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Background: Since image-based fracture prediction models using deep learning are lacking, we aimed to develop an X-ray-based 
fracture prediction model using deep learning with longitudinal data. 
Methods: This study included 1,595 participants aged 50 to 75 years with at least two lumbosacral radiographs without baseline 
fractures from 2010 to 2015 at Seoul National University Hospital. Positive and negative cases were defined according to whether 
vertebral fractures developed during follow-up. The cases were divided into training (n=1,416) and test (n=179) sets. A convolu-
tional neural network (CNN)-based prediction algorithm, DeepSurv, was trained with images and baseline clinical information (age, 
sex, body mass index, glucocorticoid use, and secondary osteoporosis). The concordance index (C-index) was used to compare per-
formance between DeepSurv and the Fracture Risk Assessment Tool (FRAX) and Cox proportional hazard (CoxPH) models. 
Results: Of the total participants, 1,188 (74.4%) were women, and the mean age was 60.5 years. During a mean follow-up period of 
40.7 months, vertebral fractures occurred in 7.5% (120/1,595) of participants. In the test set, when DeepSurv learned with images 
and clinical features, it showed higher performance than FRAX and CoxPH in terms of C-index values (DeepSurv, 0.612; 95% con-
fidence interval [CI], 0.571 to 0.653; FRAX, 0.547; CoxPH, 0.594; 95% CI, 0.552 to 0.555). Notably, the DeepSurv method without 
clinical features had a higher C-index (0.614; 95% CI, 0.572 to 0.656) than that of FRAX in women. 
Conclusion: DeepSurv, a CNN-based prediction algorithm using baseline image and clinical information, outperformed the FRAX 
and CoxPH models in predicting osteoporotic fracture from spine radiographs in a longitudinal cohort.
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INTRODUCTION

As fragility fractures have emerged as a major social issue from 
both medical and economic standpoints [1-3], it is vital to pre-
emptively identify individuals who are likely to experience 

fractures in the near future. Currently, several tools exist for 
finding patients who are likely to have fractures, such as the 
Fracture Risk Assessment Tool (FRAX), dual-energy X-ray ab-
sorptiometry (DXA), quantitative computed tomography (CT), 
and others [4,5]. While these approaches are well-validated 
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measures in assessing patients [6,7], DXA is still underutilized 
and generally available only at referral centers [8], and lack of 
insight among both physicians and patients leads to low screen-
ing rates of <10%, even in high-risk populations [9,10]. There-
fore, cost-effective and easily accessible alternatives to improve 
these circumstances are needed. Opportunistically taken spine 
X-rays, which are widely available in clinical practice and have 
good image quality, can be a candidate as an alternative method 
to discriminate patients at high risk of fracture. 

In recent years, machine learning (ML) methodologies for an-
alyzing medical images have been introduced in various medi-
cal fields, such as diagnosing diabetic retinopathy and lung nod-
ules [11-13]. Among various methods, convolutional neural net-
works (CNNs) are an emerging methodology that has demon-
strated its potential in many applications [14]. Compared to pre-
vious methodologies, a strength of CNNs is that they do not re-
quire hand-crafted feature extraction or segmentation by human 
experts, while they are computationally more expensive and re-
quire graphical processing units due to the millions of learnable 
parameters to calculate [15]. In several cross-sectional studies, 
CNN algorithms using X-rays and CT images have been ap-
plied to assess bone mineral density (BMD) or detect fractures 
[16-19]. Although these studies showed acceptable performance 
in classification and segmentation, there is still a lack of longi-
tudinal studies on deep learning-based vertebral fracture predic-

tion models. 
Therefore, we aimed to develop a spine radiography-based 

fracture prediction model using deep learning with longitudinal 
data. The study could be a technical leap to identify patients at 
high risk of fractures with spine radiography, a readily accessi-
ble and cost-effective method. 

METHODS

Study design and participants
This longitudinal cohort study included the images and medical 
records of 7,301 patients aged over 50 years who had at least 
two spine radiographs in the anteroposterior and lateral posi-
tions from 2010 to 2015 taken at Seoul National University 
Hospital. Patients with a history of fragility fractures at baseline 
(n=1,982) or those who visited only once (n=2,368) were ex-
cluded, as were patients who did not have lateral X-rays in a 
neutral position (n=697), those whose follow-up periods were 
less than 6 months (n=113), patients who were prescribed anti-
osteoporotic drugs (such as bisphosphonates, teriparatide, deno-
sumab, or selective estrogen receptor modulators) (n=531), and 
those with radiographs of poor image quality (n=439) were ex-
cluded. As a result, 1,595 participants were eligible for the final 
analysis (Fig. 1). The training set (n=1,416) was randomly di-
vided at 5:1 for cross-validation. Patients with BMD data mea-

Patients aged 50–75 years 
without compression fracture at the baseline 

in SNUH during 2010–2015 (n=2,450)

Patients who have both AP and lateral neutral lumbar X-rays
(n=2,147)

Patients whose follow-up periods are over 6 months
(n=2,034)

Final analyses (n=1,595)

Patients who don’t have a lateral X-rays 
with neutral position (n=697)

Patients whose follow-up periods 
are less than 6 months (n=113)

X-rays with artifacts or poor image quality 
(n=439)

Fig. 1. Flow chart of patient selection. SNUH, Seoul National University Hospital; AP, anteroposterior.
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sured within 1-year before or after X-ray imaging were selected 
as the test set (n=179), which enabled the calculation of FRAX.

The study protocol was approved by the Institutional Review 
Board of Seoul National University Hospital (IRB No. H-1902-
050-1008). The requirement for informed consent was waived 
due to the retrospective design of the study. The study was car-
ried out according to the World Medical Association Declara-
tion of Helsinki—Ethical Principles for Medical Research.

Primary outcome
The primary outcome of the study was incident vertebral frac-
ture events. Vertebral fractures were defined as morphometric 
fractures confirmed by X-rays. Morphometric vertebral frac-
tures were confirmed by X-rays with measurements of anterior, 
middle, and posterior vertebral heights. Anterior to posterior, 
middle to posterior, and posterior to posterior above and below 
ratios were calculated. A vertebral fracture was defined as being 
present if any of the abovementioned ratios were more than 3 
standard deviations below the normal mean for the vertebral 
level, as described in our previous report [20]. Paired X-rays 
with follow-up intervals for each participant were obtained. 
Baseline X-rays were used as the source of the training model, 
and follow-up X-rays were used for identifying the outcome. 

Measurements of anthropometric parameters
Sociodemographic factors were obtained from a review of elec-
tronic medical records, including age, sex, and previous medical 
history at baseline. The use of glucocorticoids was defined as 
the patient currently using oral glucocorticoids or having been 
exposed to oral glucocorticoids for more than 3 months at a 
dose of prednisolone >5 mg or its equivalent. Secondary osteo-
porosis included a history of type 1 diabetes mellitus, osteogen-
esis imperfecta, untreated hyperthyroidism, hypogonadism or 
premature menopause, chronic malnutrition or malabsorption, 
and chronic liver disease. Height and body weight were mea-
sured based on standard methods by trained staff using a scale 
and a wall-mounted extensometer while the participants were 
wearing light-weight clothes. Body mass index (BMI) was cal-
culated as the weight divided by height squared (kg/m2).

Measurements of BMD and calculations of FRAX
The baseline BMD (g/cm2) of skeletal sites (lumbar spine, fem-
oral neck, and total hip) and muscle mass were measured using 
DXA (GE Prodigy, GE Healthcare, Chicago, IL, USA) and ana-
lyzed (EnCORE Software version 11.0, GE Healthcare) accord-
ing to the manufacturer’s guidance. The BMD precision error 

(% of the coefficient of variation) was 1.7% for the lumbar 
spine, 1.8% for the femoral neck, and 1.7% for the total hip. For 
the lumbar spine BMD, the L1–4 values were chosen for analy-
sis. When an area of the spine was not suitable for analysis due 
to a compression fracture or severe sclerotic change, values 
from the rest of the spine were used (e.g., if L1 was not suitable, 
L2–4 was used). Instruments were calibrated using anthropo-
morphic phantoms. 

The 10-year absolute risks of hip and osteoporotic fracture 
(FRAX scores) were calculated using the University of Shef-
field’s online Korea-specific FRAX tool (https://www.sheffield.
ac.uk/FRAX/tool.aspx?country=25). The FRAX algorithm in-
cludes the following parameters: femoral neck BMD T-score, 
age, sex, BMI, previous history of fracture, parental history of 
hip fracture, secondary osteoporosis, current smoking status, re-
cent use of corticosteroids, presence of rheumatoid arthritis, and 
consumption of ≥3 alcoholic beverages per day.

Image preprocessing and deep learning techniques 
The proposed deep learning-based lumbar spine fracture predic-
tion framework comprises two main steps: (1) keypoint detec-
tion and (2) survival analysis. For each step, we applied deep 
CNNs for data-driven learning. A keypoint detection model was 
employed to extract and isolate the region including the verte-
bral bodies (L1–L5) from the original radiographs, followed by 
a survival model to predict the fracture risk score from the ex-
tracted region. Fig. 2 shows an overview of our framework. 
Preprocessing was done with both training and test sets.

First, the keypoint detection model was performed to extract 
the spatial region of interest (ROI) from lateral spine radiographs 
to remove irrelevant structures such as bowel gas [21,22]. The 
model localized five center points corresponding to each of the 
L1–L5 lumbar vertebral bodies. For the training keypoint detec-
tion model, all center key points of each vertebral body in the 
training and test dataset were manually annotated and validated 
by the authors, including a musculoskeletal radiologist (J.K.S., 
and K.H.J.). To evaluate the accuracy of the keypoint localiza-
tion, the object keypoint similarity-based average precision (AP) 
metric, which is calculated from a distance between predicted 
points and ground truth points, was applied. Our keypoint detec-
tion model achieved a 0.971±0.020 mean AP score in five-fold 
cross-validation. Based on the extracted key points of the verte-
bra bodies, alignment of the original radiographs was performed. 
Rotation and translation transformations were performed so that 
each of the two points (L1 and L5) was always in the same posi-
tion around all images. Then, the ROI was extracted from the 
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area around the keypoints with an external margin. For training, 
input images were rescaled with min-max normalization and re-
sized into a uniform size of 384×384 pixels with zero paddings. 
We trained our keypoint detection model on the training set us-
ing similar settings as previously described [22] with an Ima-
geNet pre-trained HRNet-W32 backbone: data augmentations 
with random rotation, scale, and flipping. The Adam optimizer 
was used with an initial learning rate of 1e-3 that dropped to 1e-
5, and there were 200 training epochs.

Six preprocessing methods, as shown in Supplemental Fig. 
S1, were tested to determine how best to manipulate X-rays for 
fracture prediction: full images containing the L1–L5 or L1–L4 
vertebral bodies with and without masks, and individual patches 
of the bodies with and without masks. The masks used were 
manually annotated. A heatmap visualization of X-rays with and 
without fractures is depicted in Supplemental Fig. S2. 

Statistical analysis
In baseline characteristics, depending on the distribution, contin-
uous parameters are presented as means with standard devia-
tions, and categorical data are presented as proportions. Compar-
isons between groups were analyzed by performing the Student t 
test, whereas the chi-square test was used for categorical vari-
ables. The area under the receiver operating characteristic curve 
(AUROC) was calculated for comparisons among preprocessed 
images. Cases that were predicted to have and experienced actu-
al fracture events during the follow-up were defined as true posi-
tive (TP), while false positive (FP) cases were defined as those 
that were predicted to have but did not experience fracture (FP). 
Cases that were predicted to be free of fracture events but had 

one during follow-up were defined as false negative (FN). True 
negative (TN) cases were defined as those that were predicted to 
be and were free of fracture events during the follow-up. Sensi-
tivity and specificity were calculated for each time series as fol-
lows: sensitivity=TP/(TP+FN) and specificity=TN/(TN+FP). 

We built a Cox proportional hazard (CoxPH) model and 
DeepSurv model in the training set and predicted survival in the 
test set. CoxPH and DeepSurv survival models were compared 
from either only clinical data or with an additional baseline X-
ray image. Clinical variables in CoxPH were selected from vari-
ables included in the FRAX model [5]. Both models measure 
hazard rates as the log-risk function. DeepSurv [23] is a multi-
layer perceptron that predicts the hazard rate based on both clin-
ical information with image data and only clinical information 
(age, sex, BMI, previous fracture history, secondary osteoporo-
sis, rheumatoid arthritis, and glucocorticoid usage). For images, 
a deep CNN was used. We evaluated the prediction models’ 
performance in terms of the concordance index (C-index), 
which can be regarded as the fractures of all pairs of individuals 
whose predicted survival times were correctly ordered. This 
metric is based on the Harrell C statistic, as described in previ-
ous studies [24-26]. However, although the C-index is easily 
implementable using available statistical packages and algo-
rithms, it has an inherent limitation in its unclear validity/reli-
ability [27] in datasets with censored data, as in our study, due 
to the possibility of inflated type 1 error [27].

Model 1 was adjusted for age and sex, model 2 was addition-
ally adjusted for BMI, and model 3 was additionally adjusted 
for the use of glucocorticoids and secondary osteoporosis. The 
DeepSurv package from R and PyTorch from Python were used 

Fig. 2. The architecture of the deep learning-based survival prediction model. HRNet, high-resolution net; ResNet, residual network; BMI, 
body mass index; FC, fold change.
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in the analyses. A P value <0.05 was considered significant. 
Statistical analyses were performed using R (The R Foundation, 
www.r-project.org) and Python version 3.9.4 (Python Software 
Foundation, https://www.python.org).

RESULTS 

Clinical characteristics
A total of 1595 participants were included in the final analysis. 
The mean follow-up duration was 3.4 years. The average age 
was 60.4 years old, and 1,188 (74.4%) participants were female 
(Table 1). The participants were divided into a training set (n=  
1,416) and a test set (n=179). The participants included in the 
training set were more likely to be female (P=0.020), had a 
higher BMI (P=0.002), and were less likely to have secondary 
osteoporosis (P=0.031) than those in the test set. During fol-
low-up, vertebral fractures occurred in 120 (7.5%) of the partic-
ipants. 

Performance according to the preprocessed images
Before training, we compared the performance of various types 
of preprocessed images, such as L1–L5, L1–4, and L1–L5 
patches with and without masks (Table 2, Supplemental Fig. 
S1). L1–L5 spine images showed similar performance in dis-
criminating those who were likely to develop a fracture in the 
future, regardless of the presence of masks for vertebral bodies 
(AUROC, 0.778 and 0.787, respectively). When images were 
cropped to include L1–L4, the performance was similar be-

tween those without and with masks for vertebral bodies (AU-
ROC, 0.783 and 0.734, respectively), and similar to images in-
cluding L1–L5. The best performance was observed in images 
with L1–L5 patches without a mask, with an AUROC of 0.802, 
while images with L1–L5 patches with masks showed the low-
est AUROC (0.672). Therefore, we implemented images with 
L1–L5 patches without masks (Supplemental Fig. S1E) as im-
age data in further prediction models. 

Performance of the DeepSurv model in the training set 
compared with CoxPH
In the training set, compared to conventional methods such as 
the CoxPH, both DeepSurv methods (with and without images) 
had higher C-index values in predicting fractures in women 
(model 3: CoxPH, 0.712; 95% confidence interval [CI], 0.654 
to 0.770; DeepSurv without images, 0.740; 95% CI, 0.686 to 
0.795; DeepSurv with images, 0.764; 95% CI, 0.739 to 0.789) 
(Fig. 3A). However, there was no significant difference accord-
ing to whether spine X-ray images were used in DeepSurv. 
Consistent trends were observed in models 1, 2, and 3, which 
adjusted for age, additionally adjusted for BMI, and additionally 
adjusted for glucocorticoid use and secondary osteoporosis, re-
spectively. 

When we compared clinical models within the analytic meth-
ods, there were no significant differences among clinical models 
1, 2, and 3 in all analytical techniques, including CoxPH, Deep-
Surv with and without images, and DeepSurv with image only 
(C-index, 0.748; 95% CI, 0.699 to 0.797) (Fig. 3B).

Table 1. Baseline Clinical Characteristics 

Characteristic Training set 
(n=1,416)

Test set 
(n=179) P value

Age, yr 60.5±6.2 60.3±5.7 0.608

Female sex 1,068 (75.4) 120 (67.0) 0.020

Body mass index, kg/m2 24.1±3.7 23.2±3.5 0.002

Previous history of fracture 0 0 1.000

Secondary osteoporosis 68 (4.8) 16 (8.9) 0.031

Rheumatoid arthritis 50 (3.5) 10 (5.6) 0.249

Use of glucocorticoids 739 (52.2) 100 (55.9) 0.396

Follow-up duration, yr 3.2±2.2 3.7±2.2 0.053

Fracture events during  
follow-up

103 (7.3) 17 (9.5) 0.362

Values are expressed as mean±standard deviation or number (%). 
Comparisons between groups were analyzed using the Student t test for 
continuous variables and the chi-square test for categorical variables. 

Table 2. Performance in Discriminating Patients Likely to De-
velop a Fracture according to Image Types

Image types AUROC Sensitivity Specificity PPV NPV

L1-L5 without 
masks

0.7778 0.6957 0.7601 0.1839 0.9698

L1-L5 with 
masks

0.7870 0.6957 0.8074 0.2192 0.9715

L1-L4 without 
masks

0.7833 0.6957 0.7432 0.1739 0.9692

L1-L4 with 
masks

0.7358 0.6957 0.7770 0.1951 0.9705

L1-L5 patches 
without masks

0.8015 0.7171 0.7741 0.2065 0.9739

L1-L5 patches 
with masks

0.6722 0.6957 0.5338 0.1039 0.9576

All images were analyzed using a convolutional neural network. 
AUROC, area under the receiver operating characteristic curve; PPV, 
positive predictive value; NPV, negative predictive value. 
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Performance of the DeepSurv model in the test set 
compared with CoxPH
In the female test set, compared to the CoxPH method, Deep-
Surv with images had higher performance in predicting frac-
tures than FRAX models 2, and 3, as represented by C-index 
values (FRAX, 0.547); model 2 (CoxPH, 0.553; 95% CI, 0.552 
to 0.555; DeepSurv without images, 0.558; 95% CI, 0.521 to 
0.595; DeepSurv with images, 0.610; 95% CI, 0.576 to 0.644); 
model 3 (CoxPH, 0.594; 95% CI, 0.584 to 0.604; DeepSurv 
without images, 0.433; 95% CI, 0.510 to 0.579; DeepSurv with 
images, 0.612; 95% CI, 0.571 to 0.653) (Fig. 4A). The Deep-
Surv method with images had a higher C-index than the Deep-
Surv method without images in model 3. However, there was 
no significant difference between CoxPH and the DeepSurv 
method without images in all clinical models. In addition, the 
C-index was similar between DeepSurv methods with and with-
out images in models 1 and 2. 

As described in Fig. 4B, when we compared clinical models 
using the CoxPH method, model 3 had a higher C-index than 
FRAX, model 1, and model 2. However, model 3 had a higher 

C-index than model 1 using the DeepSurv method with images. 
Notably, when using the DeepSurv method with images without 
clinical features, the C-index (0.614; 95% CI, 0.572 to 0.656) 
was higher than that of FRAX. There were no significant differ-
ences in the C-index among clinical models when applying the 
DeepSurv method without images.

DISCUSSION

In this study, we found that the CNN-based DeepSurv predic-
tion model using baseline spine X-rays provided comparable 
vertebral fracture risk prediction with the well-established clini-
cal standard of FRAX in longitudinal data. Among various pre-
processed image models, L1–5 patches without masks exhibited 
the best performance (AUC, 0.801). In the test set with DXA, 
the predictive performance of DeepSurv was higher than that of 
FRAX, even when only images were used for the prediction (C-
index, 0.614 for DeepSurv and 0.547 for FRAX) in women. 

We showed relatively good performance with a small number 
of X-ray images. Cutting images to create patches for input in 

Fig. 3. Performance of the fracture prediction model in the training set using Cox proportional hazard and DeepSurv methods (A) according 
to clinical models and (B) analytic methods. Model 1 adjusted for age and sex, model 2 additionally adjusted for body mass index, and mod-
el 3 additionally adjusted for the use of glucocorticoids and secondary osteoporosis. The C-index values were as follows: Model 1 (Cox pro-
portional hazard [CoxPH], 0.712; 95% confidence interval [CI], 0.652 to 0.773; DeepSurv without images, 0.765; 95% CI, 0.693 to 0.837; 
DeepSurv with images, 0.794; 95% CI, 0.760 to 0.828); Model 2 (CoxPH, 0.709; 95% CI, 0.648 to 0.771; DeepSurv without images, 0.737; 
95% CI, 0.683 to 0.791; DeepSurv with images, 0.782; 95% CI, 0.755 to 0.810); Model 3 (CoxPH, 0.712; 95% CI, 0.654 to 0.770; Deep-
Surv without images, 0.740; 95% CI, 0.686 to 0.795; DeepSurv with images, 0.764; 95% CI, 0.739 to 0.789). aP<0.05 between groups.
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deep learning models has recently been attempted by other 
groups [28]. Early studies tried segmented images of vertebrae 
based on geometry and intensity to detect fractures, but reported 
unstable results [29,30]. However, with the recent employment 
of deep learning methods, researchers trained CNN models with 
patches from localized and segmented images of vertebrae, 
achieving an accuracy of 89% to 90% [28,31,32]. Therefore, in 
conjunction with deep learning models, multiple slices in the 
spine region provided better performance in detecting and local-
izing fractures than a single image slice. However, as this ap-
proach has never been tried for predicting fractures, we evaluat-
ed the performance of both single slices and multiple patches 
before we carried out the model analyses. Our results aligned 
with previous results showing that the patch images showed the 
highest performance in distinguishing between patients who de-
veloped fractures and those who did not. 

In the present study, the performance of DeepSurv was ac-
ceptable in predicting fractures—in fact, its performance was 
better than that of FRAX. It was clinically notable that the im-

age-only model without clinical risk factors also showed com-
parable performance in predicting fractures. There have been 
only a few studies on fracture prediction using deep learning 
[33-35]. Most studies used databases to build prediction models 
using ML. Su et al. [35] reported that the classification of a 
high-risk group for hip fractures using the ML method of classi-
fication and regression trees showed similar performance to that 
of FRAX (AUC, 0.72 vs. 0.70). In another study, a fracture pre-
diction model using the CatBoost method slightly outperformed 
the FRAX score for fracture prediction (AUC, 0.69 vs. 0.66) 
[34]. Based on data from more than 280,000 individuals, a hip 
fracture prediction model using support vector machines and 
RUSBoost showed AUCs of 0.65 to 0.70 [35]. Although the C-
index and AUC are not directly comparable, the performance of 
DeepSurv in the study was similar to or better than previously 
reported [33-35]. However, in most previous studies, perfor-
mance was only demonstrated in terms of the AUC since frac-
ture events were regarded as cross-sectional binary outcomes, 
without considering the time factor. Therefore, this study has 

Fig. 4. Performance of fracture prediction model in the test set using Cox proportional hazard and DeepSurv methods (A) according to clini-
cal models and (B) analytic methods. Model 1 adjusted for age, model 2 additionally adjusted for body mass index, and model 3 additionally 
adjusted for the use of glucocorticoids and secondary osteoporosis. The C-index values were as follows: Model 1 (Cox proportional hazard 
[CoxPH], 0.552; 95% confidence interval [CI], 0.550 to 0.554; DeepSurv without images, 0.568; 95% CI, 0.521 to 0.585; DeepSurv with 
images, 0.544; 95% CI, 0.481 to 0.607); Model 2 (CoxPH, 0.553; 95% CI, 0.552 to 0.555; DeepSurv without images, 0.558; 95% CI, 0.521 
to 0.595; DeepSurv with images, 0.610; 95% CI, 0.576 to 0.644); Model 3 (CoxPH, 0.594; 95% CI, 0.584 to 0.604; DeepSurv without im-
ages, 0.433; 95% CI, 0.510 to 0.579; DeepSurv with images, 0.612; 95% CI, 0.571 to 0.653). FRAX, Fracture Risk Assessment Tool. 
aP<0.05 between groups.
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clinical significance in that it introduces the concept of survival 
analysis to a deep learning-based fracture prediction model.

We demonstrated that the performance for fracture prediction 
of DeepSurv was acceptable compared to that of FRAX in other 
previous studies. The reported C-index values of FRAX range 
from 0.62 to 0.77 [35,36]. In a recent study, the performance of 
hip fracture prediction was reported using BMD, FRAX, and 
BMD with finite element analysis from DXA scans. The C-in-
dex values were 0.76 for total hip BMD, 0.73 for FRAX with 
BMD, and 0.77 for BMD with finite element analysis [37]. In 
our model using X-ray images, although C-index values dif-
fered depending on the degree of clinical information, they were 
between 0.76 and 0.79, similar to the previous studies. The re-
sults imply that with deep learning, similar performance to that 
of FRAX may be achieved only with a single X-ray image. 

The study has some notable strengths. This was the first in-
field study to use X-ray images to build a fracture prediction 
model with a deep learning methodology. A previous small 
study built a fracture prediction model using CT images with 
deep learning [34], but no previous study has been tried with X-
ray images. Another strength of this study is the use of Deep-
Surv, a survival deep learning model, the performance of which 
was analyzed in terms of the C-index. Most previous deep 
learning studies have been designed as cross-sectional studies 
that classify patients according to whether they experienced 
fractures or not [17,38]. However, for fracture events, the factor 
of time-to-event should be considered when constructing a pre-
diction model. In addition, the process of selecting various 
forms of preprocessed images of spine X-rays was demonstrat-
ed, which may help in the design of future research using X-
rays. Heatmaps of the deep learning process were also generat-
ed, enhancing the interpretability of the model. Moreover, the 
DeepSurv model in the study showed acceptable performances 
compared to FRAX, and it was clinically notable that X-ray im-
age data analyzed using the DeepSurv model without clinical 
information showed better performance than FRAX. 

The study has some limitations. The sample size was relative-
ly small for ML, which may have led to overfitting of the train-
ing model. Furthermore, although we showed better perfor-
mance of the DeepSurv model than FRAX, the model has room 
for improvement, as we had insufficient fracture cases. In prac-
tice, the model used by itself would not be sufficient to assess 
the risk of fracture or to start treatment based on its relatively 
low performance. Larger studies in the future could not only 
validate, but also improve upon the present findings. Since this 
was not a nationwide study, we could not identify fracture 

events that happened in other institutions. In addition, because 
most conventional fracture prediction models, including FRAX, 
are developed for the 10-year risk of fracture events, the com-
parison with FRAX in this study had a major inherent limita-
tion. Therefore, the results should be interpreted with caution. 
With sufficient follow-up duration and more fracture cases, the 
model’s predictive performance may be improved. Although we 
used an intensive automated electronic medical record search, 
missing data related to the retrospective approach could have 
been present (e.g., age at menopause). The date of the subse-
quent fracture might not have been accurate since it was the 
date of X-ray acquisition, not the exact date of the fracture. Seg-
menting L5 was another challenge in the study due to lumbosa-
cralization. Although the radiologists from our team reviewed 
all images, lumbosacralization may have affected the results of 
the study. We acknowledge potential issues of selection bias, 
since the participants were treated at a hospital and were more 
likely to have underlying diseases than the healthy population. 
In addition, as we selected patients with BMD data for the test 
set, the number of participants in the test set was relatively 
small. Therefore, selection bias might have affected the model’s 
performance. 

In conclusion, we have shown that a deep learning-based 
model derived from spine X-rays may provide acceptable pre-
dictive performance for fracture based on a comparison with 
FRAX for presymptomatic prediction of future vertebral frac-
tures. The incidental X-ray-based model could help find some 
unscreened individuals at increased risk for vertebral fracture; 
this issue of underrecognition is particularly relevant in the con-
text of the coronavirus disease 2019 pandemic, which has made 
DXA screening difficult to access. This opportunistic approach 
may also add additional value to X-rays performed for other in-
dications to find patients at high risk of fracture. Further studies 
conducted at various institutions with a longer duration of fol-
low-up are needed before applying the algorithm.  
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