
artifacts of this phenomenon.

CONCLUSION

As we have demonstrated in this work, subgroup perform-
ance variance can certainly be found in probabilistic pheno-
type algorithms that categorize older adults, particularly for
phenotypes like MCI, and Parkinson’s disease. As a result of
this subgroup variance, models perform up to 30% worse
under our multiple model building scenarios. Thus, it is crit-
ical for institutions to extensively test and rigorously evaluate
their phenotyping models. We found that some phenotypes
like dementia and Alzheimer’s disease were more resistant to
this subgroup variance as indicated by their very small var-
iance under all of our testing scenarios, meaning that these
models could be potentially used safely. Rigorous testing
allows researchers to be more confident of the performance of
these models under different racial distributions. In terms of
clinical relevance, our contribution will allow researchers to
build mode robust ML models to identify patients with
ADRDs. This could lead to less biased clinical trial eligibility
selection, and to less biased disease identification and progres-
sion detection algorithms, which are data driven and not only
rule-based. Our main contribution is the framework to fully
automate this process when the institution has data in the
OMOP CDM and can run our extension to the APHRODITE
package. This work is particularly important as biomedical
scientists and medical professionals strive to make informed
conclusions and diagnoses of older adult patients.
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