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Estimating the direction of ambient fluid flow is a crucial step during chemical
plume tracking for flying and swimming animals. How animals accomplish
this remains an open area of investigation. Recent calcium imaging with teth-
ered flying Drosophila has shown that flies encode the angular direction of
multiple sensory modalities in their central complex: orientation, apparent
wind (or airspeed) direction and direction of motion. Here, we describe a gen-
eral framework for how these three sensory modalities can be integrated over
time to provide a continuous estimate of ambientwinddirection. After validat-
ing our framework using a flying drone, we use simulations to show that
ambient wind direction can be most accurately estimated with trajectories
characterized by frequent, large magnitude turns. Furthermore, sensory
measurements and estimates of their derivatives must be integrated over a
period of time that incorporates at least one of these turns. Finally, we discuss
approaches that insects might use to simplify the required computations, and
present a list of testable predictions. Together, our results suggest that ambient
flow estimation may be an important driver underlying the zigzagging
manoeuvres characteristic of plume tracking animals’ trajectories.
1. Introduction
Estimating the direction of ambient flow is a critical step for both swimming
and flying animals during chemical plume tracking behaviours [1]. Without
access to stationary flow sensors, however, the ambient direction of fluid flow
cannot be directly measured [2]. How animals resolve this challenge remains
an open area of investigation. Recent experimental work with fish has shown
that they use temporal changes of flow from mechanosensory measurements
to deduce flow direction during rheotaxis [3]. Comparatively less is known
about how insects resolve this challenge while flying in windy environments.

Flying insects can measure apparent wind, corresponding to the vector sum
of the ambient wind and motion-induced wind. Decoupling apparent wind
into its component parts is a straightforward vector subtraction if given absol-
ute trajectory information in the same units as apparent wind. Insects, however,
do not have direct access to such information. It is conceivable for an insect to
estimate absolute ground speed using optic flow and inertial measurements
(e.g. [4]), or to estimate ambient wind direction using a combination of optic
flow and apparent wind [5]. However, both such approaches rely on calibrated
measurements of the magnitude of optic flow and other modalities. Optic flow
responses of insects, however, have depth- [6], texture- [7], temperature- [8] and
state- [9] dependent response properties, resulting in constantly varying and
unknown sensor gains. The magnitude of other sensor modalities will have
similar time-dependent properties.
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Figure 1. Trigonometric relationships of the angular sensory measurements.
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Through calcium imaging experiments, it has been found
that a central part of insects’ brains, the central complex,
encodes two-dimensional angular compass information such
as head orientation from visual landmarks [10] or polarization
[11], apparent wind angle from their antennae [12,13], and
angular direction of motion from vision [14–16]. Neuroanato-
mical studies suggest that similar sensory encodings exist in
many invertebrates [17]. These two-dimensional angular
encodings do not suffer from the same calibration challenges
as magnitude measurements would, since the angular direc-
tions are equivalent to calculating the ratio of two
perpendicular magnitude measurements, eliminating the
unknown sensor gain. This feature and the physical overlap
in the brain of the aforementioned sensorymodalities presents
an attractive hypothesis that perhaps they play a central role in
insects’ ability to estimate ambient wind direction.

One strategy that relies solely on such angular measure-
ments is called visual anemotaxis [18]. This algorithm
would allow insects to orient upwind by turning until the
angle of perceived apparent wind is aligned with the angle
of motion. Behavioural experiments with free and tethered
flies, however, suggest that their turns are often open-loop
and ballistic in nature, and not actively controlled throughout
the turn itself [19–21]. Furthermore, their free flight plume
tracking behaviour indicates that they are capable of
moving crosswind at arbitrary body orientations with respect
to the wind direction [22]. Together, these behavioural exper-
iments suggest that insects may be capable of estimating the
direction of ambient wind throughout their flight trajectories.

A recent nonlinear observability analysis of the three key
sensor modalities encoded in the central brain of flies—orien-
tation, apparent wind angle and direction of motion—found
that this sensor suite is mathematically sufficient for estimating
the direction of ambient wind without explicitly requiring
upwind orientation [23]. Estimating ambient wind direction
in this manner, however, is only feasible for certain trajectories,
such as those where the insect changes course direction.

This manuscript provides a detailed mathematical and
simulation analysis to determine which trajectories offer the
most accurate ambient wind direction estimates, as well as
which computations are actually required to make these esti-
mates. First, we establish the mathematical relationships
required to estimate ambient wind direction that are appli-
cable to any estimator using the three measurements we
consider. Second, we describe an optimal framework for
estimating the ambient wind direction and validate the
robustness of our approach using data from a flying drone.
Third, we use our optimal framework to determine which
types of trajectories are capable of providing the most accu-
rate estimates under a variety of conditions. By using an
optimal framework to answer this question, we ensure that
our results are equally applicable to other computationally
simpler estimation algorithms designed for the same task.
Finally, we discuss how insects might simplify the compu-
tations required to estimate ambient wind direction.
2. Mathematics of estimating ambient wind
direction

Inspired by the two-dimensional angular encodings found in
Drosophila, our analysis will focus on the plane parallel to the
ground. Since this is also the plane where the largest changes
in wind direction are usually observed [24], it also represents
the most important angle that insects might need to estimate.
Additional considerations for extensions to three dimensions
are given in [23].

In this section, we first review visual anemotaxis, and then
develop a general framework for understanding how ambient
wind direction ζ(t) could be estimated. In both cases,we restrict
our analysis to only consider the kinematic relationships and
time history of three angular measurements (figure 1),

hðtÞ ¼ ½fðtÞ, gðtÞ, cðtÞ�T , ð2:1Þ
where ϕ(t) is the head orientation with respect to a global coor-
dinate frame, γ(t) is the angular direction of airspeed relative to
the head coordinate frame (equivalent to apparent wind +
180°), and ψ(t) is the angular direction of motion relative to
the head coordinate frame. For notational simplicity, we drop
the (t) going forward.

We begin by defining the relationship between the angu-
lar measurements h, the groundspeed (g) and wind speed (w)
provided by the Law of sines (figure 1)

g
w
¼ sinðbÞ

sinðdÞ ¼
sinðgþ f� zÞ
sinðg� cÞ : ð2:2Þ

This relationship highlights the challenge of using the
airspeed direction γ to estimate the wind direction, as any
changes in the value of γ could be the result of changes in
ζ, g, or w, none of which are available to the insect.

Since we are only concerned with estimating ζ, we
simplify the relationship by defining v = g/w, a non-
dimensional velocity describing the ratio of ground speed
and wind speed, yielding

v sinðg� cÞ ¼ sinðgþ f� zÞ: ð2:3Þ

2.1. Visual anemotaxis (a review)
Before defining our framework for active anemosensing, we
review the mathematics of the visual anemotaxis hypothesis.
Consider what would happen if a fly were to actively control
its orientation (ϕ) and direction of motion (ψ) based on
sensory feedback

@

@t
f ¼ _f ¼ kfg ð2:4aÞ

and

@

@t
c ¼ _c ¼ �kcc, ð2:4bÞ

where kϕ and kψ are both constant gains that determine the rate
of change in ϕ and ψ. Together, these control laws will ensure
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that the fly is oriented in the direction of its airspeed (γ = 0) and
moving in the direction it is oriented (ψ = 0). For simplicity, the
following analysis uses kϕ = kψ = 1; the same qualitative results
hold for different choices of kϕ,ψ (see electronic supplementary
material, figure S1). To understand how these control laws
would affect the fly’s movement relative to the ambient wind
direction, we introduce a new variable for the course direction
relative to the ambient wind direction,

cz ¼ fþ c� z: ð2:5Þ
Next, we calculate the derivative of cz, under the assumption
that the fly changes its course direction much faster than any
changes in the ambient wind direction (i.e. _z � 0),

_cz ¼ _fþ _c� _z � g� c: ð2:6Þ
We now rearrange equation (2.5) as f� z ¼ cz � c and substi-
tute it into equation (2.3), followed by a substitution of _cz for
the two instances of γ− ψ yielding the following,

v sinð _czÞ ¼ sinð _cz þ czÞ: ð2:7Þ
We now solve equation (2.7) for _cz as follows,

_cz ¼ tan�1 sincz

v� coscz

� �
: ð2:8Þ

This expression allows us to analyse the stable and
unstable equilibria for global course direction in relation to the
ambient wind direction for different values of v using a one-
dimensional phase portrait (figure 2). This analysis shows that
although moving downwind and upwind are both equilibria,
upwind movement (cz ¼ +p) is the only stable outcome.

During behaviours such as migration, insects may choose
to fly at an angle relative to the wind [25], rather than orient
upwind. Such behaviour could be accomplished using visual
anemotaxis, but the insect would not have access to what this
angle is by using visual anemotaxis alone (see electronic
supplementary material, figure S2).

2.2. Active anemosensing
In contrast to visual anemotaxis, we now develop a frame-
work for estimating the ambient wind direction that does
not first require finding upwind. To begin, we simplify the
measurement space by introducing two new variables (α:
direction of air velocity relative to the global frame, and δ:
‘slip’ angle between the air velocity and ground velocity vec-
tors), and rewrite equation (2.3),

a ¼ gþ f, ð2:9aÞ
d ¼ g� c ð2:9bÞ

and v sin d ¼ sina cos z� cos a sin z: ð2:9cÞ

Equation (2.9) has two unknowns v and ζ, resulting in an
under-determined system given the measurements α and δ.
To uniquely determine ζ, we add the following constraint
from the time-derivative of equation (2.9),

_v sin dþ v _d cos d ¼ _a cos a cos z� _z sina sin z

þ _a sina sin z� _z cos a cos z, ð2:10Þ

_v ¼ d
dt

v ð2:11aÞ

and _z ¼ d
dt

z: ð2:11bÞ
Together, equations (2.9c)–2.11 fully constrain ζ provided
that derivatives of the measurements can be calculated or
measured. Thus, in principle a variety of optimization
methods could be used to estimate ζ using these relationships
as constraints. To understand which trajectories lead to accu-
rate estimates under varying levels of sensory noise and for
different natural wind dynamics, we develop an optimal
framework for estimating ζ using convex methods in the
following section.

2.3. Active anemosensing using convex optimization
In this section, we construct an objective function of the form
ℓ = ||L|| + ||dL|| that is linear with respect to the unknowns
such that it can be efficiently solved using traditional convex
optimization tools.

The terms in equation (2.10) containing _z include the
product of two unknowns, resulting in a non-convex formu-
lation. Thus, we introduce the assumption that the dynamics
of the trajectory are faster than the dynamics of the wind.
That is, for any given time window of length τ, we assume
that _z � 0, but the other derivative terms may all be non-zero
and time-varying.

We can now build a convex estimator that incorporates
measurements from a given window of time [k− τ, k] to
estimate the average wind direction for that window (zk).
To build our estimator, we define the following two loss
functions derived from equations (2.9) and (2.10):

L ¼ v sin d� sina cos zþ cos a sin z ð2:12aÞ

and

dL ¼ v _d cos dþ _v sin d� _a cos a cos z� _a sina sin z, ð2:12bÞ

which define a fully constrained convex optimization pro-
blem over the time window [k− τ, k] to estimate the
average ambient wind direction z

min
zk ,vk�t : k

‘k ¼ kLk1 þ kdLk2
given fa, _a, d, _dgk�t : k

ð2:13Þ
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{â, a.̂ , ẑ , z
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This optimization problem will find the best estimate for a
single value of ẑk, and a time series for v̂, given sensory
measurements from a window in time from k− τ to k. Because
the errors in the derivative estimates will almost always be
larger than the errors in the undifferentiated values, we
apply a 2-norm to dL and a 1-norm to L. Although the optim-
ization problem given in equation (2.13) is convex, it does not
follow disciplined convex programming (DCP) rules because
of the trigonometric functions. To efficiently solve the pro-
blem, we can recast it as two DCP problems. For the first,
we divide L, dL by cos z, absorbing this constant term into
v, denoted as vc, and then optimizing to find tan z using the
following expressions:

Lc ¼ ðsin dÞ vc þ ðcosaÞ tan zc � ðsinaÞ ð2:14aÞ
and

dLc ¼ ð _d cos dÞ vc þ ðsin dÞ _vc � ð _a sinaÞ tan zc

� ð _a cos aÞ: ð2:14bÞ

Extracting ^
zc from tan ^

zc results in an ambiguity of
+np, n [ Z, which we resolve using the following
constraint derived from equation (2.9):

signðsin dÞ ¼¼ signðsinða� zÞÞ: ð2:15Þ

If z happens to be close to p=2+ np, n [ Z, then divid-
ing by cosz can result in large errors. Thus, to improve
accuracy, we solve a second optimization problem where
we divide by sin z instead of cosz and optimize to find cotẑ
using the following modified expressions:

Ls ¼ ðsindÞ vs�ðsinaÞ cotzsþðcosaÞ
and dLs ¼ ð _d cos dÞ vsþðsindÞ _vs�ð _a cosaÞcot zs�ð _asinaÞ,

9=
;

ð2:16Þ
and choose the value of ẑ from the choices f^zc, ^

zsg that corre-
sponds to the smaller of the two values for ‘cmin, ‘

s
min. This

results in choosing the value of ẑ that is most consistent
with the sensor measurements over the given window.
Note that because we estimate an average wind direction
given measurements from a segment of time τ-long, the esti-
mate ẑk is delayed by τ/2. In our analysis, we automatically
adjust for this delay in order to compare the estimate to the
true values, however, in a real-time application smaller
values of τ should be preferred.
output: ambient wind direction

Figure 3. (a) Visual representation of the three time constants (ω, τ, T) fun-
damental to our active anemosensing hypothesis. (b) Outline of our convex
ambient wind direction estimation algorithm. Note that the convex optimiz-
ation steps in the orange box could be replaced with other workflows that are
less optimal but more computationally efficient by using simplifications and
heuristics, as we discuss in the Discussion.
2.4. Practical considerations and time constants
To mitigate the effects of noise, we assimilate measurement
data across time using three time constants (figure 3a).
These time constants are fundamental to our overall active
anemosensing hypothesis, and not a specific feature of the
convex solver we implement. With respect to our convex
solver, the time constants define the window over which
the solver is defined to operate. Therefore, the impact of
these time constants on the resulting wind direction estimates
should generalize beyond our particular convex solver.

(1: ω) We estimate smoothed values for the measurements
(†̂), and their derivatives ( _̂†), using a Butterworth
filter with a specified cut-off frequency, ω [26] to
reduce noise in the estimates. The cut-off frequency
effectively describes the maximum frequency of
expected changes in the measurement. Since our algor-
ithm assumes that changes in direction of motion occur
at a higher rate than changes in wind direction, a good
choice is generally an ω = turning frequency.

(2: τ) To estimate the ambient wind direction, we assimilate
sensory measurements over a window in time of size τ.

(3: T) We find that resolving the nπ ambiguity (equation
(2.15)) sometimes benefits from incorporating
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measurements across a longer time span, T, compared
to the time span τ used for estimating ζ ± nπ.

Figure 3b provides a visual summary of our entire convex
estimation framework, taking these three practical consider-
ations and time constants into account.
3. Methods
This section provides an overview of our implementation of the
convex estimation framework described in the prior section, real-
world wind measurements, candidate trajectory selections, simu-
lations, and our drone platform for validating the robustness of
our estimator framework.

3.1. Implementation of estimation framework
To solve the convex optimization problems outlined in figure 3,
we used the open-source Python package pynumdiff to estimate
Butterworth smoothed derivatives [27], and cvxpy [28] with the
proprietary MOSEK solver [29]. For computational efficiency, we
estimated wind directions for every 10th time step (6 Hz for our
validation experiment and 1Hz for our simulation experiments).

3.2. Real-world wind measurements
We collected wind direction and speed data using two three-
dimensional ultrasonic anemometers (Trisonica mini, Anemoment,
Longmont, CO, USA) operating at 10Hz positioned orthogonal to
one another to ensure accurate readings of both horizontal and
vertical wind components. We collected data in an open desert
environment (figure 4a). Theverticalwindcomponentwasminimal,
whereas the horizontal wind varied, with dynamic periods charac-
terized by low speeds and frequent changes in direction, as well
as consistent periods with higher wind speeds and near-constant
direction (figure 4b).

To visualize the likelihood of a shift in wind direction over
time, we took the difference between a point in the recorded
time series and a point at various time lags between 0.1 and
1000 s. The differences in wind direction at each lag were com-
puted by moving both forward and backward in time, and
those values were averaged. By repeating this analysis through-
out the time series, we created a frequency distribution. We
then used this distribution to generate a heat map, which demon-
strates the approximate probability that magnitude that wind
direction will change at any given time over a period of 1000 s.
In our dynamic wind segment, changes in wind direction
became increasingly likely after 10–50 s (figure 4c), whereas for
the consistent wind segment large changes in wind direction
were rare for the entire time series (figure 4d ).
3.3. Candidate trajectories
To design our candidate trajectories, we took inspiration from
previously published data on plume tracking fruit flies flying
in a laminar flow wind tunnel [22]. In the presence of attractive
odours, fruit flies perform upwind and crosswind flight
manoeuvres referred to as surges and casts (figure 5a). Although
this behaviour has received substantial attention, aspects of their
flight dynamics have escaped scrutiny, which we briefly address
here by reanalysing these previously published data. To focus
our analysis on plume tracking individuals, we selected trajec-
tories with durations greater than 1 s during which an odour
(ethanol) was encountered at least once while moving (on aver-
age) upwind in 0.4 m s−1 wind, resulting in 700 trajectories.
These flies exhibited regular changes in course direction at a
rate of approximately 0.5 Hz (figure 5b), corresponding to
approximately one left and one right turn every 2 s.

Flies generally accomplish changes in course direction using
rapid turns called saccades [19–21,30]. To understand the
dynamics of the saccades during plume tracking specifically,
we isolated individual turns from the 700 trajectories by selecting
1 s long snippets during which the flies exhibited a minimum
angular velocity of 230°/s, and no greater than 460°/s prior or
after the turn (figure 5c). This threshold choice is consistent
with prior saccade analyses of freely flying flies which used a
threshold of 300°/s [19]. The amplitude of their turns range
from small adjustments to 180° changes (figure 5d ), with an over-
all average of 110°. As with flies flying in the absence of odour or
wind [19], the saccade magnitude is strongly correlated with the
peak angular velocity during the turn, suggesting they have an
internal model of their new desired heading prior to initiating
the turn, an observation that goes against the prediction of the
visual anemotaxis hypothesis. In order to make these rapid
changes in direction flies first decelerate, and then accelerate as
they exit the turn (figure 5e), though there is substantial
additional variability in velocity throughout their trajectories.
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Based on the behaviour of plume tracking flies, we primarily
consider trajectories stereotyped by regular changes in direction
accompanied by synchronized changes in ground speed. We con-
sider three categories of trajectories with small (approx. 20°),
medium (approx. 90°) and large (approx. 160°) turn angles. For
the small turn trajectories, the magnitude of each turn is selected
randomly from a uniform distribution of 16–24°. For medium
and large turn trajectories, these uniform distributions were
72–108° and 144–171°, respectively. We applied a Gaussian
smoothing kernel to these piecewise constant course directions,
resulting in smooth yet still concentrated turns. Although
plume tracking insects do exhibit vertical movements, we
restricted our candidate trajectories to movements parallel to
the ground plane for simplicity. For the orientation of our simu-
lated flies, we consider two cases inspired by the active control
required by visual anemotaxis: either constant-ψ ( _c ¼ c ¼ 0) or
constant-γ ( _g ¼ g ¼ 0). Finally, we also consider constant
ground speed trajectories.

3.4. Simulations
To determine the accuracy of ambient wind estimates for differ-
ent trajectories in natural wind conditions, we simulated our
trajectories in both the 25min long dynamic- and 12min long
consistent-wind scenarios at a temporal resolution of 0.1 s (the
time resolution of our wind data). To focus our analysis on the
impact of the trajectory shape, rather than the feedback control
necessary to achieve that trajectory, we programmed the trajec-
tories kinematically, thus changes in wind speed and direction
did not have any effect on the shape of the trajectories in our
simulations. We justify this decision by noting that flies exhibit
exceptional visual and mechanosensory feedback mechanisms
for gust rejection [31]. We extracted the three sensory modalities
under consideration, and applied zero-mean Gaussian noise with
standard deviations ranging between 17� and 67�. All simu-
lations were performed with the same initial random seed to
ensure a fair comparison across different conditions.

Next, we smoothed the sensor measurements and estimated
their derivatives using a Butterworth filter and ran the estimates
through our optimal estimation framework for different values of
τ and T. For each individual wind direction estimate, we calculate
the absolute value of the error between the estimate and the true
wind direction.

3.5. Drone hardware for validation experiments
Platform. To validate our estimation approach, we built a quadro-
tor drone using a Holybro X500 frame (figure 6a). The drone was
controlled by a PixHawk flight controller. The PixHawk was
flashed with PX4 software and configured using QGroundCon-
trol software. The drone was powered by a 14.8 V 5200mAh
60C 4S LiPo battery (Zeee Power), which provided approxi-
mately 5–10min of flight time with our full payload in
approximately 2 m s−1 wind. The drone was piloted manually,
using a 2.4 GHz controller (FrSky Taranis Q X7) that communi-
cated flight commands to a compatible receiver (FrSky Taranis
Receiver X8R) connected to the PixHawk.

Sensors. The PixHawk board has a built in IMU, which pro-
vides heading and attitude angles, angular velocities and linear
acceleration measurements at 60 Hz. To provide ground truth
data for our experiment, we mounted a 60 Hz GPS (Holybro
M8N GPS) to the drone. Validating our estimation protocol
required additional sensors for optic flow (providing ψ) and air
speed (providing γ). For optic flow, we mounted a USB camera
(ELP 1080p camera with a 2.9 mm wide angle lens) underneath
the drone operating at 30 Hz. Image data were used to calculate
two-dimensional optic flow in real time using the Lucas Kanade
algorithm [32,33] with OpenCV [34]. For air speed measure-
ments, we mounted a three-dimensional ultrasonic anemometer
(Trisonica mini from Anemoment) to the top of the drone
operating at 40 Hz.

Data collection. To collect sensor data, we installed an
NVIDIA Jetson TX2 equipped with a a 1 TB NVMe M.2 SSD
below the drone. We flashed the TX2 with Linux4Tegra and
installed ROS (Robot Operating System) to provide a centralized
interface to all of our sensors. We used the MavROS package to
interface with the PixHawk, which provides access to the IMU
measurements and RC controller inputs. Two other custom
ROS packages were used to calculate optic flow and interface
with the anemometer. All flight data were recorded into a
single ROS bag file for offline analysis. All sensor data were lin-
early interpolated to the highest sensor frequency of 60 Hz prior
to analysis, along with corrections for declination and sensor
orientations.
4. Validation
To verify our algorithm’s robustness to real-world data, we
manually piloted a sensor-equipped drone in a designated
radio controlled flight space (Reno Radio Control Club
Field) in the northern Nevada desert (figure 4a). We recorded
the ambient wind direction and speed with a pair of orthog-
onal ultrasonic anemometers (Trisonica Mini, Anemoment,
Longmont CO) positioned approximately 2 m off the
ground. We manually piloted the drone back and forth at
approximately 1–3 m s−1 (figure 6c) at an altitude of approxi-
mately 4 m, and recorded the three sensor modalities of
interest (figure 6d ). For our Butterworth smoothing filter,
we chose a cut-off frequency of ω = 0.1 Hz (the approximate
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turning frequency of the drone’s trajectory), which helped to
reduce the inherent sensor noise.

To provide a ground truth for the ambient wind direc-
tion estimates, we vector-subtracted the GPS provided
absolute ground velocity from the two horizontal com-
ponents of the apparent airspeed (figure 6e, blue). This
estimate provides the best-case scenario for any two-dimen-
sional wind direction estimator that relies on the airspeed
measurements, allowing us to decouple the performance of
the estimation algorithm and the choice of sensors. These
GPS and airspeed derived estimates do deviate from the
ground truth (median error of 21°). Some of these errors
are explained by vertical wind measured by the drone-
mounted anemometer (linear regression R2 = 0.1, p-val <
10−3). Since the ambient wind exhibited very little move-
ment in the vertical dimension, and the drone exhibited
very little pitch and yaw during its trajectory, the changes
in vertical wind measured on the drone were likely due to
changes in downdraft from the rotors required for stabilizing
the altitude of the drone. Smaller flying systems that intro-
duce less downdraft to maintain lift (such as an insect)
may be less impacted by this effect. Alternatively, future
efforts will be needed to ensure a more accurate sensor
estimates of airspeed direction.

Finally, we applied our optimal estimation algorithm to
the sensor data to estimate the ambient wind direction with
τ = 10 s (the approximate turning frequency of the drone),
and two values of T (figure 6e, red). The larger value of
T = 50 provided better discrimination between the up- and
downwind options. Our optimal estimation approach using
only angular sensor measurements compares favourably
with the ground truth estimate using the GPS and airspeed
measurements (median error of 9.5° for T ¼ 50 s case).
These results show that the algorithm outlined in §2 that
relies purely on angular direction information is sufficiently
robust to handle real-world data to provide wind direction
estimates on par with other methods that also take advantage
of magnitude information.
5. Results
Using a series of simulations, we set out to determine which
types of trajectories can provide the most accurate ambient
wind direction estimates. For each candidate trajectory, we
consider (e.g. figure 7a,b), and for a variety of sensor noise
magnitudes, we calculated the corresponding sensor
measurements for either the dynamic or consistent wind
scenario, and estimated the smoothed sensor estimates and
their derivatives for a given choice of ω (e.g. using a cut-off
frequency ω = turning frequency: figure 7c; a detailed analysis
of ω is given in the following section). Then, for a given choice
of τ and T, we estimated ambient wind direction values using
our convex optimization framework (e.g. figure 7d ) and cal-
culated the associated errors (e.g. figure 7e). These errors
largely stem from rapid changes in wind speed or direction,
insufficient changes in course direction per unit τ, and
sensor noise, as we will show in detail in subsequent ana-
lyses. Repeating this analysis for a variety turning
frequencies and values of τ revealed that there is an optimal
choice of τ for any given turning frequency (figure 7f ). In gen-
eral, we find that choosing T = τ works well, however in some
cases, particularly for small values of τ, choosing T > τ pro-
vides a modest reduction in the error compared to T = τ
(figure 7f, stars), suggesting that distinguishing between up-
and downwind is a particular challenge (the following sec-
tion will elaborate on the choice of T ). This is also apparent
in the bimodal distribution of errors seen in some scenarios
(e.g. turning frequency = 0.02 Hz, τ = 10, 50 s).

To better visualize the optimal choice of both τ and the
turning frequency, we plot the median errors for each case
as a heatmap (e.g. figure 7g). In many of the cases, we con-
sider several combinations of τ and the turning frequency
offer similar performance. To capture this range of optima,
we determined which combinations result in a median
error that is within ±5° of the optimum (figure 7g, red con-
tour), and approximate this contour with an ellipse for
visual simplicity. From this analysis, we can conclude that
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for trajectories with 90° turns, variable velocity, and constant
ψ = 0, in our dynamic wind scenario with sensors subject to
modest noise, the optimal turning frequency ranges from
0.1 to 1 Hz, with values of τ ranging from 2 to 50 s.

5.1. Analysis of time constants
The optimal combinations of turning frequency and τ all
occur where there is at least one turn per time τ (figure 8a).
At sufficiently long values of τ, however, there is a high like-
lihood of the wind having changed direction in our dynamic
wind scenario, which increases the median error. As a result,
the optimal choice of τ is constrained to be large enough to
capture a change in flight direction, but short enough to
avoid likely changes in ambient wind direction. The changes
in flight direction, meanwhile, must occur more frequently
than changes in wind direction. In our dynamic wind scen-
ario, the wind begins to show a high likelihood of changing
direction after 10–50 s (figure 8a, blue dashed line), thus turn-
ing frequencies of 0.1 Hz or greater are required to achieve
small errors.

To better understand the sensitivity of our results to
choices of the cut-off frequency ω in our smoothing filter,
we performed a parameter sweep of ω (figure 8b). We con-
sidered values of ω equal to the product of the turning
frequency and five constants: [0.1, 0.5, 1, 2, 10]. For combi-
nations of fast turning frequencies and short τ (upper left
corner of the heatmap), choosing a smaller cut-off frequency
(0.1*turning frequency) provided a modest reduction in
median error of the wind direction estimates. Overall, how-
ever, a choice of ω = turning frequency generally performs
well. This makes sense as the majority of changes in the sen-
sory measurements are due to changes in course direction of
the trajectory.

Next, we performed a parameter sweep of T. We con-
sidered values of T equal to the product of τ and four
constants: [1, 5, 25, 125]. For combinations of fast turning
frequencies and short τ choosing T = τ performs poorly
(figure 8a). However, choosing a much larger value of T,
e.g. T = 125τ, substantially improves the accuracy of ambient
wind direction estimates for these scenarios (figure 8c). For
a turning frequency of 0.5 Hz and τ = 0.4 s, the optimal
choice of T = 125τ = 50 s, which incorporates information
across 50 individual turns. Overall, we conclude that assimi-
lating sensory measurements across at least one turn is
required, but is most important for distinguishing between
up and downwind.

5.2. Analysis of turn angle and sensor noise
Next, we set out to answer the question: are small or large
turns more effective for estimating the ambient wind direc-
tion under dynamic wind conditions? We repeated the
analysis summarized in figure 8a for trajectories consisting
of small, medium and large turns (figure 9a). Across a wide
range of sensor noise, larger turns consistently provide
more accurate ambient wind direction estimates. As with
the first example provided, across all cases the lowest errors
are achieved when there is at least one turn per unit τ. Choos-
ing ω=turning frequency again works well across this entire
range of turn angles and sensor noise levels (electronic sup-
plementary material, figure S3). For short τ, estimation
errors can again be reduced by choosing large enough
values of T to incorporate measurements across at least one
turn (electronic supplementary material, figure S4).

To provide some intuition about how accurate or poor the
estimates of ambient wind direction can be, and character-
istics of the errors, we show four representative examples in
figure 9b–e. For frequent turns and short τ, the estimates are
noisy, but the largest errors are characterized by errors in dis-
tinguishing between up- and downwind, i.e. errors of ±π
(figure 9b). Small turn angles result in poor estimates even
when information is assimilated across at least one turn
(figure 9c). For large turns, assimilating measurement
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information across a larger value of τ results in smoother (less
responsive) estimates (compare figure 9d,e).

For larger values of sensor noise, regardless of the turn
angle magnitude, the optimal range of turning frequency
decreases slightly. One likely explanation for this is that as
the sensor noise increases it becomes increasingly difficult
to filter out noise without sacrificing the signal. Slower turn-
ing frequencies help to alleviate this by allowing the use of a
more aggressive cut-off frequency that can smooth the noise
more effectively. To maintain at least one turn per unit τ for
these slower turning frequencies, however, means that the
optimal value for τ must increase. This makes the estimator
less able to respond to rapid fluctuations in wind direction
(e.g. figure 9e).

There are essentially four categories of errors lumped
together under our single error metric: (1) poor estimates of
minðjẑ� zj+ pÞ (i.e. the errors that are (much) less than π),
which typically result from either too small a choice of τ or
too small a turn angle (e.g. figure 9b,c); (2) poor estimates
of the ±nπ ambiguity, typically resulting from too small a
choice of T (compare figure 8a,c); and (3) overly smooth esti-
mates of ẑ as a result of integrating sensory information over
too large of a time window τ (e.g. figure 9e); (4) poor esti-
mates of ẑ resulting from rapid changes in the ambient
wind direction over the course of τ. To mitigate all error
categories requires an intermediate value of τ, medium to
large turn angles, and a sufficiently large value of T.

5.3. Dynamic versus consistent wind
Next, we turn our attention to how the optimal values of τ,
turning frequency, and turn angle change if the wind has a
more consistent direction over time (electronic supplemen-
tary material, figure S5). In contrast to the dynamic wind
case (where larger turn angles help to reduce the median
error in ẑ), we find that in consistent wind the overall error
achieved by trajectories with small, medium and large
turns is similar (figure 10), suggesting that large turns are
particularly important when the wind direction is dynamic.
Meanwhile, consistent wind is less sensitive to the specific
choice of turning frequency or τ. That is, larger values of τ
as well as slower turning frequencies are both effective.

To help summarize and generalize our results across a
broader range of wind scenarios (figure 11), we individually
analysed shorter segments from both the consistent and
dynamic wind examples. We randomly selected 1000 seg-
ments of random lengths ranging from 1 to 1000 s. For each
segment, we characterized the wind by the maximum and
mean change in speed and direction relative to the middle
of the segment, providing a measure of how self-correlated
the wind was over that period of time. We then determined
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the minimum ẑ error for that particular segment, and the cor-
responding optimal τ’s and turning frequencies associated
with that minimum error ±5° (i.e. the location and extent of
the red ellipses shown in figure 9).

We find that errors in ẑ are strongly correlated with the
maximum change in both wind speed and direction (figure
11b). The optimal choice of τ decreases for more dynamic
wind segments allowing the algorithm to respond more
quickly, but as the sensor noise increases, larger values of τ
are better (figure 11c). Trajectories with small turn angles
fare better with larger values of τ, which allows the estimator
to incorporate information across a larger time window. This
does, however, result in increased errors in the dynamic wind
cases. The optimal choice of turning frequency remains rela-
tively constant across different wind dynamics, though
slower turning frequencies can also be optimal for very
consistent wind (figure 11d ). As sensor noise increases, the
optimal turning frequency decreases, which makes sense
since it becomes more challenging to distinguish between
signal and noise.

5.4. Constant ground speed and constant airspeed
direction trajectories

Finally, we turn our attention to two variations of the trajec-
tory candidates to answer two questions: would trajectories
with constant ground speed ( _g ¼ 0) or constant airspeed
direction (γ = 0) provide any improvements in the estimates
over trajectories with variable ground speed and constant
ψ = 0? These choices are motivated by the observation that
many insects use visual information to maintain a constant
ground speed [35], and typically orient their bodies in the
direction of their airspeed [22]. The results for these trajec-
tories are summarized in electronic supplementary material,
figures S6–S8.

Constant ground speed trajectories show almost no
change in optimal median error, τ, and turning frequency
compared to the variable ground speed trajectories. Constant
γ = 0 trajectories, however, do show one subtle but important
improvement: smaller values of τ under high levels of sensor
noise (electronic supplementary material, figure S6C). Why
might this be the case? In our simulations, the wind speed
was typically higher than the ground speed (mean wind
speed was 2.3 m s−1 for the dynamic wind scenario; mean
ground speed was 0.84 m s−1 for a turning frequency of
0.1 Hz). Thus, by adopting a constant γ = 0 trajectory the
agents and their sensors are generally oriented in a similar
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direction despite changing their direction of travel (compare
the trajectory plots from electronic supplementary material,
figure S6). As a result, _f remains quite small for the constant
γ trajectories, making it easier to accurately estimate ϕ with
large levels of sensor noise (electronic supplementary
material, figure S9). With better estimates of the true sensor
values, it is no surprise that the resulting ambient wind
direction estimates are also more accurate.
6. Discussion
Recent release-and-recapture experiments with fruit flies in a
feature-sparse desert showed that these tiny insects are able
to locate the source of odour plumes from substantial dis-
tances over the course of approximately 10 min under a
variety of wind conditions. In those experiments, flies were
most successful at lower wind speeds [36]. Although this
result is intuitive from a biomechanics perspective, these
low wind speeds are typically associated with more variable
wind directions [24], making the plume tracking task more
challenging. Flies’ plume tracking success under such con-
ditions suggests that they are adept at following odour
plumes in variable direction wind conditions. Our active ane-
mosensing hypothesis provides a potential explanation for
how they might accomplish this by integrating three angular
sensor measurements known to be encoded in their central
complex: orientation, airspeed direction and direction of
movement.

6.1. Summary of key results
We begin our discussion with a summary of our key results
(see figure 11; electronic supplementary material, figure S6).
(1) Large changes in course direction are most effective for
accurately estimating the ambient wind direction. This is
especially true when the wind direction changes frequently.
(2) For both dynamic and consistent wind cases, it is impor-
tant that sensory information be integrated across at least 1
turn. (3) In more dynamic wind, shorter integration times
(τ) are better, and faster turning frequencies are also necess-
ary. (4) When subject to large amounts of sensor noise,
slower turning frequencies offer better estimates by allowing
the use of more aggressive smoothing filters to reject noise.
(5) In terms of estimation accuracy, constant-ground-speed
and constant-γ trajectories offer no substantial advantage
over variable-ground-speed and constant-ψ trajectories. (6)
For large amounts of sensor noise applied to trajectories
with large turn angles, however, constant-γ trajectories
allow for shorter integration times (smaller τ) compared to
constant-ψ trajectories. (7) A key challenge is distinguishing
between up- and downwind. In other words, it is challenging
for an insect to determine if they are flying faster than
the wind speed but headed downwind, versus flying
slowly upwind. This challenge can be more reliably overcome
by integrating information across a longer period of time
(T > τ) to include information that spans more changes in
course direction (figure 8).

6.2. Zigzag manoeuvres optimize wind direction
estimation

The trajectories exhibited by flying and swimming animals
during plume tracking across a wide range of taxa are
nearly all characterized by some form of zigzagging, or cast-
ing [1]. Zigzagging, however, is not explicitly required for
plume tracking if ambient wind direction information is
directly accessible. For example, walking cockroaches are
adept at following plumes but do not exhibit the classic zig-
zagging behaviour [37]. Walking Drosophila also do not need
to perform zigzagging trajectories when presented with a
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homogeneous and consistent odour plume, instead they
will continue straight upwind [38]. For a walking animal, esti-
mating the ambient wind direction from apparent wind
estimates is trivial: they can either hold still for a brief
moment, or rely on proprioceptive cues to accurately estimate
their ground speed or distance travelled given their stepping
speed and leg length [39,40]. Indeed, visually blind flies have
no trouble in finding the direction of ambient wind [38]. Of
course, some changes in direction are required in order to
stay centred on the plume, especially for turbulent plumes
[41], but these changes in direction need not be rhythmic,
frequent nor large.

Furthermore, in some efforts to reverse engineer
plume tracking strategies using an ‘optimal’ reinforcement
learning framework for agents that are provided with ambi-
ent wind direction information, the distinctive casting
exhibited by animals appears to be largely absent [42], or
diminished when the agent is inside the plume [43]. These
findings together with our results presented here suggest
that the zigzagging exhibited by flying insects, and likely
other flying and swimming animals too, is crucial for them
to estimate the ambient wind direction in order to guide
plume tracking decisions.
6.3. Optimal choice of time constants
Our active anemosensing hypothesis involves the assimila-
tion of sensory measurements across three different time
constants: ω, τ and T. Our results suggest that a good rule
of thumb for accurate ambient wind direction estimates is
to choose ω = turning frequency, and τ = T≥ 2/ω. This ensures
that wind direction estimates are always based on infor-
mation that spans at least one left or right turn. With
noisier sensor measurements, slower turning frequencies
and longer values of τ are helpful. The increased errors
associated with shorter values of τ can be partially mitigated
by using a much larger value for T.
6.4. Simplified mathematics with constant velocity
control

It is unlikely that insects use the approach we outline in
figure 3 due to the computational expense (solving the esti-
mation for τ = T = 10 and dt = 0.1 takes ≈160 ± 20 ms on a
powerful desktop computer). Here, we discuss some alterna-
tives. Although plume tracking insects exhibit variability in
their ground speed (e.g. figure 5e and [44]), it is also well
established that they use visual feedback in order to try
and maintain approximately constant ground speeds
[35,36,45]. By assuming both a constant ground speed (g)
and wind speed (w) over the period τ, their ratio (v = g/w)
will also be constant. Assuming constant v it is possible to
dramatically simplify the mathematics, as detailed in the fol-
lowing subsections. Future work will be required to
determine how sensitive these approaches are to breaking
their assumption of _v ¼ _g=w� _wg=w2 ¼ 0.
6.4.1. Quadrant sensing
The first simplification we consider does not aim to precisely
determine the ambient wind direction, instead it only ident-
ifies which 90° quadrant the wind direction lies inside.
This requires two comparisons of signs. First, recall the
following equation (derived from equation (2.3) with δ =
γ− ψ and α = γ + ϕ):

v sinðdÞ ¼ sinða� zÞ: ð6:1Þ
Although v is unknown, it is defined as a magnitude and
must be >0, so we can write

signðdÞ ¼ signða� zÞ: ð6:2Þ
This relationship can be used to determine which hemisphere
the ambient wind is coming from, and is the same constraint
we use in our convex optimization formulation to disambig-
uate between up- and downwind. To further constrain the
wind direction to one of four quadrants, we can place a simi-
lar constraint on the derivative of equation (6.1) (assuming
_z ¼ 0 over the period of time over which the derivative is
calculated)

_v sinðdÞ þ v _d cos d ¼ _a � cosða� zÞ: ð6:3Þ

We can now place the same type of sign constraint on this
equation

sign _v sinðdÞ þ v _d cos d
� � ¼ sign _a � cosða� zÞð Þ: ð6:4Þ

As long as j _vj , jv _dcotdj, we can ignore the _v term such that
we have the following constraint (which eliminates the
unknown v from the equation):

sign
_d cos d

_a

 !
¼ sign cosða� zÞð Þ: ð6:5Þ

Together, equations (6.2) and (6.5) can be used to determine
which of four quadrants the ambient wind direction is
coming from. Note that although this approach does not pro-
vide a precise estimate of wind direction, it may be sufficient
for some behaviours, and sequential quadrant estimates
could be combined (e.g. through a Bayesian framework) to
build a more precise wind direction estimate over time (i.e.
over the course of several turns).
6.4.2. Discrete least-squares solution
Under the assumption of constant v = g/w, our convex optim-
ization approach (solid orange box, figure 3b) reduces to a
simple matrix inversion based on equation (2.14)

v̂ck
tan ^

zck

" #
¼

sin dk cosak
sin dk�1 cosak�1

..

. ..
.

sin dk�t cosak�t

2
6664

3
7775
þ sinak

sinak�1

..

.

sinak�t

2
6664

3
7775, ð6:6Þ

where the + is the Moore–Penrose pseudoinverse. As with our
convex approach (which allows _v = 0), this matrix inversion

must be solved for the two cases (tan ^
z c
k and cot ^z sk ), and up-

and downwind options must be disambiguated. The quad-
rant sensing approach could be used in conjunction with

least squares estimates of ^
zck and ^

zsk to accurately estimate
the wind direction.

Of course, it is unlikely that insects have the neural
capacity to invert arbitrary matrices. If we only consider two
discrete measurements separated by time τ, we can write a
closed form solution for the 2� 2 matrix inversion problem

^
zck þ nkp ¼ tan�1 sinak�t sin dk � sinak sin dk�t

sin dk cos ak�t � cos ak sin dk�t
, ð6:7Þ
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which can be rearranged into the following form to highlight
the implicit finite difference calculations that are required,

^
zck þ nkp

¼ tan�1 sinð0:5ðda� ddÞÞ sinðaþ dÞ � sinð0:5ðdaþ ddÞÞ sinða� dÞ
sinð0:5ðda� ddÞÞ cosðaþ dÞ � sinð0:5ðdaþ ddÞÞ cosða� dÞ

ð6:8Þ
where dδ represents a finite difference, dδ = δk− δk−τ and d rep-
resents a mean calculation, d ¼ 0:5ðdk þ dk�tÞ, and similarly
for dα, a.

Because this solution only incorporates measurements
from two discrete moments in time, it would likely work
best either with filtered measurements to reduce noise,
and/or with a filter applied to the resulting ẑ estimates. Fur-
thermore, the best choice of τ would likely be one that
maximizes the difference between the two measurements as
a result of a controlled turn, i.e. τ should be some multiple
of half the turning period.

6.4.3. Continuous direct estimate
A different option (again assuming _v ¼ 0) is to recombine
equation (2.9c) and equation (2.10) to define a closed form
solution for ζ as follows,

z+ np ¼ 2 tan�1
_d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_d
2 þ ðtan2 dÞð _g2 þ 2 _g _fþ _f

2Þ
q

_gþ _f tan d

þ fþ g: ð6:9Þ

Again, up- and downwind must be disambiguated. This
formulation requires sufficiently accurate derivatives of the
sensor measurements. As with the quadrant sensing
approach, the derivatives could be calculated as a discrete
finite difference for measurements taken time τ apart, where
τ is some multiple of half of the turning period.

6.5. Considerations for neural implementation
A common theme across each of the simplified estimation
approaches outlined above is the presence of a derivative (or
finite difference) of sensory measurements. One plausible
neural implementation for performing this calculation would
be through a mechanism similar to the delay-and-correlate cir-
cuit employed for optic flow calculations [46,47]. Our analysis
of different trajectories found that it is important for sensory
information to be incorporated over a sufficiently large time
constant, τ, such that information is assimilated from both
sides of at least one turn. Thus, if insects do employ a delay-
and-correlate mechanism, we would expect the delay to be
either synchronized with voluntary turns, or to be hard-
coded as one or multiple values with a time constant equal
to half of the typical turning period (i.e. 1 Hz based on figure 5).

Each of the three simplified approaches require eva-
luating complex mathematical expressions containing
trigonometric functions as well as multiplication and div-
ision. How might the brain perform these computations? In
principle, a feedforward neural network can be used to
approximate any of these mathematical expressions [48],
however, accurate approximations may require too many
elements to be practical. Instead, some simplifications or
alternative reference frames may be used. The tangent func-
tion, for example, could be evaluated as a ratio of two
orthogonal vectors, and recent work has revealed how flies
can perform certain vector calculations related to navigation
[16,49]. Multiplication and division in general can be con-
verted to addition and subtraction if the calculations are
performed in a log-space. Finally, it is quite possible that for
the limited range of likely inputs an insect might actually
experience due to environmental, biomechanical or behav-
ioural constraints, the true mathematical expressions could
potentially be simplified without introducing excessive errors.

6.6. Limitations
In our analysis, we only considered kinematically prescribed
trajectories. Although flying insects do have exceptional gust
rejection abilities [31], they will be thrown off course when
subject to strong enough gusts. In such cases, it could be
that estimation accuracy of wind direction actually improves
due to the change in course direction, although only if the
wind is not so overpowering that the insects end up drifting
with the wind [23].

We focused our active anemosensing estimation frame-
work exclusively on angular measurements known to be
encoded in the central complex. A more traditional esti-
mation approach from engineering would combine control
inputs with these available measurements and a detailed
dynamics model of the relevant physics to provide more
accurate estimates (e.g. with a Kalman filter [50]). It is concei-
vable that insects could incorporate copies of their motor
control commands with a model of the muscle output and
aerodynamic forces to more accurately estimate the wind
direction; however, this would require detailed calibrations
of all of the model parameters. As with the sensory system,
these parameters will vary in time due to damage [51], temp-
erature fluctuations [52] or other circumstances, making it
challenging to rely on a model-based approach. A significant
advantage of relying exclusively on angular measurements is
that the entire angular sensorimotor pathway relevant to
ambient wind estimation can be self-calibrated without
external help [23].

6.7. Hypotheses and predictions
If flies exclusively rely on visual anemotaxis, they would not
be able to make arbitrary changes in course with respect to
the ambient wind direction. Instead, they would need to
determine upwind, or perform rhythmic manoeuvre centred
around the upwind direction. Under our active anemosen-
sing hypothesis, however, flies could continuously adjust
their course angle without first orienting upwind.

With respect to computational complexity, the three esti-
mation approaches that assume constant v = g/w provide
the most biologically plausible implementations of our
active anemosensing hypothesis. In each of these cases, we
would expect to find a clear encoding of δ = γ− ψ in the
flies’ brain. Furthermore, we would expect to find neural
pathways capable of differentiating this signal with a time
constant roughly equal to half their stereotypical turning
period of approximately 2 s.

We found that flies typically cast at approximately 0.5 Hz,
i.e. approximately one left and one right turn every 2 s. Our
active anemosensing hypothesis suggests that for this turning
frequency, flies would have most accurate wind direction esti-
mates for a τ≥ 1 s. This would allow flies to be effective at
tracking plumes in highly dynamic wind that changes direc-
tion on the scale of 1 s, possibly explaining the release and
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recapture successes at low wind speeds described previously.
For insects with noisier sensory measurements, either due to
fundamental sensor limits or environmental constraints such
as low light levels, we predict that the turning frequency
should decrease. Larger plume tracking animals such as alba-
tross [53] could also conceivably employ active anemosensing
to estimate ambient wind direction. With slower dynamics
due to their more massive bodies we would also expect to
see slower turning frequencies. For both cases, we predict
that slower turning frequencies should lead to larger required
values of τ and thus slower responses to rapid changes in wind
direction.

One particular challenge our analysis highlights is that
of distinguishing up- versus downwind. The most challen-
ging scenario is for an insect to distinguish between flying
downwind faster than the wind speed, versus flying
upwind. To resolve this challenge, insects could use a similar
approach to our solution (equation (2.15)), or perhaps they
employ a combination of active anemosensing and visual
anemotaxis to guarantee that during plume tracking beha-
viours they are always generally headed upwind, this
would be equivalent to using a very large value of T.
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