Cardiol Ther (2020) 9:333-347
https://doi.org/10.1007/s40119-020-00194-3

®

Check for
updates

REVIEW

Hypochloraemia in Patients with Heart Failure: Causes

and Consequences

Joseph J. Cuthbert - Sunil Bhandari

Received: July 3, 2020/ Published online: August 9, 2020
© The Author(s) 2020

ABSTRACT

Hypochloraemia is a common electrolyte
abnormality in patients with heart failure (HF).
It has a strong association with adverse outcome
regardless of HF phenotype and independent of
other prognostic markers. How hypochloraemia
develops in a patient with HF and how it might
influence outcome are not clear, and in this
review we explore the possible mechanisms.
Patients with HF and hypochloraemia almost
invariably take higher doses of loop diuretic
than patients with normal chloride levels.
However, renal chloride and bicarbonate
homeostasis are closely linked, and the latter

Digital features To view digital features for this article
go to https://doi.org/10.6084/m9.figshare.12674555.

J. J. Cuthbert (X)) - A. L. Clark

Department of Academic Cardiology, Hull York
Medical School, Hull and East Yorkshire Medical
Research and Teaching Centre, Castle Hill Hospital,
Cottingham, Kingston upon Hull HU16 5JQ, UK
e-mail: joe.cuthbert@hey.nhs.uk

S. Bhandari

Department of Academic Nephrology, Hull
University Teaching Hospitals NHS Trust and Hull
York Medical School, Anlaby Road, Kingston upon
Hull HU3 2JZ, UK

- Andrew L. Clark

may be influenced by neurohormonal activa-
tion: it is likely that the etiology of hypochlo-
raemia in patients with HF is multifactorial and
due to more than just diuretic-induced urinary
losses. There are multiple proposed mechanisms
by which low chloride concentrations may lead
to an adverse outcome in patients with HF: by
increasing renin release; by a stimulatory effect
on the with-no-lysine kinases which might
increase renal sodium-chloride co-transporter
activity; and by an adverse effect on myocardial
conduction and contractility. None of these
proposed mechanisms are proven in humans
with HF. However, if true, it might suggest that
hypochloraemia is a therapeutic target that
might be amenable to treatment with acetazo-
lamide or chloride supplementation.

Keywords: Acetazolamide; Chloride; Diuretics;
Diuretic resistance; Heart failure;
Hypochloraemia; Metabolic alkalosis;
Outcome; Prognosis; Sudden death

I\ Adis


http://orcid.org/0000-0003-4339-3062
http://orcid.org/0000-0002-0996-9622
https://doi.org/10.6084/m9.figshare.12674555
http://crossmark.crossref.org/dialog/?doi=10.1007/s40119-020-00194-3&amp;domain=pdf
https://doi.org/10.1007/s40119-020-00194-3

334

Cardiol Ther (2020) 9:333-347

Key Summary Points

Low serum chloride levels are associated
with adverse prognosis in patients with
acute or chronic heart failure (HF)
regardless of left ventricular ejection
fraction and independently of other
prognostic markers such as N-terminal
pro-B-type natriuretic peptide levels.

It is not clear how hypochloraemia
develops in patients with HF but it may be
linked to neurohormonal activation,
high-dose loop diuretic usage, and
metabolic alkalosis.

It is not known whether hypochloraemia
is a marker or mediator of adverse
outcome in patients with heart failure,
although there are several putative
mechanisms that might suggest the latter.
For example, hypochloraemia might be
linked to increased neurohormonal
activation, diuretic resistance, and
increased risk of sudden cardiac death.

Acetazolamide may increase natriuresis
and diuresis while also increasing chloride
reabsorption and bicarbonate excretion
and thus might be a useful treatment for
patients with HF, hypochloraemia,
metabolic alkalosis, and diuretic
resistance.

INTRODUCTION

A link between low serum chloride concentra-
tions, loop diuretics, and risk of death in
patients following a heart attack was first
reported in 1979 [1], and the first reported
association between low serum chloride con-
centrations and increased risk of death amongst
patients with heart failure (HF) was in 2007 [2].
The authors of neither paper made even a
passing reference to the chloride findings in the
discussion [1, 2], perhaps owing to a lack of

understanding regarding the importance of
serum chloride: the potential prognostic sig-
nificance of low chloride has, until recently, not
been appreciated.

Hypochloraemia is a common electrolyte
disturbance and marker of adverse outcome
amongst patients with HF independent of other
prognostic markers, including hyponatremia
(Table 1) [3-12]. The mechanisms are poorly
understood. In this review, we will discuss the
aetiology of hypochloraemia in patients with
HF, explore the possible mechanisms behind its
association with adverse outcome, and consider
what, if anything, might be done about it. The
present article is based on previously conducted
studies and does not contain any new studies
with human participants or animals performed
by any of the authors.

HYPOCHLORAEMIA AND HEART
FAILURE

Chloride is the main anion in the plasma and
extracellular fluid [13], and is freely filtered in
the glomerulus of the kidney into the urinary
space (tubular lumen). Renal tubular cells are
asymmetric with an apical surface facing the
urinary space and a basolateral membrane fac-
ing the renal interstitium (peritubular capillar-
ies). The majority of chloride reabsorption
occurs in the proximal convoluted tubule
(PCT), paracellularly in the intercellular space
passively along an electrochemical gradient as
the permeability to chloride anions exceeds that
of other anions such as bicarbonate [14, 15].
Active, trans-cellular, reabsorption occurs via
Cl /anion counter transports (antiporters or
exchangers) in particular formate amongst
others (sulphate, iodide, oxalate, hydroxyl, and
bicarbonate) on the apical membrane, and by a
sodium-driven Cl~/HCOj3~ antiporter and K*/
Cl” symporter on the basolateral membrane
[16]. In the loop of Henle (LoH), further chlo-
ride reabsorption takes place via Na*/K*/2CI~
co-transporters (NKCC2) on the apical mem-
brane (the site of action of loop diuretics) and
voltage-gated chloride channels on the baso-
lateral membrane [17]. In the distal convoluted
tubule (DCT) and collecting duct (CD)
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(responsible for ~ 5% of chloride reabsorption)
chloride is reabsorbed by thiazide-sensitive Na*/
CI™ co-transporter and CI7/HCO3™ antiporter
and returns to the bloodstream via voltage-
gated chloride channels on the basolateral
membrane (Fig. 1) [18].

At first sight, the origin of hypochloraemia
seems likely to be similar to the putative aeti-
ology of hyponatremia in patients with HF: low
chloride results from either haemodilution or
depletion due to loop diuretics [19]. However,
patients with hypochloraemia appear to fall
into two phenotypes; those with concurrent
hyponatremia and those with normal sodium
concentrations [3]. The group with normal
sodium has higher bicarbonate, and lower
potassium concentrations (and a higher rate of
clinically significant hypokalaemia (defined as a
serum K™ < 3.5 mmol/l) [3].

in contrast to other reports in patients

An Association with Metabolic Alkalosis?

In other disease states, such as severe vomiting
or mineralocorticoid excess, hypochloraemia is
associated with metabolic alkalosis
(HCO3™ > 30 mmol/l) [20, 21]. Metabolic alka-
losis is the most common acid-base abnormality
in patients with HF, affecting up to half of
patients admitted to hospital [22]. While acti-
vation of the renin-angiotensin-aldosterone
system (RAAS) is usually linked to sodium
homeostasis [23], data from in vitro and in vivo
animal studies suggest that neurohormonal
activation might play a significant role in the
development and maintenance of a metabolic
alkalosis in patients with HF (Fig. 2).

In vitro and in vivo studies suggest that
when noradrenaline [24], and angiotensin II
[25] levels increase, bicarbonate reabsorption in
the first segment of the PCT increases. Addi-

Compared to patients with normal chloride levels, patients with low chloride:
admitted with HF detailed above

Had greater 30-day readmission or death rate and 12-month death rate

Had higher average daily loop diuretic dose during inpatient stay
Had a higher LVEF - in contrast to other reports detailed above

Findings
Had higher average weight loss during inpatient stay

1241)

Consecutive inpatients at a single centre (N

HeFREF heart failure due to a reduced ejection fraction, HeFNEF heart failure with a normal ejection fraction, HF heart failure, BNP B-type natriuretic peptide, N7proBNP
N-terminal pro-B-type natriuretic peptide, M}V multivariable, LVEF left ventricular ejection fraction, ACEI angiotensin-converting enzyme inhibitor, B beta-blocker, 72/s millilitres,

=
8
g = tionally, in vivo studies in rats show that
= > . .. +
g & aldosterone increases the activity of the H™-
_E, N ATPase pump in the CD which increases H"
2| & j secretion into the urine [26]. The increased
e g acidification of the urine might result in a net
.5 [ . .
S = = gain of bicarbonate by the body.
= N . . . .
: §| 28 = Loop diuretics might also contribute to a
@ ‘: 55 = T"g metabolic alkalosis: a so-called “contraction-al-
E K é: g = o kalosis” due to decreased extracellular fluid
& =
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Fig. 1 Chloride reabsorption along the nephron. The
majority of renal chloride reabsorption occurs in the
proximal convoluted tubule, paracellularly along an

volume resulting in increased bicarbonate con-
centration [27] is well recognized in the litera-
ture, but may be an over-simplification. In vivo,
increased sodium delivery to the CD (due to
apical NKCC2 co-transporter inhibition)
increases the activity of the H"-ATPase pump,
increasing H* secretion into the urine [28].
In vitro studies in rats have found that hy-
pokalaemia (a potential complication of loop
diuretic use) promotes bicarbonate reabsorption
in the PCT [29, 30], and hypokalaemia increases
RAAS activation in humans with HF [31, 32],
which might further drive bicarbonate reab-
sorption (Fig. 2).

In vitro and in vivo studies in both rabbits
and rats suggest that increased bicarbonate
reabsorption is accompanied by increased
chloride excretion [33-35]. The same process
may occur in humans [36]. One small study
(N=151) found that patients with HF and
hypochloraemia had higher serum bicarbonate,
and greater fractional chloride excretion than
those with normal chloride levels while having
similar fractional sodium excretion (Table 1) [8].
“Chloride wasting nephropathy”—persistent

electrochemical gradient although transcellular CI™/anion
transport also plays a role

urinary chloride excretion—is seen in patients
with hyperaldosteronism [37] and/or severe
potassium depletion [38], and similar metabolic
states have been reported in patients with HF
[39].

An additional factor contributing to the
maintenance of an alkalosis is that as serum
concentrations of chloride fall (either due to
increased excretion in response to increased
bicarbonate reabsorption, or diuretic use, or
both), there is less and less chloride filtered into
in the urinary space. A threshold of low serum
chloride may be reached beyond which bicar-
bonate excretion is inhibited as there is less
chloride in the urine to exchange with bicar-
bonate [36, 37].

Patients can thus be trapped in a cycle of
hypochloraemia and alkalosis, which is only
partly due to loop diuretic usage (Fig. 2): for
example, among patients admitted with HEF,
those with serum bicarbonate concentrations
above the median (> 28 mmol/l) had more
severe disease (lower left ventricular ejection
fraction, worse renal function, and higher
natriuretic peptide levels) but were on lower
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Heart Failure —> RAAS activation

SNS Activation Angiotensin Il
|

Noradrenaline

Aldosterone ———>]

Increased activity of
H*-ATPase in CD

Increased H*
secretion

Increased bicarbonate R

resorption in PCT

Metabolic Alkalosis
HCO; >30 mmol/L

Increased Na*
delivery to CD

Acidifying urine
Net HCO; gain
A

1 N

L)
I I
I I
| |

N Hypokalaemia Increased chloride N Hypochloraemia Increased H* Inhibition of
K* <3.5 mmol/L excretion Cl-<96 mmol/L secretion Na*/K*/2Cl
A A |

Loop diuretics

Fig. 2 Possible association between hypochloraemia, meta-
bolic alkalosis, and neurohormonal activation in patients
with heart failure. Our proposed theoretical link between
hypochloraemia, metabolic alkalosis, and neurohormonal
activation in patients with heart failure is based on various

doses of loop diuretic than patients with serum
bicarbonate below the median [25].

CHLORIDE AND OUTCOME

Whether a low chloride concentration is a
marker or a mediator of adverse outcome is
unknown although there are possible patho-
physiological mechanisms, which might sug-
gest the latter (Fig. 3).

Diuretic Resistance

The with-no-lysine (WNK) kinases (WNKI,
WNK3, and WNK4) are the first step in an enzy-
matic cascade which increases activity of the
Na*/K*/2Cl~ and Na*/Cl~ co-transporters
[40-43]. Chloride binds to the catalytic site of the
kinases, thus inactivating them [44, 45]. In vitro
and in vivo studies suggest that the activity of
WNK1 and WNK4 is reduced at high chloride
concentrations [44, 46], but increased at lower
concentrations [47, 48]. Thus, hypochloraemia
may increase the activity of both Na*/K*/2Cl~
and Na*/Cl~ co-transporters, meaning greater
doses of loop diuretic are required to induce a

in vivo and in vitro animal experiments. The dozzed greyed
lines denote that loop diuretics are only a contributing
factor in this proposed model, rather than the driving force

diuresis. In addition, chronic use of loop diuretic
leads to an increase in sodium delivery to the
distal tubule with consequent hypertrophy of
cells in the distal nephron. The hypertrophied
cells reabsorb sodium more avidly, an effect that
can be mitigated by increasing the dose of loop
diuretic and/or the additional use of a thiazide
diuretic [49].

Consistent with this idea, patients with
hypochloraemia take higher doses of loop
diuretics than those with normal chloride levels
[3-12], but whether a high-dose diuretic is the
cause of hypochloraemia or becomes necessary
because of hypochloraemia-induced diuretic
resistance is uncertain.

Effect on the RAAS

Renin secretion is controlled by the macula
densa. These specialized cells are sensitive to
sodium chloride, low concentrations of which
in the urinary space leads to renin secretion
from the juxtaglomerular cells of the afferent
and efferent arterioles. Increased chloride (but
not increased sodium) delivery to the macula
densa suppresses renin release from the granular
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Confirmed association
Possible association

Severe Heart Failure

High dose diuretic

Increased RAAS
activation

1
A 4

S ——— |

Metabolic alkalosis

PR—

Increased activity
of WNK kinases

Impaired activity of
cardiac chloride channels

Impaired cardiac

Increased RAAS
activation

[Yp——

Arrhythmia

contractility

DR ——

v

Diuretic resistance

Adverse outcome

Fig. 3 Confirmed and possible associations between
hypochloraemia and adverse outcome in patients with
heart failure. The dotted lines denote possible links

cells in the afferent arteriole and a subsequent
fall in angiotensin II levels [50, 51]. Chloride
and renin are inversely related in patients with
HF [8]. This is the rate-limiting event in the
RAAS.

Sudden Death

Chloride channels play a role in ventricular
repolarization [52, 53], and in regulating the
positive chronotropic effect of cardiac pace-
maker activity [54]. Myocyte volume and pH are
regulated, in part, by chloride-dependent co-
transporters [55, 56]. Abnormalities of the
chloride channels and co-transporters may be
arrhythmogenic [57, 58] and can impair con-
tractility [59]. Consistent with these observa-
tions, a large study of outpatients with HF
found that patients with hypochloraemia had
an increased risk of sudden death (Table 1) [3].

A THERAPEUTIC TARGET?

Hypertonic saline (HS) increases diuresis and
may improve outcome when given alongside

demonstrated in animal studies and the thick lines denote
confirmed links in patients with heart failure

intravenous furosemide in patients admitted
with HF [60, 61]. However, data on changes in
chloride levels are absent from almost all
reports of HS and whether any observed benefit
is due a change in chloride levels is pure spec-
ulation. A proof-of-concept study of oral chlo-
ride supplementation in patients with HF
(N=10) found that lysine chloride increased
chloride levels but required enormous doses to
affect only small changes in serum chloride
(Table 1) [8]. Further work is ongoing
(NCTO03446651) [62].

Acetazolamide

Acetazolamide (ACZ) is a carbonic anhydrase
(CA) inhibitor. CA catalyses the interconversion
between carbon dioxide and water on the one
hand, and hydrogen (H*) and bicarbonate ions
on the other (Fig.4). CA on the apical mem-
brane of the PCT cell converts free H' and
bicarbonate to water and carbon dioxide in the
urinary space; the water then diffuses back into
the cell via aquaporin 1 channels, carbon
dioxide freely diffuses across the apical mem-
brane [63, 64]. There, the water and carbon
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Fig. 4 Renal carbonic anhydrase and acetazolamide. Inhi-
bition of renal carbonic anhydrase with acetazolamide
might increase luminal bicarbonate concentrations, reduce
intracellular hydrogen ion concentrations thus reducing

dioxide are converted back to H* and bicar-
bonate ions by intracellular CA.

The newly formed H™ ions in the cell are
excreted in exchange for urinary sodium via
Na®/H" co-transporters on the apical mem-
brane [65, 66], and bicarbonate returns to the
circulation via Nat/HCO;~ and Cl /HCO3~
antiporters on the basolateral membrane (Fig. 4)
[67]. Inhibition of intracellular CA reduces
production of intracellular H*, thus reducing
sodium reabsorption via the Na*/H™ antiporters
on the apical membrane, and inhibition of
luminal CA reduces production of water and
carbon dioxide, thus increasing urinary bicar-
bonate levels (Fig. 4).

ACZ increases bicarbonate excretion and
chloride reabsorption in vivo [32, 68], and
increases serum chloride levels in humans
[69, 70]. The reasons behind this are not clear
but may result from two potential mechanisms:
firstly, increased HCO3;™ in the urinary space
increases the negative charge thus increasing
the electrochemical gradient along which

sodium reabsorption via the Na™/H" antiporter, and
reduce movement of chloride out of the peritubular
capillaries. ACZ acetazolamide

chloride is reabsorbed in the PCT. Secondly,
in vivo studies suggest that ACZ, separately
from CA inhibition, also inhibits the basolateral
CI'/HCOj3™ antiporter in the PCT thus reducing
movement of chloride out of the blood and into
the cell (Fig. 4).

There are thus three ways in which ACZ
might be beneficial for patients with HF: (1)
increasing sodium excretion and increasing
diuresis [71, 72]; (2) increasing bicarbonate
excretion, which may reduce metabolic alkalo-
sis [73, 74]; and (3) increasing renal chloride
reabsorption, which may reverse hypochlo-
raemia [69, 70].

The ADVOR study of ACZ in patients
admitted with HF is aiming to recruit ~ 500
patients, the largest study of ACZ in patients
with HF to date. The primary endpoint is
treatment success (i.e., clinical decongestion
defined as the absence of pleural effusion,
ascites, and significant peripheral oedema) after
3days of treatment. Secondary endpoints
include mortality and morbidity alongside
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changes in natriuresis, body weight, and natri-
uretic peptide levels [75]. There is no planned
analysis of either chloride or bicarbonate
changes but the data will give an insight into
the usefulness of ACZ as a treatment for patients
with HF.

FUTURE PERSPECTIVE: IS
PREVENTION BETTER THAN CURE?

Amongst patients admitted with HF, those with
hypochloraemia that resolves by the time of
discharge have a similar post-discharge prog-
nosis to those with normal chloride concentra-
tions throughout admission [5]. Conversely,
incident hypochloraemia during admission is
associated with an increased risk of adverse
outcome post-discharge [5]. If hypochloraemia
results from the inevitable combination of sev-
ere HF and high-dose loop diuretics, it may be
that prevention of hypochloraemia, rather than
the correction of an existing abnormality, may
have the greater effect on outcome. Whether
acetazolamide might be best employed as a
preventative measure is unknown, but should
be the focus of future research.

CONCLUSIONS

Hypochloraemia is a common electrolyte
abnormality in patients with HF and is an
important marker of poor prognosis. There are
many unknowns as to how hypochloraemia
develops and whether it has a pathophysiolog-
ical effect in patients with HF. If the latter is
true, it may be a therapeutic target. As ever,
more work is needed.
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