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Reliable Multi-Fractal 
Characterization of Weighted 
Complex Networks: Algorithms and 
Implications
Yuankun Xue & Paul Bogdan

Through an elegant geometrical interpretation, the multi-fractal analysis quantifies the spatial and 
temporal irregularities of the structural and dynamical formation of complex networks. Despite its 
effectiveness in unweighted networks, the multi-fractal geometry of weighted complex networks, the 
role of interaction intensity, the influence of the embedding metric spaces and the design of reliable 
estimation algorithms remain open challenges. To address these challenges, we present a set of reliable 
multi-fractal estimation algorithms for quantifying the structural complexity and heterogeneity of 
weighted complex networks. Our methodology uncovers that (i) the weights of complex networks 
and their underlying metric spaces play a key role in dictating the existence of multi-fractal scaling 
and (ii) the multi-fractal scaling can be localized in both space and scales. In addition, this multi-fractal 
characterization framework enables the construction of a scaling-based similarity metric and the 
identification of community structure of human brain connectome. The detected communities are 
accurately aligned with the biological brain connectivity patterns. This characterization framework 
has no constraint on the target network and can thus be leveraged as a basis for both structural and 
dynamic analysis of networks in a wide spectrum of applications.

Complex systems consist of heterogeneous agents mutually influenced via interactions of different intensities 
over multiple spatio-temporal scales. This heterogeneity encompassed in both the participating components and 
their varying interactions makes complex systems difficult to decipher. To understand and control these complex 
systems, the network theory provides an effective mathematical modeling framework that enables the encoding 
of the entities (nodes) of a complex system and their heterogeneous interactions (links) of different strength 
(weights) into a topological network configuration implicitly embedded in metric spaces, where the distance 
among nodes is decided both by the structural configuration of the system (topology) and the intrinsic nature of 
the inter-node couplings (e.g., social affinity, chemical bonds, traffic intensity or neural connectivity strength). 
In some cases, the properties of the inter-couplings among system components and the corresponding spatial 
embeddings even play a far more dominant role in regulating the overall system behaviors and dynamics. For 
instance, the atomic and molecular interactions among a chain of amino acids definitively dictate not only the 
dynamical spatial conformation of the corresponding protein but also its biological functionality1, 2. The distur-
bance of normal protein interactions can lead to irreversible pathological consequences known as proteopathies 
like Alzheimer’s, Parkinson’s3 and Huntington’s disease4. Therefore, the study of structural organization, forma-
tion and dynamics of the complex systems can benefit from studying their geometrical properties and discov-
ering new relationships between geometrical characteristics and network problems (e.g., community structure 
identification).

Learning the geometric principles underlying the organization of complex systems modeled by weighted net-
works facilitates the identification of their fundamental properties. Some of complex networks have been found 
to be Small world or Ultra-small world. Small world network model characterizes a graph of size N for which its 
average path length increases proportionally to the logarithm of the number of nodes ~d logN . In contrast, the 
Ultra-small world networks are characterized by smaller shortest path distances that scale as ~d loglogNmin . 
Albert Barabasi and his colleagues found that the Erdos-Renyi random network model can not explain the 
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formation of densely interconnected hubs or clusters in a family of real networks with degree distribution obeying 
a power-law5. In contrast to the Erdos-Renyi random network model that leads to a narrow normal degree distri-
bution, the power-law degree distribution of these networks has such a long tail that we cannot reason about the 
interconnection density of the network given a randomly chosen sample, hence they are scale-free.

The discovery of small-world property led to the belief that complex networks are not invariant under a 
length-scale transformation according to which an exponential dependence holds between the size of the network 
and its average path length. However, it is found that a variety of real networks exhibit self-repeating patterns at 
all length scales by applying a renormalization procedure6, 7. This illustrates the concept of self-similarity. The 
coexistence of self-similarity and small-world property in a variety of complex networks is further verified8. These 
two contradictory properties call for further investigation on the appropriate mathematical model of complex 
networks and their main features. A phase transition phenomenon is found between the local self-similarity and 
the global small-world property by studying the stability of nodes by renormalization group theory9.

The uncovered self-similarity in complex networks connects to the important fractal and multi-fractal geom-
etry domain where a family of objects are distinguished based on their self-repeating patterns and invariability 
under scale-length operations. Such objects are known as fractal objects. A mono-fractal object obeys a perfect 
self-repeating law at all scales. When embedded in Euclidean metric space and tiled by equally sized boxes at 
different scales, it becomes apparent that an important property of fractals is the power-law dependence between 
the mass distribution M(r) (e.g., the number of points in a box) and the scale factor r:

~M r r( ) (1)D

In Eq. (1), D is the fractal dimension and represents a real-valued number in contrast to the embedded space 
dimension which is always an integer. Fractal dimension is the major tool for describing the fractal geometry 
and the heterogeneity of irregular geometric objects that the dimension of its embedded space fails to capture. 
For instance, in Euclidean geometry, a straight line and a crooked line share the same geometrical dimension but 
have very distinct properties. Multi-fractals could be seen as an extension to fractals with increased complexity. 
They are invariant by translation although a distortion factor q needs to be considered to distinguish the details of 
different regions of the objects as a consequence of inhomogenous mass distribution. Intuitively, multi-fractals are 
not perfect self-repetitions but rich in localized variations of detailed geometric configurations. Consequently, a 
single fractal dimension is not sufficient to characterize the irregularity of the geometric shapes as the scaling fac-
tor measured across the object could be different. As a result, multi-fractal analysis (MFA, see Methods for details) 
is proposed to capture the localized and heterogenous self-similarity by learning a generalized fractal dimension 
D(q) under different distortion factors q.

MFA has been applied to investigate the underlying geometrical principles in a wide spectrum of applications 
including signal processing10–13, imaging processing14–16, genomics17, 18, geophysics19, 20, turbulence analysis10, 21, 22, 
network traffic modeling23 and financial analysis24–27. Irrespective of the effectiveness of MFA in various domains, 
its application to study the self-similarity of complex networks is not straightforward as the Euclidean metric is 
not well defined in a topological object like the complex network. The box-covering method was introduced28 to 
calculate the fractal dimension of unweighted complex networks and the authors proved its reducibility to the 
well-known graph coloring problem, which is NP-hard. However, a single fractal dimension is not a sufficient 
characterization of self-similarities embedded in the complex network. For instance, how can we distinguish 
fractal networks that share exactly the same fractal dimension but look entirely different? Fig. 1 shows two fractal 
networks, namely, Sierpinski fractal networks and (u, v)-flower. Both networks have the exact same fractal dimen-
sion of ln(6)/ln(3) ≈ 1.631 but show distinct structural properties. Apparently, relying on mono-fractal analysis 
does not allow us to distinguish between these two networks. Another relevant question is how link weights affect 
the fractality/multi-fractality of the weighted complex network. Link weights play an important role in governing 
the dimension of the network as there exists a mapping from a weighted network to a network spatially embedded 
where weights translate to the length of links that affects its dimension29, 30. To address this problem, an alterna-
tive box-covering method (BCANw) was proposed for the numerical determination of the fractal dimension of 
weighted complex networks31. Its application has also been extended to study the inhomogeneity of weighted 
real-world networks through multi-fractal analysis. Following the same line, a similar study of multi-fractality 
embedded in weighted networks using the modified sandbox method (SBw) is reported32. However, neither of 
the two methods considers the impact imposed by the distribution of the link weights. Both algorithms are prone 
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Figure 1.  Failure of single (dominant) fractal dimension to capture the heterogeneity in detailed configuration 
of fractal networks. A comparative example shows. (a) Sierpinski fractal network (s = 1/3, b = 6) and (b) (u, 
v)-flower fractal network (u = 3, v = 3) share the same fractal dimension (1.631) yet having distinct topological 
structure.
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to intrinsic estimation bias as a consequence of i) ignoring the skewness of the link weight distribution and ii) the 
implicit assumption that a global fractal/multi-fractal scaling holds at all scales of the network. Moreover, there is 
no theoretical foundation to support the design and evaluation of both algorithms in order to analyze the factors 
that adversely impact their numerical accuracy. All these disadvantages leave room for an erroneous characteri-
zation of both the structural and dynamical features of the weighted complex networks.

To overcome these issues, we first analytically study the multi-fractal structure of the Sierpinski fractal net-
work family to set up the theoretical ground for evaluation and comparative analysis of our proposed algorithms 
(See Supplementary Material Section 1). We find that the multi-fractality identified by SBw can be just the side 
effect of the limited size of the network considered. The analytical discussion of multi-fractality in Sierpinksi 
family S provides the theoretical basis on which not only we can quantitatively reason about the existence of 
multi-fractality/fractality from an asymptotic perspective that numerical approaches will surely fail to offer, but 
also we can shed some light on the design of numerical algorithms for reliable estimation of multi-fractal spec-
trum of the complex networks.

To motivate the design of a reliable algorithm which eliminates the disadvantages of BCANw and SBw, we 
analyze the source of the estimation bias of both algorithms through a set of numerical experiments. We show a 
compatible growth rule is required to remove the bias, given weighted complex networks of finite resolution. The 
detailed quantitative error analysis to investigate the source of the intrinsic estimation bias of both algorithms can 
be found in our Supplementary Material Section 2.

Based on both our theoretical findings and numerical experimental results, we propose the finite box-covering 
algorithm for weighted network (FBCw) and the finite sandbox algorithm for weighted network (FSBw) with 
improved performance. We compare the accuracy of the estimates obtained by FBCw and FSBw with our ana-
lytical results of Sierpinski fractal network as well as with those obtained by BCANw and SBw. The comparison 
shows that the proposed algorithms are not only able to give reliable numerical estimates of fractality with insen-
sitivity to the distribution of link weights, but also are capable of detecting the fractal scaling dependence when it 
holds within a finite range of scales (i.e., scale-localized).

More importantly, we apply the proposed algorithms to learn the multi-fractal structure of a set of real world 
weighted networks. We show the link weights play a definitive role in governing the existence of fractality in the 
network. The investigated weighted networks exhibit a phase transition from self-similar networks to small-world 
networks when converted to binary networks. Furthermore, we demonstrate that the fractal and multi-fractal 
scaling behaviors can be spatially localized and co-exist in the same network. Learning from our observations on 
the locality of the scaling behavior of real world weighted networks, we finally propose a network characterization 
framework based on the localized scaling feature space learned by the construction of scaling feature vectors for 
each node in the network. The proposed characterization is general and not limited to complex networks that 
are fractal or multi-fractal. It can be easily interfaced with subsequent analytical tools (e.g., machine learning 
algorithms) to unveil the intrinsic properties of the weighted complex networks. To illustrate the benefits of our 
methodology, we apply our algorithms to the network community detection in the human brain connectome. The 
identified communities are consistent with our biological knowledge.

The following discussion is organized in three parts. In the first part, we present the estimation error of pre-
vious numerical algorithms. In the second part of discussion, we compare the performance of BCANw, SBw 
with the proposed FBCw and FSBw. Finally, we present the multi-fractal analysis on a set of weighted real world 
complex network and propose a localized scaling based approach for the characterization of the weighted com-
plex networks. We provide an illustrative application example in network community detection to show its 
effectiveness.

Results
Analysis of Finite Resolution and Link Weight Distribution.  Estimation error analysis and stairway 
effect.  The link weights distribution of complex networks largely depend on the growth rule and weights allo-
cation process. For instance, the distribution of link weights of Sierpinski family is shaped by the scaling factor 
s and growth rule b. Interestingly, for small scaling factor s, we prove Gk approaches a monofractal that has no 
explicit dependence on weights distribution (See the proof in Supplementary Material Section 1). Yet this is valid 
only for a complex network that has infinite resolution in the sense that box/sandbox can grow by infinitely small 
steps (but not continuously) in a network of unbounded range of scales. In most of cases, this does not hold for 
complex networks and perfect fractals of limited size (e.g., Sierpinski network of limited size). Therefore, when it 
comes to numerical calculation of the limit in Eqs (13) and (17) using linear regression which is shared by both 
box-covering and sandbox methods, we are able to show that the box/sandbox should grow in a regulated way 
that is compatible with link weights distribution such that the stairway effect is minimized.

The stairway effect is an immediate consequence of applying box-covering or sandbox methods to weighted 
complex network of finite resolution to estimate the generalized fractal dimensions using linear regression. For 
a linear regression that minimizes least square error (LSE) ∑ (yi − xiθ)2, stairway effect can be stated as stagnant 
changes in yi irrespective of variation of xi up to a certain range. We show a simple example in Fig. 2 where the 
output and input observations are made from a linear relation y = 50 − 0.4x. The solid line shows the perfect 
fitting when no staircase is introduced. The two dashed lines correspond to the case where a set of unchanging 
observations are inserted (i.e., fake observations) between two actual y observations at two different locations 
(as denoted by xi), creating two pieces of “staircases” in the plot. As a consequence of minimization of LSE, the 
fitted lines in presence of staircases deviate from the perfect fitting differently based on the position of the stair-
cases in the plot. We can show the estimation error is proportional to the width of the staircase and the number 
of fake observations inserted. We have presented the detailed error analysis regarding the stairway effect in our 
Supplementary Material Section 2.
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Finite resolution and compatible growth rule.  The above mentioned insertion of fake observations can be under-
stood as an interpolation or oversampling process when a system with finite resolution is measured. For instance 
in a linear system, except for the case where input and output are decoupled in the system of interest, a staircase 
will be created in the measurement if the sampling rate is not compatible with the changing rate of the output, e.g., 
sampling rate is much greater than how the system actually changes its state. The changing rate of the system in 
this example intrinsically determines its “resolution”.

Similarly, a fundamental difficulty in extending the use of box-covering or sandbox method for determination 
of multi-fractality in complex network lies in its finite resolution. For a geometric multi-fractal/fractal object 
embedded in Euclidean space, the probability measure μ is well-defined on a continuous interval (0, L] where L 
is the length of the object. Alternatively stated, it is possible to grow box size continuously and retrieve the esti-
mates from a linear regression that considers all obtained measurements. However, the distance metric of a com-
plex network is discrete and probability measure μ is not defined on a continuously spanning l horizon, i.e., for 
any li and li+1 ∈ (0, L], there exist an infinite subset = | ∈ +L l l l l{ ( , )}i i i i i 1k k

 on which the probability measure μ is 
a constant. In other words, we can not distinguish between any element in this subset based on their associated 
probability measure, hence the resolution is finite.

As a consequence, we observe staircases that correspond to the measurements on these subsets Li if we directly 
apply box-covering or sandbox method with box size (or equivalently the radius of a sandbox, we use only the 
term “box size” for short) growing continuously. The presence of staircases, as we discussed earlier, introduces 
bias into the estimates of generalized fractal dimension. Obviously, we can minimize the stairway effect if we can 
aptly choose a growth strategy to scale the box size l such that no element in ∪Li is chosen as the size of a box. We 
call such strategy, if exists, as compatible growth rule.

For unweighted networks, a compatible growth rule can be easily found by increasing the box size in a discrete 
way, i.e., adding one each time. This is feasible because even though the resolution of an unweighted network is 
limited yet it is homogenous across the network, i.e., distance between any directly connected pair of nodes is 
identical. However, such property does not hold for a weighted complex network due to the distribution of link 
weights. Searching for a compatible growth rule for box size scaling in a weighted network is much more difficult 
and sometimes impossible. To give some intuition, let us look at sandbox method. Formally, for a weighted net-
work G = (V, E), let us assume vi ∈ V as the center of sandbox and vj ∈ V as a random node. Denote di,j as the 
shortest path length between vi and vj. The shortest path distribution = ≤F l P d l( ) { }d i j,i j,

 has a discrete support 
set = | ≠ ∀ ≠ ′′L l F l F l k k{ ( ) ( ), }i k d k d ki j i j, ,

 defined by G. A compatible growth rule of vi on G is thus a strictly 
ordered set = …<L l l l{ , , , }v n, 1 2i

 where lk+1 > lk. Therefore, the compatible sandbox growth rule L(G) on G is 
defined by ∩= <L G L( ) i v, i

 where vi is the center of the sandbox. It should be noted that it is always possible to 
find a compatible growth rule for a sandbox centered at a fixed point by growing its size by its unique distance to 
all other nodes. However, there is no guarantee that this growth rule is compatible for another sandbox centered 
differently. A compatible growth rule requires that the support of path length distribution is shared among all 
choices of sandbox centers. Apparently, if the choice of sandbox in Eq. (17) (see FBCw and FSBw description in 
Methods section) is randomized over all the nodes in an unweighted graph G, L(G) = {1, 2, 3, …, dmin} where dmin 
is the shortest path length of the longest distance between any pair of nodes of G. However, it can be practically 
difficult to find in a weighted network of rich heterogeneity such L(G) that i) is shared by a sufficiently large subset 
of V to be mathematically consistent with the estimate obtained by the box-covering method and ii) provides 
large set of samples of l to numerically calculate the limit in Eq. (17).

Such heterogeneity connects tightly to the skewness of the underlying link weight distribution of G that gov-
erns not only the existence of L(G) but also the design of a reliable algorithm to determine the multi-fractality 
of G when L(G) does not exist. For instance, the unweighted network corresponds to the case where the link 
distribution is a symmetric delta function, hence the existence of multi-fractality is solely determined by the 
topological properties of the network. When the link weights are uniformly distributed, the topology of network 
again determines the multi-fractality of the network. Since the weights are uniformly distributed, L(G) = {E[w], 

Figure 2.  A case study of stairway effect. A linear relation y = 50−0.4x is observed on a set of input x. Two sets 
of unchanging y observations are manually inserted between two actual measurement to create “stairs”. The 
introduction of such stairs biases the linear regression and causes estimation errors.
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2E[w], …, dminE[w]} is a statistically compatible growth rule. In other cases especially when the distribution is 
highly skewed, a poorly designed algorithm without awareness of link distribution leads to significant estimation 
errors in Eqs (13) and (17), rendering the basis of multi-fractal analysis questionable. This estimation error can be 
well-explained by our analytical findings that the incompatible growth rule with presence of a skewed link weight 
distribution will lead to the stagnant observations in spite of the growing box size of l, i.e., the staircase. Wider 
staircases will produce underestimated slope, hence biased estimates of multi-fractality.

Both BCANw and SBw that are previously proposed for numerical determination of multi-fractality in 
weighted networks fall into this category as they both rely on an incompatible growth rule and do not consider 
the skewness of link distribution. We show in the following discussion their disadvantages compared to our 
proposed algorithms. To make fair comparison under the same experimental setting with priorly known ground 
truth about multi-fractality of the study object, we choose Sierpinski fractal network family (see Supplementary 
Material Section 1 for details) as our target network. We conduct comparative error analysis across all four algo-
rithms when applied to estimate the dominant fractal dimension of the target networks.

Comparative Analysis of Estimation Methods.  Intrinsic estimation bias of BCANw and SBw.  To cor-
roborate our argument, we first present two numerical experiments where a simple yet incompatible growth rule 
is applied to both box-covering and sandbox methods when used for determination of the dominant fractal 
dimension of Sierpinski network ∈ SG5  with b = 3, s = 1/2 (see Supplementary Material Section 1 for detailed 
construction of G5). The incompatible growth rule increases the size of the box linearly by accumulating a fixed 
step length. We show in Fig. 3 the estimated fractal dimension using a box-covering method with this growth 
rule. The theoretical fractal dimension is ln(b)/ln(s) ≈ 1.585. As predicted, the staircases are present throughout 
the scales of l considered. To show its impact on the estimates, we plot the fitted line given by the linear regression 
on collected measurements and a reference line with the theoretical slope. As one notices in the figure, the stair-
cases drive the estimates to deviate from the theoretical slope. We can make similar observations in Fig. 4 that 
shows the estimated dominant fractal dimension of the G5 using sandbox method following the same growth rule. 
The staircases correspond to incompatible choice of box size l from the set ∪ Li for which the probability measure 
is not defined. As a result, the measure μ(B(l)) remains stagnant irrespective of changes in l, introducing 
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Figure 3.  Observation of staircase effect in determination of dominant fractal dimension of G4 of Sierpinski 
fractal network family using box-covering method with an incompatible linear growth rule.
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Figure 4.  Observation of staircase effect in determination of dominant fractal dimension of G4 of Sierpinski 
fractal network family using sandbox method with an incompatible linear growth rule.
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estimation errors when linear regression is performed in Eqs (13) and (17) to determine numerically the 
multi-fractal spectrum.

These two simple examples verify our analytical prediction in our analysis of incompatible growth rule when 
an incompatible growth rule is enforced. In what follows, we show that neither BCANw nor SBw is immune to 
such incompatible growth rule. Again, we use G5 as a case study to compare with our simple settings of our first 
set of experiments. In contrast to a linear growth rule, both BCANw and SBw employ a growth rule L<  = {w1, 
w1 + w2, …, ∑iwi, ∀ wi ∈ W(G)} where W(G) = {w1, w2, w3, …, wn} is an ordered set of all the weights of G such that 
wk ≤ wk+1 for all choices of i. We apply the BCANw and SBw to estimate the dominant fractal dimension of G5. To 
verify the existence of staircase effect when applying BCANw and SBw, we show two case studies in Figs 5 and 6. 
As one can notice, accumulating the link weights to grow either the box or sandbox is still not compatible with 
the Sierpinski fractal network G5. We observe in both experiments that the staircases introduce large bias (1.375 
and 1.327 compared to 1.585) in numerical determination of limits in Eqs (13) and (17). The failure to accurately 
calculate them translates directly to unreliable estimation of the multi-fractal spectrum.

Moreover, we argue that the estimation errors recognized in Figs 5 and 6 do not come from “infrequent anom-
alies” of the experiments. Given a fixed size of the network, repeating the experiments using box-covering or aver-
aging the result over an increased set of sandbox centers does not fundamentally compensate the error introduced 
by BCANw and SBw ignoring finite resolution and link weight distribution of the target network. We performed 
BCANw with random choice of node coloring order and repeated the experiment by 1000 to 11,000 times with 
a step length of 200 to obtain the averaged number of boxes to cover the graph to avoid the bias introduced by 
the deterministic ordering. It should be also noted that the reason we take the average number of boxes comes 
from the practical consideration. It represents the average performance of the BCANw when it is computation-
ally impossible to repeat the experiments indefinitely to obtain the minimal number of boxes given large-scale 
networks. We performed SBw with random choice of the center of sandbox from 5% to 100% of nodes in G5 
with a step length of 1.9%. For each step, the results are averaged over 1000 trials. To illustrate the importance of 
awareness of the finite resolution and link weight distribution on the estimation algorithm, we also performed the 
proposed FBCw and FSBw with the same settings as BCANw and SBw. The results are plotted in Fig. 7.

Figure 5.  Observation of staircase effect in determination of dominant fractal dimension of G4 of Sierpinski 
fractal network family using BCANw.

Figure 6.  Observation of staircase effect in determination of dominant fractal dimension of G4 of Sierpinski 
fractal network family using SBw.
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We show the estimation errors of the four algorithms normalized against the theoretical dominant fractal 
dimension. For box-covering based algorithms (BCANw and FBCw, blue lines), we plot the error against dif-
ferent numbers of trials (1000 to 11000). For sandbox-based algorithms (SBw and FSBw, orange lines), the error 
is plotted against utilization of total number of nodes used as the candidates for the sandbox center. Several key 
observations can be made for BCANw and SBw: i) As the averaging is performed over an increasing number of 
trials or sandbox centers, the estimation error is improved slightly. For BCANw, this can be understood as the 
randomization helps remove the bias of the ordering by which we check the nodes to assign box ID. For SBw, the 
improvement on estimation error is more significant (from 19.3% to 17%) while it eventually approaches that of 
BCANw. This is well aligned with Eq. (17) in that the randomized choice of sandbox is the necessary condition 
for the equivalency of sandbox method to box-covering method. ii) Even though the improvements on estimation 
accuracy are observed for both BCANw and SBw as the averaging helps remove the random bias, they are trivially 
small. The randomization is not able to fundamentally compensate for the estimation errors introduced by their 
incompatible growth rules. Therefore, the staircase effect from the case studies presented in Figs 5 and 6 is the 
intrinsic estimation bias of both algorithms. iii) In contrast, the proposed FBCw and FSBw algorithms consistently 
outperform the BCANw and SBw by a larger margin. The worst-case normalized estimation error of FBCw is less 
than 4% and that of FSBw is less than 7%.

The experimental results show that the state-of-the-art BCANw and SBw methods are not immune to errors 
due to the influence of finite resolution and link weight distribution, hence suffering from the intrinsic estima-
tion bias. It should be noted that these biased estimations can be noticed only if we know the ground truth of 
multi-fractality of the interested network. Such ground truth can hardly be reached if i) we have no access to esti-
mation approaches with optimality guarantee (e.g., optimal box-covering or sandbox methods with compatible 
growth rule) and/or ii) the underlying mechanism that regulates the growth of the network is unknown or chang-
ing over time (e.g., non-deterministic). For weighted fractal networks that extend themselves based on simple 
rules (e.g., Sierpinski fractal family), our theoretical multi-fractal analysis (see Supplementary Material Section 1) 
shows that it is possible to develop an optimal approach based on which the ground truth (i.e., the theoretical 
multi-fractality) can be obtained. However, for most of real-world weighted complex networks there is no such 
ground truth against which we can compare our estimation of multi-fractality and it is practically very difficult 
to develop algorithms with optimality guarantees. As a consequence, the bias, which is very likely to exist when 
BCANw and SBw is used, can hardly be identified hence leading us to unreliable conclusions about the target 
networks and the urgent need for reliable numerical estimation approaches. As a case study, Fig. 7 already showed 
the advantage of the proposed algorithms in estimating the fractal dimension of G5. In what follows, we present 
a more comprehensive set of comparative analysis on the proposed FBCw and FSBw against BCANw and SBw.

FBCw and FSBw for weighted complex network of finite resolution.  To further validate the proposed FBCw and 
FSBw based on the known ground truth about the fractality of the target network, we consider the Sierpinski frac-
tal family with ranged variations in the size of the graph and the skewness of link weight distribution. Formally, 
the skewness of the distribution is a measure of the asymmetry of the probability distribution of a real-valued 
random variable about its mean. We introduce the Pearson’s moment coefficient of skewness γ as the measure of 
the asymmetry in link weight distributions as follows:
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(i) numbers of the repeated trials for box-covering-based methods (BCANw and FBCw) and (ii) utilization 
of nodes as sandbox center for sandbox-based methods (SBw and FSBw). Averaging the estimations over an 
increasing number of box-covering trials or nodes used as sandbox centers brings trivial improvement to the 
intrinsically biased estimation of BCANw and SBw. The proposed FBCw and FSBw provide better accuracy 
by addressing the finite resolution and the skewness of the link weight distribution of the weighted complex 
network.
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κt are the t-th cumulants. The probability distribution with positive skewness usually has a longer right tail or the 
mass of the distribution is concentrated on the left of the distribution.

We extensively measured the skewness of link weight distribution of the G5 and G8 under different copy factor 
(b = 2 to 8) and scaling factor s ranging from 0.95 to 4.5 × 10−4. We report the results in Fig. 8. We can observe 
that: i) the skewness of the link weight distribution of Sierpinski fractal network increases as the scaling factor 
decreases and the size of the network grows. Figure 8(a) shows the skewness of link weight distribution of G5. The 
smaller scaling factor leads to a less asymmetric distribution. The large copy factor further amplifies this skewness 
by placing more mass on the left side of distribution (i.e., links with small weights). Similarly, Fig. 8(b) shows a 
significantly increased skewness in large networks compared to Fig. 8(a). (ii) The skewness of link weight distri-
bution does not increase linearly as the scaling factor decreases. A transition phenomenon can be observed as the 
scaling factor decreases. The skewness grows much slower at large s and seems insensitive to the change of copy 
factors. This observation suggests some potential underlying phase transition of the Sierpinski fractal networks 
as scaling factor decreases. We show a case study in Supplementary Material Section 3 by associating the scaling 
factor to the free energy of a multi-fractal and study its first-order discontinuity. We observe that there exists a 
critical scaling factor s that describes a transition from a mono-fractal phase to a multi-fractal phase (when con-
sidering networks of limited size) of Sierpinski fractal network. (iii) For the same copy factor, the skewness of the 
link weight distribution tends to converge as the scaling factor decreases. The copy factor b dominantly influences 
the skewness of the link distribution when the scaling factor is small.

Figure 8 also shows that the skewness of the link distribution of Sierpinski fractal network is affected by the 
size of the graph, copy factor b and scaling factor s. In order to understand how this skewness has impact on the 
numerical determination of the multi-fractality and compare our proposed FBCw and FSBw with BCANw and 
SBw, we present two comparative experiments. In the first experiment, we consider a set of Sierpinski family 
members ranging from G3 (39 nodes) to G8 (9840 nodes) given the fixed copy factor b = 3 and scaling factor 
s = 1/2. The estimated fractal dimensions are reported in Fig. 9 for BCANw (blue line), SBw (orange line), FBCw 
(yellow line) and FSBw (magenta line), respectively. For comparison purpose, we also show the theoretical dom-
inant fractal dimension of the target networks with the dashed line. Based on the results in Fig. 9, we can make 
the following observations:
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	 (i)	 The proposed FBCw and FSBw are less sensitive to the size of target graph compared to BCANw and SBw. 
The normalized estimation errors of FBCw and FSBw performed on G3 with only 39 nodes are 5.24% 
(averaged estimated fractal dimension = 1.50) and 6.56% (averaged estimated fractal dimension = 1.48), 
respectively. In contrast, the estimation errors of BCANw and SBw are 25.6% (1.18) and 22.4% (1.23), 
respectively. This property of the proposed FBCw and FSBw is very important in practice when used as the 
basis of multi-fractality analysis on real networks for which we have neither ground truth to reason about 
the estimation error nor scaling methods to improve the accuracy. It is critical to have algorithms that have 
no strict constraint on the target network and deliver reliable estimates in various settings.

	(ii)	 As the graph size grows, the accuracy of all four algorithms is improved as a consequence of more observa-
tions obtained to perform the linear regression. This is aligned with Eqs (13) and (17) in that the numerical 
calculation of the limit in both equations is asymptotically equal to the theoretical value given the linear 
regression performed on a network member G∞ of the Sierpinski fractal network with unbounded size. 
However, it should be also noted that the BCANw and SBw still suffer from significant estimation errors 
compared to the theoretical value in spite of a large-scale target network (e.g., G8). Combined with Fig. 8, 
one primary influencing factor is the increased skewness of link weight distribution of a larger network 
that will worsen the performance of box-covering and sandbox algorithms with no compatible growth 
rule. In contrast, FBCw and FSBw quickly converge to the theoretical value with very small errors.

To further corroborate our discussion on the adverse impact of skewed link weight distribution on the accu-
racy of BCANw and SBw, we present the second set of experiments. The experimental setup is motivated by the 
observation we made in Fig. 8 that the skewness of link weight distribution is dominantly affected by the copy 
factor b. Therefore, we choose a member network from the Sierpinski fractal network family as the seed network. 
We adopt different values for the copy factor b with a fixed scaling factor s = 1/3 to generate an array of fractal 
networks. Then BCANw, SBw and the proposed FBCw and FSBw are employed to estimate the dominant frac-
tal dimensions of all generated networks. Due to the constraint of the computing power, we choose G5 as seed 
network and the copy factor ranges from 2 (62 nodes) to 8 (37448 nodes). We report in Fig. 10 the normalized 
estimation error against the corresponding skewness of the distribution γ for BCANw (blue line), SBw (orange 
line), FBCw (yellow line) and FSBw (magenta line), respectively. Figure 10 can be interpreted as follows. First, 
by increasing the copy factor one can notice a further skewed link weight distribution. As a result, the estimation 
accuracy of BCANw and SBw degrades accordingly. The normalized estimation error of BCANw grows from 
6.79% (γ = 4.0103, b = 2) to 15.92% (γ = 20.2235, b = 8). Similarly, the degradation of estimation accuracy of SBw 
is worse than BCANw. The error increases from 10.01% to 17.2%. Second, the performance of FBCw and FSBw 
is not adversely impacted by the increased γ. Interestingly, the accuracy is improved as the copy factor increases. 
This improvement is discussed in our first set of experiments as a result of larger set of observations obtained for 
more reliable calculation of limit in Eqs (13) and (17).

It is very important to note that both BCANw and SBw underestimate the dominant fractal dimension, which 
is predicted by our analytical findings in estimation errors analysis section. The incompatible growth rule of 
BCANw and SBw gives rise to the larger set of stagnant observations (i.e., wider staircase) when the skewness 
is positively higher. A network with higher positive skewness of link weight distribution has more links with 
smaller weights. SBw grows the sandbox by accumulating the link weights in an ascending order. In presence of 
highly (and positively) skewed link weight distribution, it might take a large amount of iterations to grow from li 
to li′ such that the probability measure μ(Bi(li)) is not equal to μ(Bi(li′)). All the observations generated between li 
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Figure 9.  Estimated dominant fractal dimension of Sierpinski fractal network family (G3 to G8 with b = 3 and 
s = 1/2) using BCANw, SBw, FBCw and FSBw. As predicted by Eqs (13) and (17), the estimation accuracy is 
improved as the numerical calculation of the limit by the linear regression is performed over a growing set of 
observations. However, the increased skewness of link weight distribution prevents BCANw and SBw from 
approaching the theoretical value as quickly as the proposed FBCw and FSBw do.
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and li′ become stagnant observations or staircases. The more positively skewed the distribution is, the wider the 
staircases will be and SBw is more likely to underestimate fractal dimension of the network, which is well aligned 
with our observations in Fig. 10. For the similar reason, even though BCANw grows the box size by accumulating 
the unique distance in an ascending order, yet we have seen in Fig. 5 that BCANw can not eliminate the staircase 
effect thus it is prone to underestimate the fractal dimensions as the network becomes more skewed in terms of 
the link weight distribution.

We have validated the proposed FBCw and FSBw by showing we can obtain fractality estimation of better 
accuracy over the established BCANw and SBw for the weighted complex networks. In the following discussion, 
we will employ the proposed FSBw and FBCw for numerical identification of multi-fractality in a set of real-world 
complex networks.

Multi-fractal analysis of real networks.  Vision and objectives of the multi-fractal analy-
sis.  Multi-fractality is deeply rooted in the intrinsic heterogeneity of the networks. More specifically, the 
non-uniformness of the network structure serves as a major source for a spectrum of distinct self-similarities 
embedded in different regions of the network at a variety of scales. This embedded heterogeneous self-similarities 
can be identified through the multi-fractal analysis. Intuitively, multi-fractal analysis can be understood as a 
microscope with an array of distorting filters that pick up a set of distinct scaling behaviors from correspond-
ing parts of the network by changing the distortion factor q. A perfect geometric or topological fractal (e.g., 
fractal networks) shares the same scaling behavior (i.e., the dominant fractal dimension) that is immune to the 
changes of q, suggesting a consistent self-similarity across the network. Such geometric or topological consist-
ency in self-similarity is usually a result of a common underlying growing rule throughout the scales of the 
network considered (e.g., Sierpinski fractal network). However, such well-preserved growth rule is rarely found 
(e.g., non-fractal networks) or inconsistent (e.g., coexistence of small-world and fractal properties with phase 
transitions) in the real-world networks due to the complicated network formation process. This generation pro-
cess cradles for the intrinsic heterogeneity in both the structural (e.g., network clusters, communities, hubs) and 
dynamical (e.g., network control, robustness) aspects of the real-world networks. In the following discussion, we 
will focus on the structural aspects of a set of weighted real-world networks to answer the following three key 
research questions:

	 (i)	 Whether the multi-fractal scaling behaviors can be observed in the target network and how can they be 
exploited for betterment of our understanding on the structural properties of real networks?

	(ii)	 What is the contribution of link weight to such scaling behaviors if verified in (i) and how will the change 
of link weight fundamentally impact the observed multi-fractality?

	(iii)	 How can the identification of the multi-fractality be leveraged to supplement our characterization of the 
real-world complex networks and provide a novel perspective and a practical probe for unveiling their 
under-explored structural organization?

To study these questions, we choose two weighted real-world networks. The first weighted network is a scien-
tific collaboration network in astrophysics with 16705 nodes and 111252 edges. Each node represents an author 
and an edge connects two nodes if they published one or more papers together. The weight between any pair of 
nodes is determined by,

∑
δ δ

=w
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i k j k

k
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Figure 10.  Normalized estimation error of BCANw, SBw, FBCw and FSBw under different skewness γ of link 
weight distribution by changing the copy factor b of G5 from 2 to 8. (i) The performance of BCANw and SBw 
degrade as the γ grows. (ii) BCANw and SBw tend to underestimate the dominant fractal dimension which is 
aligned with our theoretical prediction in analysis of the staircase effect. (iii) The proposed FBCw and FSBw 
tends to be insensitive to the change of γ and benefit from the increased size of the target network.



www.nature.com/scientificreports/

1 1Scientific REPOrTS | 7: 7487  | DOI:10.1038/s41598-017-07209-5

nk is the number of authors of k-th paper. δi,k = 1 only if author i co-authored the k-th paper and it is 0 oth-
erwise. The weight quantifies how frequently and closely two authors collaborate. The second weighted network 
comes from the Budapest Reference Connectome v3.0 which generates the common edges of the connectomes 
of 1015 vertices, computed from the MRI of the 477 subjects of the Human Connectome Project’s 500-subject 
release. For each edge ei,j, the weight wi,j is based on the electrical connectivity of two nodes and calculated by the 
number of fibers n divided by the average fiber length l.

Space-localized multi-fractal scaling.  To address the three major research questions, we consider three sets of 
experiments. In the first set of experiments, we study whether the target weighted networks in two different 
domains show any fractal or multi-fractal scaling behaviors. Towards this goal, we applied the proposed FBCw to 
both networks in order to learn the scaling dependence as expected by Eq. (13) when the distorting factor q is var-
ied within a finite range from −10 to 10 with a step length of 0.1. A key observation on Eq. (13) is that the role of 
the distorting factor q connects primarily to the identification of the non-uniformness of the probability measure 
μ(B) defined on the support of the weighted networks. Such non-uniformness of the measure and their distinct 
scaling dependence over the interested scales l arbitrates the existence and properties of the multi-fractality in the 
target network. If the measure μ(B) is otherwise uniform at all scales, Eq. (13) will not be affected by the choice of 
q, hence learning only the mono-fractality of the support.

Motivated by such observations, we first look at the weighted collaboration network and report in Fig. 11 the 
distribution of the measure μ(B(l)) over the partitions (i.e., boxes) of different scales (i.e., size of the box) to give 
an undistorted overview of the non-uniformness of the measure. Several key observations are due: i) the distri-
bution of the measure μ(B(l)) changes from a near-uniform distribution to a peak shape as the scale increases. 
Alternatively stated, the probability to find any node in a given box at a specific scale l is also a function of the 
choice of that box. At almost each scale, there exists a partition that contains the dominant number of nodes. This 
scaling skewness of the measure strongly suggests the structural heterogeneity of the target network and serves 
as a necessary condition for the emergence of multi-fractality. ii) The rightmost X-axis boundary of the measure 
distribution marks the minimal number of partitions of scale l required to cover the target network. By learning 
the shrinking law of these boundaries, we can have a straightforward way to verify the existence of fractal scaling 
behavior. More precisely, we can notice that the rightmost boundaries of the measure do not shrink as quickly as 
an exponential function but following a power law (which is much slower as indicated in Fig. 11). The corrobora-
tion of these two observations demonstrates the existence of multi-fractal behavior in the collaboration network.

To further investigate the mulitfractality of the collaboration network, we performed the follow-up experi-
ment to report the scaling dependence between ∑ μ(B)q against the normalized box size l/L in a log − log plot 
under different distorting factors q. For ease of visualization and readability, we construct the plots by choosing 
only the cases when q is integer-valued. The results are plotted in Fig. 12. We can observe that the logarithmic 
distorted accumulative measure log(∑ μ(B)q) has a linear dependence that is almost immune to the changes of 
negative q on the normalized scale log(l/L), suggesting a mono-fractal scaling behavior. However, such linear 
dependence still holds and is subject to remarkable changes as a function of positive q, which is an indicator 
of the existence of multi-fractality. To understand this, we need to link this observation with Eq. (13). Negative 
distorting factor q places greater weights to the partitions with smaller measures whereas does the opposite when 
positively valued. In other words, we are able to learn distinct scaling dependence of different regions of the 
measure distribution, which again correspond to different parts of the target network. In our case when q is 
positively valued, the observed multi-fractal scaling dependence corresponds to the partitions of the collabo-
ration network with dominant probability measures. In contrast, the mono-fractal scaling behavior is strongly 
related to partitions with small probability measures. The two sets of distinct scaling behaviors not only verify 
the multi-fractal scaling dependence of target network but also suggest a co-existence of multi-fractality and 
mono-fractality in the same network while belonging to different parts of the network. To understand this, we 
need to look at how the partition is done to tile the target network with box-covering method. Eq. (13) holds only 
if the covering is optimal (i.e., with minimal number of boxes, see Definition 5). To achieve this, each box has to 

0 1000 2000 3000 4000 5000 6000 7000
Partition ID

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

M
ea

su
re

(B
i(l)

)

Scale 10
Scale 20
Scale 30
Scale 40
Scale 50
Scale 60
Scale 70
Scale 80
Scale 90

Near-uniform

Highly skewed

Figure 11.  Distribution of probability measure as a function of scale of multi-fractal analysis on collaboration 
network.



www.nature.com/scientificreports/

1 2Scientific REPOrTS | 7: 7487  | DOI:10.1038/s41598-017-07209-5

be as compact as possible such that it covers the maximal possible number of nodes in a connected component. 
Such connected components might coincide with regions of the network that are highly clustered such that their 
scaling follows power-laws characterized by different exponents, hence exhibiting multi-fractal behaviors. In con-
trast, the non-compact box covers nodes that failed to be reached by nodes in these connected components and 
demonstrate a shared mono-fractal scaling. In other words, it is the intrinsic variations of the network structure 
that contribute to the observed co-existence of distinct scaling dependence such that the observed multi-fractal 
scaling dependence is space-localized.

The exact mathematical explanation for the coexistence of mono-fractality and multi-fractality calls for a more 
sophisticated understanding of the underlying network formation mechanism, which is beyond the scope of this 
work and remains as a future extension.

Scale-localized inconsistent multi-fractality of weighted real networks.  We not only observed the inconsistency 
of scaling behaviors in different regions of the network, but also we noticed that such scaling is not consistent 
over the interested scales even when the network exhibits same type of scaling (mono-fractal or multi-fractal) 
with a fixed q. More specifically, we observed the existence of a finite range of scales at which a localized scaling 
behavior holds. To better illustrate this, we have specifically picked cases when q = −6, 0, and 6 and reported 
the scaling dependence in a log − log plot for each of them. The results are shown in Fig. 13. We use the dashed 
blue lines to show the range of scales where the fractal scaling appears and the red dashed lines to show out-
liners. Consequently, we can make the following two observations: (i) Fig. 13(a–c) consistently show that the 
self-similar property does not hold at all scales of networks and it might only show up in a finite range of scales. 
Phase-transition behavior can be observed on boundaries of this range. Moreover, such phase transition phe-
nomenon also holds under a variety of distorting factor q. In other words, the multi-fractality of the collaboration 
network is scale-localized. This finding resonates with our claims at the beginning of this section that there is no 
common underlying growth rule for the generation of real networks to produce simple self-repeating structures 
at all scales of the real networks. As we observed in Figs 12 and 13, the self-similarity is neither spatially consistent 
across the network nor well-preserved at all scales of the network. (ii) In such cases, it is not sufficient to have an 
algorithm that can reliably estimate the scaling dependence when it exists. It is also primarily important for the 
algorithm to detect the boundary of scales between which such scaling dependence holds and make a localized 
estimation accordingly. We argue that BCANw ignored such localized fractal scaling by the implicit assumption 
that scaling behavior holds at all scales of the complex network. In contrast, our proposed FBCw is able to locate the 
phase-transitional scales based on which a reliable estimate is therefore made. To demonstrate this, we performed 
the BCANw and FBCw on the same network under identical experimental settings. We plotted the fitted linear 
functions by two algorithms in Fig. 13(a–c). Biased by the implicit assumption that fractal scaling holds at all 
scales, BCANw tends to average the estimates by considering all the observations, irrespective of their contribu-
tion to the fractal scaling behaviors. In comparison, the proposed FBCw detected the locality of multi-fractality 
and ignored the outliners in the observations not belonging to the range where fractal scaling holds and fit a linear 
function only to those within it. The difference between the two fitted lines shows the estimation bias of BCANw 
by assuming a fractal scaling held at all scales.

We have repeated the above experiments on the Budapest human connectome network and report the results 
in Figs 14 and 15. Figure 14 depicts the uniform distribution of probability measure of partitions for the Budapest 
brain network. Similar to our observations on the collaboration network, the distribution of measure shifts from 
a near-uniform distribution to a peak shaped non-uniform distribution, suggesting the underlying structural 
heterogeneity of the brain network, which serves as the major source of multi-fractality. By learning the shrinking 
behavior of the rightmost boundary of the measure distribution as the size of the box increases, one can observe 
a power-law dependence which is verified by the subfigure in Fig. 14 where we plot the scaling dependence 
between the accumulative measure ∑μ(B)q and the normalized scale l/L in a log − log scale. Figure 14 is well 
aligned with our findings in the collaboration network. Budapest brain network also exhibits a localized fractal 
scaling over the ranged delimited by a pair of dashed blue lines, suggesting an inconsistent power-law scaling 
behavior valid only over a finite range of scales. The fractal organization of brain network is well reported in the 
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related literature. However, few prior efforts have identified the localized fractal scaling given a weighted brain 
network. To study the multi-fractality of the Budapest brain network, we performed the multi-fractal analysis on 
it and reported the scaling dependence under different choice of distorting factor q in Fig. 15. We can identify the 
similar co-existence of mono-fractal and multi-fractal scaling as we did in collaboration network. The network 
regions that correspond to the partition with small measure follow dominantly a near-invariant power-law scaling 
dependence on the scale of the box. In contrast, the collections of densely connected nodes (e.g., connected com-
ponents) compactly covered by the box shows a varying power-law dependence as q positively changes. However, 
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phase transition phenomenon consistently holds under all distorting factor q, suggesting a localized multi-
fractality.
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a major distinction from the collaboration network is the range of scales where such power-law holds. As one can 
notice, there exists a scale around −1 depicted by the grey dashed line such that the fractal scaling is not respected 
any more. No linear function could accurately explain the scaling dependence after this scale. This is aligned with 
our finding in Fig. 14, suggesting a scale-localized fractal scaling behavior that is not globally consistent.

Link weight to dictate the mulifractality.  In the second set of experiments, we investigate how the link weights 
could fundamentally influence the underlying multi-fractality in both networks. Towards this end, we trans-
formed both networks into binary (i.e., unweighted) networks by removing the link weight between any pair 
of connected nodes. From the geometrical perspective, the link weights on the graph perform a scale transfor-
mation to the graph by increasing or decreasing the length of the links when spatially embedded while keep-
ing its topological feature intact. By removing the link weights, we are studying existence of the multi-fractality 
from a pure topological perspective to understand the role of link weights via comparative analysis. More spe-
cifically, we measured the distribution of the probability measure and studied the scaling dependence between 
minimal number of boxes covering the network and the scale of the box. Figures 16 and 17 summarize the 
results for collaboration network and Budapest brain network, respectively. Thus, we make the following obser-
vations: i) The distribution of probability measure follows a similar changing pattern as the scale of box changes, 
i.e., from a near-uniform shape to a highly non-uniform shape. This is well aligned with our claims that such 
non-uniformness is a reflection of structural heterogeneity determined majorly by the topology of the network, 
which stays intact during our transformation. ii) However, the scaling dependence is fundamentally changed and 
we observed a total loss of fractal scaling behavior. Instead, the scaling can be well explained by an exponential 
law, indicating that both the collaboration network and the brain network behave as the well-known small-world 
networks. Compared with their weighted versions, the role of link weight is powerful in dictating the existence 
of multi-fractality in real networks. Consequently, this finding not only calls for developing new algorithms for 
estimating reliably the multi-fractal characteristics of weighted complex networks, but also highlights the impor-
tance of understanding the structural implications of the identified multi-fractality. This brings us to the following 
discussion on the third research question of this work.
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Localized scaling based network characterization and community detection.  In the third set of experiments, we 
study how the multi-fractal analysis framework can be employed to characterize the complexity of networks 
beyond simply reporting whether they follow a multi-fractal/fractal scaling as many previous works did. We use 
the multi-scale analysis to quantify the global complexity of the network from a microscopic point of view. Based 
on the analysis, we proposed a general network characterization framework based on the localized scaling feature 
space constructed by learning the localized scaling feature vector for each node.

We noticed in the first two sets of experiments that a real world network is complex in the sense that there 
exists no common growth rule that governs the evolution of the network generation process consistently in both 
the scale and space domain. Similar to our two target examples when certain variation or transformation intro-
duced into the network, the fundamental structural behaviors of the network are subject to remarkable muta-
tions. No single model or characterization is sufficient to fully understand the structural variations and their 
resulting complexity of the network, hence calling for a set of expressive characterizing strategies that supplement 
each other to give an unbiased and well-quantified overview of the complex networks. We strongly believe that 
multi-fractal analysis is a powerful framework to learn the localized scaling behavior and quantify the structural 
variations of the complex networks.

On one hand, at the microscopic level, the complexity of the network is embedded in the form of different 
chemical environments (i.e., the outer environment surrounding a given node) that each node interacts at different 
scales. More intuitively, the structural variations of the network can be understood as distinct views that a node 
observes with a lens of variable focal length ranging from the minimal path distance of the network up to its 
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diameter. If all the nodes share the identical viewing experiences with such lens, then the network should have no 
structural variations like an unweighted lattice which can be fully characterized by its dimension. Otherwise, such 
microscopic differences in views at a variety of scales, when integrated collectively, translate into the observed 
structural variations from a global perspective that require multifaceted characterizations.

On the other hand, multi-fractal analysis framework is exactly one of such multi-scale techniques to study 
and quantify the microscopic proxy of network complexity in terms of structural variations. From the mathe-
matical point of view, Eqs (13) and (17) suggest the structural variations (i.e., structural heterogeneity and link 
weight distribution) of the networks are the major contributor of the observed scaling behaviors in the complex 
networks. These variations are distributed in an inhomogeneous way and repeat locally and imperfectly (i.e., 
space-localized) within a finite range of scales (i.e., scale-localized). Reversely, multi-fractal analysis also provides 
a way to characterize such structural variation by identifying and quantifying the scaling behaviors (again, not 
necessarily fractal and/or multi-fractal). More specifically, the proposed SBw method for the weighted complex 
network is one of such quantifying tools which are able to measure the microscopic differences of the chemical 
environments for a given node at varied scales by learning its localized scaling dependence from where it is located.

This underlying connection between the multi-fractal analysis and the microscopic view of the network com-
plexity leads us to the straightforward implementation of our proposed localized scaling based network charac-
terization approach. More precisely, we start with a given node k of the network and perform the SBw centered at 
it with q = 0 to learn the scaling dependence it experiences as we increase the scale l of the sandbox up to the 
network diameter L. This results in a localized scaling feature vector of tuples = ...Τ Τ Τ Τ

S s s s[ , , , ]k k k k n,1 ,2 , , where 
sk,i = (logNk(B(li)), log(li/L)). Sk is populated by the sampled logarithmic scaling dependence between the normal-
ized box scale l/L and the number of nodes covered by the sandbox centered at k, hence localized. We repeat the 
process for every node of the network to construct a localized scaling feature space = ∈S SG k( ) { ]}k  for the 
given network G. The localized scaling feature space S G( ) is uniquely spanned by the localized scaling feature 
vectors of different network nodes. Its structure and properties are determined by the original network. Therefore, 
S G( ) can be leveraged to characterize the network from a scaling dependence perspective. To the best of our 
knowledge, this is the first time that the localized scaling behavior of network is proposed as a quantitative profil-
ing approach to characterize the structural characteristics of the complex network.

An immediate application of this profiling approach is an easy integration with unsupervised machine learn-
ing algorithms to perform label-free detection of the network communities. The basic assumption is that the 
nodes sharing the same or similar scaling dependence localized to where they stand in the network should reside 
in similar chemical environments therefore belonging to the same network community. As a proof of concept, we 
performed the simple yet effective unsupervised k-means clustering algorithm with elbow method for network 
community detection on the Budapest human connectome and visualized the result in Fig. 18. This community 
detection approach identifies seven communities (colored differently in Fig. 18). The detection process is totally 
label-free with no prior knowledge of the functionality and locations of brain components and solely based on 
localized scaling feature vector of each node. Several key observations are due: i) brain network is symmetric so 
are the communities detected by the proposed approach, which is aligned with anatomical structure of human 
brain. ii) The dominant community (purple nodes) detected corresponds to the densely interconnected brain 
functional cluster formed by left and right Putamen, left and right Caudate, left and right Thalamus together with 
left and right Hippocampus. This community is consistent with the biological facts. The Putamen and Caudate 
are anatomically correlated to form the basal ganglia which is well known to be strongly interconnected with the 
cerebral cortex, thalamus, and brainstem to perform the control of voluntary motor movements and procedural 
learning. Thalamus is also manifoldly connected to the Hippocampus via the mammillo-thalamic tract and serves 
as an important relay station to propagate the sensory and motor signals to the cerebral cortex. This detected 
community serves as the major bridge between the two hemispheres and connectivity hubs to other functional 
entities thus sharing the similar chemical environment. iii) It can be noticed that the nodes belonging to the same 
community might not be necessarily immediate neighbors in contrast to the conventional modularity based com-
munities. This is because the nodes are clustered based on their scaling dependence which is determined by the 
surrounding chemical environment at different scales. Therefore, it is possible that two nodes that are physically 
separated share the similar chemical environment to be labeled in the same community. For brain network, such 
chemical environment is a consequence of biological network evolution process and might have important func-
tional implications that need to be explored in the future. In this sense, the concept of network community has 
been extended to characterize the node of the network from its relative spatial relation to the rest of the network. 
We hope the proposed localized scaling based network characterization and community detection can introduce 
a new research perspective for betterment of our understanding of the real world complex network in different 
domains.

Discussion
The multi-fractal analysis has been long established to describe physical phenomena and objects by studying 
statistical scaling laws. The major attraction of its application stems from its capability to characterize the spatial 
and temporal irregularities that euclidean geometry fails to capture in real world physical systems, by an elegant 
interpretation of power-law behaviors. Its demonstrated effectiveness in characterizing complex systems moti-
vates us to extend its formalism to the analysis of complex networks. However, the multi-fractality of weighted 
complex networks, the role of interaction intensity, influence of the underlying metric spaces and the design of 
reliable multi-fractality estimation algorithms are rarely discussed and remain an open challenge.

In this paper, we provide strong theoretical and experimental evidence for the intrinsic estimation bias of the 
previously proposed algorithms introduced by the incompatible growth of box scales and the implicit assump-
tion that fractal scaling behaviors, if exist, hold at all scales of the networks. To overcome these disadvantages, 
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we proposed two algorithms that can reliably estimate the multi-fractality of the network based on the critical 
points that correspond to a power-law scaling such that (i) it avoids box scales that lead to stagnant probability 
measures (i.e., staircase effect) and (ii) identifies the range of scales where a power-law scaling holds. In addition, 
we demonstrated that the estimation bias of the previously proposed algorithms deteriorates as a function of link 
weight distribution skewness and can not be compensated by either repeating the experiments or increasing the 
size of the networks (irrespective of the fact that it is practically difficult to scale the real world networks with-
out changing its properties). More importantly, our work showed that the estimation can hardly be trusted if it 
assumes the existence of a scaling law that rules the network formation process throughout the scales. We provide 
real world weighted network examples where the observed distribution of scaling behaviors is localized in both 
space (e.g., co-existence of mono- and multi-fractal scaling dependency) and scales (e.g., power-law scaling valid 
over a finite range of scales).

Localized scaling behaviors reflect the fact that the network formation process of these networks is neither 
governed by a self-repeating iteration function system (IFS) that produces simple mono-fractal networks (e.g., 
Sierpinski fractal networks) nor a distribution of these IFSs throughout the scales of the network, which leads to 
a multi-fractal scaling behavior described by Eqs (13) and (17). Moreover, the formation of real world complex 
networks corresponding to different scales are constructed at different time points during the network formation 
process. The discontinuity of a power-law scaling at different scales therefore suggests that the network formation 
process is dynamic governed by heterogeneous forces as opposed to stationary models where either a fixed linking 
probability is assumed throughout the process (e.g., random graph theory) or a static linking policy (e.g., prefer-
ential attachment) is governing.

Furthermore, the network formation process and the resulting heterogeneous characteristics of real world 
networks also can not be fully explained from a pure structural and topological perspective. It is necessary to 
understand the role of the interaction intensity among the network components, the associated weight assign-
ment process over time (e.g., how the weights change over time) and the metric space implicitly implied by the 
nature of these interactions (e.g., affinity relations, physical connectivities, causal dependences). We corroborate 
our argument with strong supporting evidence. More precisely, we identified both theoretically and experimen-
tally two fundamental fractality transition phases that are governed by the intensity of network interactions (i.e., 
weights) and the embedded metric space defined on these networks:

Figure 18.  An example application of the proposed localized scaling feature space for characterization of 
weighted complex network. Interfaced with the unsupervised machine learning based clustering algorithm, the 
localized scaling based community detection is able to identify the brain network communities consistent with 
the anatomical facts. The detected communities are not limited to neighboring nodes but based on their relative 
spatial relations to the rest of network with potential functional implications.
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	 (i)	 The scaling of the weights in a network formation process governed by an IFS determines the fractality of 
the network at a given scale. We reported the theoretical upper bound for the scaling factor s that trans-
forms the network into a mono-fractal network given a) an IFS that leads to a family of Sierpinski fractal 
networks of unbounded size and b) the box size of an optimal covering method can shrink at same rate 
as the network grows. We argue that the observed multi-fractality of Sierpinski fractal networks by prior 
works does not necessarily come from a distribution of fractal scaling behaviors (i.e., multi-fractality) but 
can result from any deviation from these conditions (e.g., limited size and network growth rate). As a sim-
ple synthetic fractal network as the Sierpinski fractal network is, the weights and their distribution exhibit 
surprisingly powerful impact on the fractality of the networks. In a set of more realistic experiments, we 
further showed:

	(ii)	 The weights and the metric space defined on real world networks arbitrate the existence of the fractality. 
By converting the collaboration network and the human brain connectome into binary networks, we 
decoupled the metric spaces defined on both networks from the link weights and transformed them to be 
a function of network topology alone. We demonstrated the removal of observed localized fractal scaling 
behaviors and an exponential scaling law (i.e., small-world property) takes place after the transformation 
of both networks. While keeping the topological configuration intact, the redefinition of metric space 
fundamentally altered the statistical scaling law of both networks.

This observation is not only important for the betterment of our understanding of the formation process of 
the real networks as the scaling behaviors reveal how the network grows. It is also a primary key to the network 
dynamics as the scaling behavior of the network plays a key role in governing the flows of the information across 
the network such as the rumor spreading in social networks or the protein exchange in a gene regulatory network. 
In these real world networks, the interaction intensity usually changes at a much more frequent pace compared to 
the changing rate of the network topology. For instance, a traffic network might stay structurally unchanged for 
a quite long time however the traffic volume (i.e., interaction intensity or weight) over its links varies constantly 
and fiercely. Given the fundamental role of link weights and metric space in determination of the scaling law, the 
time-varying network interactions can consequently impact the dynamics of the network. As a result, the failure 
to recognize the importance of link weight and metric space analysis will intrinsically limit our capability to char-
acterize, predict and control the network behaviors.

Moreover, the variations of network scaling behaviors closely connect to the change of network properties, 
which leads us to solve a reverse research problem to characterize and quantify the heterogeneity of weighted 
complex networks by learning the scaling variations from a microscopic perspective of the network. We provide 
a general network characterization framework motivated by the observed locality and phase transition behaviors 
of the network scaling dependency. This characterization framework interprets the weighted complex network 
by the construction of a scaling feature space spanned by the localized scaling feature vectors determined both by 
the surrounding environment of individual nodes and the underlying metric space defined on the network. The 
proposed characterization is general and not limited to complex networks that are fractal or multi-fractal. It can 
be easily interfaced with subsequent analytical tools to unveil the intrinsic properties of the weighted complex 
network. As an important application, we showed the proposed characterization framework can be employed to 
learn the network communities that are consistent with our biological knowledge of the human brain connectiv-
ity patterns.

A very important aspect to emphasize is that the proposed characterization framework actually gives a general 
similarity metric within and between networks, which can be potentially leveraged as a basis for both structural 
and dynamic analysis on networks in a wide spectrum of applications. For instance, it can be interfaced with brain 
connectivity network constructed from real-time EEG measurements to identify tasks that correspond to differ-
ent sets of scaling feature vectors, or to make both diagnosis and predictive analysis on brain-related pathological 
anomalies (e.g., traumatic damage, epilepsy) by learning corresponding scaling feature subspace. The proposed 
characterization framework can also be employed as self-similarity metric that enables the detection of anomalies 
or attack by comparing the learned scaling feature space to that during its normal operation mode in real time. 
In such cases, the benefit of the proposed characterization framework comes from its capability to quantify the 
variation of interaction intensities (e.g., change of transmitted power between grid node or maliciously injected 
traffic to overload the server) while no significant network structure mutation is present. On a different direction, 
this proposed framework also enables the fine-grain similarity analysis among a set of nodes in the same network. 
Aside from the presented network community detection based on this fine-grain similarity analysis, it is also 
useful to combine with domain knowledge (labels and attributes of nodes, e.g., functionality of brain region) to 
drive an informed exploration (e.g., any functional similarity between brain regions that are topologically apart 
but share the same scaling law). These examples may only constitute a small portion of its potential applications 
which necessitate our ongoing research efforts to extend the presented work to broader domains.

Methods
Multi-fractal analysis.  Formally, let us consider a geometrical object tiled by boxes B(l) of size l. Let us 
define L, M0 and Mi(l) as the linear length of the fractal, the total mass and the mass of the i-th box of size l, 
respectively. It is possible to determine N(M) that corresponds to the number of boxes sharing the same mass M 
given the object tiled by B(l). The probability density function of mass thus could be estimated by histograms in a 
double logarithmic plot ln(N(M)) against ln(M/M0) under different choice of box sizes l. The multi-fractal formal-
ism33 states that if these histograms fall onto the same universal curve after rescaling both coordinates by a factor 
ln(l/L), the object is a geometrical multi-fractal34. Alternatively stated, the above property holds if
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α~M M l L( / ) (4)0
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α α−~N l L( ) ( / ) (5)f ( )

as the (l/L) → 0, where α is the Holder exponent which can be determined by,
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μ(B) is an arbitrary measure defined on the support while it is equal to the probability to find a point in a given 
box. N(α) is the number of boxes with holder exponent α. f(α) is the singularity or multi-fractal spectrum if 
multi-fractal formalism holds35, 36. The multi-fractal spectrum shows the distribution of fractal dimensions across 
different sets of points sharing the same Holder exponent. Roughly speaking, it captures the variations in scaling 
behaviors of different subcomponents of the object. Equivalently, this variation could be captured by generalized 
dimension D(q),
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as we take the limit l/L → 0. τ(q) is called as mass exponent. Distorting exponent q can be arbitrarily real-valued 
which serves to distinguish the irregularity in various regions of the object by magnification of measures scaled 
differently. The equivalence between the pair of (f(α),α) and (τ(q), q) is decided by the Legendre transformation,

α τ
=

d q
dq
( )

(9)

α τ τ= −f q d q
dq

q( ) ( ) ( )
(10)

For a fractal object that can be characterized by a single fractal dimension, Eq. (7) suggests a sufficiently 
minimal fluctuation in measure μ(Bi(l)) across all boxes of different sizes l. This directly translates to a narrowly 
distributed Holder exponent α and a linear dependence between mass exponent τ(q) and distorting exponent q. 
In contrast, a multi-fractal is rich in fluctuations of measure μ and have a spectrum f(α) widely spanned over α 
horizon and a non-linear τ(q) as a function of q. These fluctuations are to be captured and magnified via different 
choices of distorting factor q. To give some intuition, when μ is a probability measure as in box covering process, 
bigger weights in the summation of Eq. (7) will be placed to smaller probabilities if q is negative and to greater 
probabilities otherwise. The generalized fractal analysis approach is also well known as multi-fractal analaysis 
(MFA) that has wide applications due to its power to capture the heterogeneity underlying the structures of the 
objects.

FBCw and FSBw.  Box-covering and sandbox methods form the basis for MFA on weighed complex network 
with the following definitions.

Box covering method tiles the object of interest with boxes B(l) of different sizes l. An arbitrary measure 
μ(Bi(l)) is defined for each box Bi that serves as support. Eq. (7) considers the case when μ is a probability meas-
ure such that,
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when the limit l → 0 is considered. Therefore, the generalized fractal dimension calculated by box-covering 
method is given by,
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−→D q lim
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Eq. (13) determines Dbc(q) asymptotically from the scaling of number of non-empty boxes of decreasing size l.
Sandbox method investigates the scaling of an arbitrary measure μ within a region embedded in a metric 

space, i.e., a sandbox centered at certain point, as a function of its radius l. Formally, let XX be the support of the 
measure μ. Let × →XX XX RRD:  be a metric space defined on XX. For each ∈ XXxi , we can define the following 
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probability measure Mi(l)/M0 as the chance to find an element ∈ XXxk  with its distance to xi in metric space D less 
than l,
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≠
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0 0

0

Where = XXMo  and H is the heaviside function. However, it is known that the relation µ ~l l L( ) ( / )i
D, where D 

is the fractal dimension of the object, does not hold for all choices of sandbox centers as l → ∞ unless the center 
is the origin of the fractal34. Actually, sandbox method is equivalent to box covering method only if the choice of 
sandbox is randomized. We can rewrite Eq. (11) as,
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Therefore, the box-covering method can be understood as a sandbox method when the average is taken based 
on the measure distribution Mi(l)/M0. Alternatively stated, the sandbox is equivalent to box counting only if 
choice of sandbox is randomized such that an estimate of E[(Mi(l)/M0)q−1] can be obtained. Denote 〈.〉 as the 
operation to take average. We have,
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We propose the finite box-covering method (FBCw) and the finite sandbox covering method for weighted 
networks (FSBw) to address the intrinsic estimation bias introduced by the incompatible growth rule of the box 
in numerical determination of multi-fractality of complex network with finite resolution. Formally, a complex 
network with a finite resolution is defined as follows,

Definition 6 (finite resolution): For a given weighted complex network G = (V, E) with distance metric 
= + + +d w w wmin{ }i j i k

p
k k
p

k j
p

, , , ,n1 1 2
. The resolution of G is finite if and only if the shortest path distribution 

= ≤F l P d l( ) { }d i j,i j,
 has a discrete support set = | ≠ ∀ ≠ ′′L G l F l F l k k( ) { ( ) ( ), }k d k d ki j i j, ,

.
The fundamental principle of FBCw and FSBw is to locate the scales of box that correspond to the compatible 

growth rule which is a function of the complex network G. For each node vi, the local compatible growth rule on 
G can be easily found by a strictly ordered set =< L l l l{ , , , , }v n, 1 2i

 where lk+1 > lk and ⊆< LL G( )v, i
. However, 

it is usually difficult to find a shared compatible growth rule across the network for the sandbox method or to 
analytically derive the optimal box-covering strategy as we did for the Sierpinski fractal network governed by a 
simple generation rule. In this context, we propose a data driven filtering method to interface with the 
box-covering and sandbox method for FBCw and FSBw. Both algorithms stand as a two-step process. In the first 
step, the accumulative measure ∑μ(Bi(l))q given the distorting factor q will be first obtained by growing the scale 
of the box l based on the unique path length of the network. Based on our discussion, this growth rule is generally 
incompatible. In the second step, we address this problem by a data-driven filtering procedure to obtain a subset 
L< of the discrete support L G( ) of Fd l( )i j,

 such that it is compatible with G. More precisely, FBCw and FSBw can be 
stated as follows:

Step 1- Collecting the accumulative measure ∑ μ(Bi(l))q:

•	 Given the distance metric dij on G, calculate all pairs of distances and encapsulate them into a matrix D either 
by the Floyd Warshall algorithm (O(|V|3)) or the Dijkstra algorithm (O(|V|(|E| + Vlog|V|))). Practically, if the 
graph is sparse in the sense that 

E V 2, it is recommended to use Dijkstra algorithm which outperforms 
Floy-Warshall algorithm by a significant margin.

•	 Given the distance matrix D, derive the strictly ordered unique distance sequence D<  = {d1, d2, d3, …, dN} 
where di = dj if and only if i = j. dN is the diameter of the network. D< serves as the tentative growth rule 
which, as discussed, is usually an incompatible growth rule that gives rise to the staircase effect whereas it can 
be alleviated by the subsequent filtering step. It should be also noted that the cardinality of D< can be a com-
putationally prohibitive in some cases when the number of unique path length is very large (e.g., |D<| of the 
collaboration network is close to 106). In such cases, a resampling function → ′< <S D D:  where ′ ⊆< <D D  will 
be useful to bring down the computational overhead to an acceptable level. The proper choice of the resam-
pling function is not constrained and may be subject to change based on the target network. In most of cases, 
a linear resampling function should be satisfactory.

•	 Iterate on D< in an ascending order to perform the box-covering or sandbox covering procedure to obtain 
the accumulative measure M(dk) = ∑μ(Bi(dk))q at the scale dk ∈ D<. No constraint is advised for the choice 
of a specific heuristic for this procedure. Practically, in the case that repeating the randomized box covering 
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procedure for a large number of trials (to find the minimal number of boxes) is computationally impractical, 
Welsh–Powell algorithm usually gives satisfactory approximation after transforming the original network 
into its dual graph following the technique in ref. 28. Repeat the above procedure to obtain the accumulative 
measure sequence M = {M(d1), M(d2), …, M(dN)}.

Step 2- Data-driven filtering for critical scales: As a consequence of growing the scale of box based on an 
incompatible growth rule D< for complex network G of finite resolution, there exists di and di′ such that 
M(di) = M(di′) (i.e., the staircase effect). In practice, this condition can usually be relaxed to 
|M(di) − M(di′)| ≤ ε where ε is a tuning threshold and conditioned on the property of the network. 
Therefore, for every di ∈ D<, the major task of step 2 is to filter out all the di′ where |M(di) − M(di′)| ≤ ε 
holds. Theoretically, it is possible to find a proper choice of ε such that the filtering can be done by 
enumeratively checking the condition for all choices of di. However, picking the proper ε can be tedious 
manual process. In this context, we propose a simple yet effective variance based sliding window filter to 
identify the critical di that corresponds to a remarkable change in M(di). Formally, the sliding window filter 
F tx( , )

∑= −F t x xx( , ) (( ) ) (18)i
2

where x = [x1, x2, …, xW]⊤ is a W-dimensional vector of observations starting at t. W is the width of the sliding 
window. Then the data-driven filtering procedure can be stated as follows:

•	 Pick di from D< in an ascending order and calculate σ = F M d( , )i i . Repeat it for all choices of di to obtain 
σ = {σ1, σ2, …, σM−W+1}.

•	 Iterate on σ to find the index i of the peaks in σ that correspond to the critical scale di.
•	 Perform the regression to Eqs (13) and (17) using the identified critical scales.

To better illustrate the efficacy of proposed data-driven filtering method, we plot in Fig. 19 the raw M against 
the scale index obtained in Step 1 by Welsh–Powell algorithm based box-covering strategy to Sierpinski fractal 
network G4 with s = 1/2 and b = 3. The peaks of σ exactly correspond to the critical scales di where a significant 
change of M(di) appears. These scales are identified and used for numerical determination of the scaling behavior 
instead of all the scales to avoid stagnant observations.

Data accessibility: The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.
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