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Wall shear stress (WSS) is an important contributor to vessel wall remodeling

and atherosclerosis. However, image-based WSS estimation from 4D Flow MRI

underestimates true WSS values, and the accuracy is dependent on spatial resolution,

which is limited in 4D Flow MRI. To address this, we present a deep learning algorithm

(WSSNet) to estimate WSS trained on aortic computational fluid dynamics (CFD)

simulations. The 3D CFD velocity and coordinate point clouds were resampled into a

2D template of 48 × 93 points at two inward distances (randomly varied from 0.3 to

2.0mm) from the vessel surface (“velocity sheets”). The algorithm was trained on 37

patient-specific geometries and velocity sheets. Results from 6 validation and test cases

showed high accuracy against CFD WSS (mean absolute error 0.55 ± 0.60Pa, relative

error 4.34 ± 4.14%, 0.92 ± 0.05 Pearson correlation) and noisy synthetic 4D Flow MRI

at 2.4mm resolution (mean absolute error 0.99 ± 0.91Pa, relative error 7.13 ± 6.27%,

and 0.79 ± 0.10 Pearson correlation). Furthermore, the method was applied on in

vivo 4D Flow MRI cases, effectively estimating WSS from standard clinical images.

Compared with the existing parabolic fitting method, WSSNet estimates showed 2–3×

higher values, closer to CFD, and a Pearson correlation of 0.68 ± 0.12. This approach,

considering both geometric and velocity information from the image, is capable of

estimating spatiotemporal WSS with varying image resolution, and is more accurate than

existing methods while still preserving the correct WSS pattern distribution.

Keywords: 4D Flow MRI, computational fluid dynamics, deep learning, wall shear stress (WSS), aorta

INTRODUCTION

Wall shear stress (WSS) is an important contributor to vessel wall remodeling and atherosclerosis
(1–3). WSS is defined as the shear force produced by tangential blood flow on the vessel wall as a
result of blood viscosity and is related to the gradient of velocity in the surface normal direction.
Previous studies suggest that wall shear stress is an important biomarker for atherosclerosis
formation (4, 5). Both low and high time-averaged WSS (TAWSS) have been suggested to be
associated with pathology. Moreover, recent studies also found that a high oscillatory shear index
(OSI) plays an important role in causing wall thickening (6). Early detection of these biomarkers
may provide useful information for clinical practice. However, despite recent findings on the
importance of WSS and related measures, there is yet no practical method to accurately measure
WSS from clinical data.
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Magnetic resonance imaging (MRI) phase contrast imaging
methods enable non-invasive quantification of the three-
dimensional time varying velocity field (4D Flow MRI) (7, 8).
However, the spatiotemporal resolution of 4D Flow MRI is
limited. Several existing methods have employed curve fitting
to estimate WSS from velocity derivatives near the vessel
wall (9–11). Stalder et al. (9) introduced a velocity-based
method using B-spline interpolation. A later study investigated
several approaches based on velocity mapping, Fourier velocity
encoding, and intravoxel velocity SD mapping (12). Overall, all
these methods are dependent on spatial resolution, segmentation
accuracy, velocity encoding (VENC), and voxel position relative
to the wall, with each method being more sensitive to different
parameters. These methods show consistent reproducibility
when the comparison between methods was performed relative
to each other. However, the WSS obtained using these methods
were consistently lower compared to the values obtained
from computational fluid dynamics (CFD) (13, 14). This
underestimation is likely due to the limited resolution of 4D
Flow MRI, as hemodynamic parameters may be biased due to
partial volume effects and temporal blurring. The need to have
a higher resolution MRI is constrained by the limited amount of
examination time.

Computational modeling enables physics-based simulation of
clinical data at high resolution, constrained only by computation
resources. While it is possible to achieve accurate estimates
for hemodynamic variables, CFD simulations require patient-
specific parameters. These boundary conditions are not always
obtainable and often rely on assumptions such as vessel rigidity,
incompressible fluid, and pressure estimations. Moreover, the
amount of computation required to solve the numerical problem
is often not feasible in a clinical setting.

Recent developments in medical imaging and deep learning
have enabled the use of physics-based simulations as surrogates
to train a deep learning model (15–18). These approaches
offer high accuracy compared to the CFD ground truth by
learning spatial representation of geometric features. Liang et al.
(18) used a shape decoding technique to train a network to
estimate aortic stress distributions based on the input mesh.
Similarly, Acebes et al. (16) presented a CNN-based network
to estimate endothelial cell activation potential (ECAP) using
an unwrapped model of the left atria. Gharleghi et al. (15)
also presented a deep learning method to estimate TAWSS in
left main coronary bifurcations by using geometric information
as the input. Conversely, conventional curve fitting methods
have used velocity information at constant spatial locations
(equidistant inward normal). By combining the use of CFD
simulations, variable geometric features, velocity information,
and deep learning, a fast and accurate method that can be applied
to in vivo data can be developed.

This study proposes a deep learning approach to estimate
WSS based on patient-specific aortic vessel geometries and
velocity information. To achieve this, CFD simulations were
generated for patient-specific geometries in order to extract a
uniform grid sampling of spatial and velocity information at two
inward distances from the aortic vessel wall. The locations of
the sampled velocity sheets were encoded as coordinate flatmaps

and varied over a range of values, enabling the network to learn
the relationships between geometry, sampling distance, velocity,
and WSS. WSS vectors were output as a uniform-grid flatmap,
predicted at any given time frame, enabling the calculation of
other WSS measures, such as TAWSS and OSI. The method was
validated on synthetic 4D Flow MRI data derived from the CFD
simulations. Additionally, the method was applied to clinical in
vivo cases in comparison with the parabolic fitting method.

METHODS

The following section provides a detailed description of the
methodology used in this study. First, the data generation
process is described, including the geometry extraction from 4D
Flow MRI, CFD simulation setup, and input data preparation
step. Second, the description of WSSNet is presented, including
the network architecture, loss function definition, and training
hyperparameters setup. Finally, the performance of the network
is evaluated with respect to the estimated WSS magnitudes,
WSS distribution, time-averaged WSS (TAWSS), and OSI, with
quantifications performed in the CFD dataset, synthetic MRI
from CFD, and actual in vivo cases.

Geometry Extraction
Clinical cardiac 4D Flow MRI were obtained for a total of
59 volunteers and patients using a prototype sequence. Data
were acquired using a 1.5T scanner (MAGNETOM Avanto fit,
Siemens Healthcare, Erlangen, Germany). 4D Flow images were
acquired with retrospective gating, encoding velocities of 150
cm/s (VENC) at 2.375mm grid spacing, 2.75mm slice thickness,
covering the entire heart and great vessels. Other parameters
included repetition and echo time (TR/TE) of 38.3 and 2.3ms,
respectively, and flip angle 7o, with 38–58ms temporal resolution
and∼20 reconstructed frames.

Sixteen cases were excluded due to low image quality, leaving
43 cases for this study (34 healthy, 9 left ventricular hypertrophy).
Patient-specific aortic geometries were extracted from the 43
in vivo cases. Phase contrast magnetic resonance angiography
(PC-MRA) images (temporal mean) were constructed to define
the anatomical structure. For each case, two segmentations were
performed, one with aortic branches, and another one without.
We refer to the segmentation without branches as the “aorta-
only-segmentation.” For consistency, the branch segmentations
contained 3 aortic branches: brachiocephalic artery (BCA), left
common carotid artery (LCCA), and left subclavian artery (LSA).
For the aorta-only-segmentation, these branches were simply
excluded. Segmentations were performed semi-automatically
using the ITK-SNAP (19) active contour method. The resulting
segmentations were exported as a surface mesh.

The 3D aortic segmentations (ones with the aortic branches)
were truncated at the ascending aorta distal to the aortic
root and at the distal end of the thoracic aorta to obtain
flat inlet and outlet surfaces to be used for CFD simulations.
The aortic branches were also truncated ∼2 cm from their
bases. An additional smoothing operation (10–12 iterations of
vertices’ distance averaging) was applied to smooth out the
rough surface obtained from the segmentation. All these steps
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FIGURE 1 | Some examples of the aortic geometry in the dataset. The first and third columns show the corresponding aorta (left) and the registered surface template

mesh (right). The first column (A) shows aorta geometries for normal volunteers. Third column (C) show aorta geometries from left ventricular hypertrophy cases. The

middle column (B) shows the aortic segmentation with branches (left) and aorta-only-segmentation (right), shown with white wireframes. Light blue geometries show

the processed segmentation for the use of computational fluid dynamics (CFD) simulation and mesh registration. The cross-sectional planes show the truncation lines

for the geometry marking the inlet and outlets.

were performed using Blender 2.8 (20). Finally, Instant Meshes
(21) was utilized to retopologize the complex meshes to more
structured quad surfaces. This set of geometries was used to
perform the CFD simulations.

The same steps were also applied for the aorta-only-
segmentations (ones without the branches), except that they
were truncated at around the mid-thoracic level of the
descending aorta. This second set of geometries was used for
the registration step using a surface template mesh, as explained
below. Figure 1 shows the two geometries and the locations of
the truncation-lines.

CFD Simulations
The branched aortic geometries were imported to Ansys 19.2
(Canonsburg, PA, USA). A mesh independence study was
performed on one of the geometries from the training set
(case 12), over four grid resolutions (1.5, 1.0, 0.75-, and
0.5-mm tetrahedral elements) using a steady-state simulation.
For all the four grid resolutions, the same boundary layer
setup was used (1mm total thickness, 10 prism layers with
increasing thickness, the growth rate of 1.2). Inlet and outlets
were refined with 0.3mm tetrahedral elements. The selected
meshing strategy (1mm elements, 589k nodes, 1.5M elements)
compared to the finer mesh (0.75mm elements, 746k nodes,
1.9M elements) resulted in differences of <4% for average WSS,

<3% for average velocity, and <2% for flow rate at three cross-
sectional planes measured at the ascending aorta, aortic arch,
and descending aorta. Accordingly, this meshing strategy was
selected considering the computation cost, file export size, and
computational resource availability.

All 43 geometries were discretized using the selected
meshing strategy, with additional local refinements applied when
necessary. This results in a mesh containing between 500k and
800k nodes for each geometry.

We imposed rigid and no-slip boundary conditions at the
wall. Blood was modeled as a Newtonian fluid with a density
of 1,060 kg/m3 and a viscosity of 4 × 10−3 Pa.s. A plug flow
profile was prescribed at the inlet. Two different variations
of outlet boundary conditions were prescribed: (1) constant
pressure (0 Pa) was set at all outlets, (2) flow percentage ratio,
with 70% flow going to the descending aorta, and 15/5/10% going
to BCA, LCCA, and LSA, respectively. Due to time and resource
constraints, the different outlet boundary conditions (1) and (2)
were applied separately for 25 and 18 geometries, respectively.

Time-varying patient-specific inflow velocity was extracted
from one case (case 1) over a cardiac cycle (710ms). All
simulations were performed for two cardiac cycles, using the
same time-periodic velocity profile. The simulations were run
with a time step of 1ms. Velocity and wall shear stress vectors
were extracted from the last cardiac cycle of the simulation to
avoid transient initialization effects. The data were obtained for
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every 10th time step (dt = 10ms), resulting in 72 time frames
(71 from the last cycle and 1 from the last time frame of the
previous cycle).

It is important to note in this study that while patient-
specific velocity profiles could be acquired, the rationale of
running these CFD simulations was to generate a dataset with
sufficient flow variations to enable the network to learn the
local relationships between velocity and WSS, mainly through
the different geometries and temporal variation. Hence, the
same boundary conditions were applied for all geometries.
Consequently, the resulting CFD simulations were not compared
against the actual measurements from 4D Flow MRI. As a result,
the WSS obtained from CFD simulations were different from
the in vivo cases, which was expected. Therefore, the network
applicability in predicting unseen data can be tested.

Essentially, WSS can be formulated as

τw = µ
∂u

∂y

which is a product of the dynamic viscosity of the fluid (u) and the
velocity gradient near the wall (wall shear rate). While in general,
blood flow in the aorta is laminar and during peak systole, the
flow can become turbulent, specifically at the ascending aorta
(22). In turbulent flow, the velocity gradients near the wall
become very steep and, hence, also the wall shear stress, as the
velocity follows a logarithmic profile. The use of the laminar
model for aortic flow is known to underestimate WSS (23). For
this reason, the use of a turbulence model helps to improve WSS
calculations through the use of turbulence (eddy) viscosity, which
is a part of turbulence computations.

The realizable k-ε turbulence model (24) was chosen to
account for possible turbulence effects during the peak systolic
phase, where the Reynolds number reached >5,000. The
incompressible Navier-Stokes equations were solved iteratively in
ANSYS Fluent 19.2, with convergence criteria of scaled residual
value to be less than 10−5 for mass and momentum. Each
simulation took between 40 and 50 core hours to solve on a high-
performance parallel computing environment (1.5 GB/core).

Data Preparation
Due to the complex relationship between flow and velocity
gradients, it is important to incorporate both the velocity and
spatial information as inputs to the network. Node coordinates,
velocity, and WSS vectors from CFD were processed to create
pairs of input-output data for the network.

To have a standardized data structure, we utilized the surface
template mesh representation from Liang et al. (18, 25), which
wasmodified into a 48× 93 quadrilateral mesh. The quadrilateral
mesh was then unwrapped into a UV map, and a 2D flatmap
representation with 48 and 93 corresponding to the size of the
circumference (U) and longitudinal (V) directions, respectively.
The template mesh extends from the ascending aorta, aortic
arch, and proximal section of the descending aorta. Note that
the template mesh did not model the branching vessels. The
template mesh was unwrapped using Blender, with the shortest
distance from ascending to descending aorta selected as the cut-
line. Subsequently, the UV map was aligned to form rectangular

elements. To speed up the mesh registration step, a coarse
version of the template (12 × 24) was also constructed and
paired with subdivision matrices to convert it back to its
actual size (48 × 93) using subdivision surface (26). These two
template meshes were used for registration. Figure 1 shows the
variations of geometry used to build the training dataset and each
geometry is shown in pairs: the aortic geometry with branches
used for the CFD simulations, and the registered mesh on
the aorta-only-geometry used for the WSSNet. Comprehensive
visualization of the template mesh and registration steps are
shown in Figure 2.

Registrations were performed first on the coarse template to all
the 43 aorta-only-geometries using Coherent Point Drift (CPD)
(27, 28) using rigid, affine, and deformable transformations (α =

3, β = 15). After the initial registration of the coarse mesh, the
mesh was subdivided using the subdivision matrices. A second
deformable transformation (α = 3, β = 7) was performed to
ensure the small details in the geometry were aligned properly
and to correct the deflation effect of the subdivided surface. The
two parameters α and β represent the trade-off between goodness
of maximum likelihood fit and regularization, and the width of
smoothing Gaussian filter, respectively (27).

Note that the coarse template is optional and was used
to speed up the mesh registration process. Without a coarse
template, the registration process would be performed directly
using the normal template mesh with all 3 transformations (rigid,
affine, and deformable) and no subdivision surface is necessary.
However, different parameters for the deformable transformation
may be required. The two step registrations were performed in
this study to tune the parameters quickly on the coarse template
mesh while ensuring they have sufficient registration accuracy for
all geometries.

Finally, the registered surfaces were used to extract the wall
shear stress vectors and magnitude from the CFD simulations.
The spatial coordinates (x, y, z) of each mesh node were stored
as a “flatmap” with 3 channels (1 for each axis), with the
Cartesian coordinate system. The KDTree algorithm was used
to obtain WSS vectors for every point on the registered surface
by searching for the closest point in the CFD surface mesh,
with a search radius of 5mm from each surface node. Template
nodes corresponding to the aortic branches were masked as
“invalid” by applying a distance threshold of >1.2mm radius.
Manual inspection and corrections were performed subsequently
to ensure other aortic surface regions were included, and only
the aortic branches regions were invalid. Despite how the CFD
simulations included branching vessels, the registered surfaces
did not. On the base of the branching vessels on the registered
surfaces, there were no actual WSS values, which renders these
regions invalid. These invalid regions were not optimized during
the loss calculation.

Additionally, velocity vectors were extracted in varying
inward distances (0.3, 0.5, 0.6, 0.8, 1.0, and 2.0mm) normal to
the surface points. Each velocity vector corresponded to each
point with a predefined distance from the registered surface,
forming a layer of velocity values, which we call a “velocity
sheet.” Alongside this, the spatial coordinates of the internal
surface were also stored as flatmaps. Due to the no-slip-wall
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FIGURE 2 | Top: Coarse and fine template meshes used for registration. UV unwrapping was performed on the fine template mesh, with a light blue line showing the

cut line. Bottom: An overview of the registration process using Coherent Point Drift. Registration was performed on the coarse template mesh, followed by a

subdivision surface operation, followed by another registration step on the refined mesh.

boundary condition, the velocity sheet at the vessel surface was
assumed to be 0 and, thus, was not extracted nor included as
part of input data. The input data consisted of the registered
surface mesh coordinates and the internal coordinates (points
with variable inward distances normal from the surface) with
their corresponding velocity vectors, while the ground truth
label consisted of the 3D wall shear stress vectors at the
registered surfacemesh coordinates. An overview of the extracted
information is shown in Figure 3.

Network and Training
With the input and output data effectively represented as 2D
images, we could leverage the convolutional neural network
(CNN) capability in learning spatial relationships. The input of
the network was a 15-channel tensor, consisting of the Cartesian
wall coordinates (x0, y0, z0), two internal surface coordinates
(x1, y1, z1, and x2, y2, z2), and two velocity sheets (vx1, vy1,
vz1, and vx2, vy2, vz2). The output of the network is a 3-channel
tensor, depicting the wall shear stress vectors (wssx, wssy, wssz).
A U-Net-like structure was used for the network architecture.
The network consisted of 3 encoder and decoder blocks, with
each block consisting of 2 convolutional layers with Rectified
Linear Unit (ReLU) activation function, followed by batch
normalization at the end of the block. Max pooling was applied
on each of the encoder blocks, while bilinear interpolation was

utilized to upsample each of the decoder blocks. The network
architecture is shown in Figure 4.

The network was trained using a patch-based approach, with
a 48 × 48 patch, which matched the size of the template
mesh’s circumference. The patches were selected randomly
through the length of the vessel, acting as a sliding window.
To ensure the network learned about the circular nature
of the patch, we introduced periodic/circular padding. This
is done by padding the top-most row within the patch
with the bottom-row and vice-versa, and by duplicating the
value of the left or right most column in the longitudinal
direction. Periodic padding was applied before the first two
convolutional layers.

Several augmentation strategies were applied to the dataset:

1. Distance to wall: to ensure that the network learns the
spatial features, v1 and v2 are a combination of the available
sheets, with the v1 sheet closer to the wall than v2. The
combination of different velocity sheets was random within a
pre-defined range.

2. Translation: to simulate translation to the training dataset, we
selected a random node within the wall coordinate patch, and
subtract that node position from all the coordinates, effectively
setting it as the origin.

3. Rotation: random 3D rotations on a randomly selected plane
were applied to the coordinate flatmaps and velocity sheets.
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FIGURE 3 | Overview of the extraction process performed on the CFD point clouds dataset. Extraction was performed on the wall coordinates and several inner

surface coordinates. Wall shear stress (WSS) vectors and velocity vectors were extracted at the wall and inner coordinates, respectively. The extracted information

was transformed into 2D flatmaps based on the template mesh.

FIGURE 4 | WSSNet architecture. The network is based on U-Net architecture, which receives an input of 15 channels of 48×48 patches, consisting of coordinate

flatmaps and velocity sheets, and outputs Cartesian wall shear stress vector patches.
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FIGURE 5 | Top: Overview of augmentation strategies. Velocity sheets were extracted at various distances from the surface (0.3–2.0mm). During training, two velocity

sheets were chosen randomly, with the first one closer to the vessel than the other. Bottom: a global overview of the input and output of WSSNet. Input consists of

15 channels, consisting of 3 coordinate flatmaps and 2 velocity sheets. The output consists of 3 channels, correspond to wall shear stress vectors in Cartesian

coordinates.

4. Shift (sliding window): with the patch based approach, we
shifted the patch in the longitudinal direction allowing the
network to learn geometric and flow features on different
regions of the vessel. This acts similar to the random selection
of the patch.

5. Rolling-shift: with the cut-line of the template mesh
predefined at the inner side of the aortic curve, the network
might be fixated on the same geometric features (i.e., center
rows having aortic branches). To introduce variation during
the training, we perform a periodic-shift in the circumferential
direction (U) by a maximum of 5 pixels.

6. Random noise: A 50% chance of adding Gaussian-smoothed
Gaussian noise with an SD between 1 to 4% venc was added
(venc = 1.5 m/s). The normally distributed noise was added
to simulate the noise characteristics in the fluid domain. The
Gaussian smoothing operation was added to simulate the
interpolation that occurs when resampling CFD point clouds
to a uniform grid.

The first 3 pixels from the inlet were excluded during training
to avoid overestimated WSS caused by CFD boundary
values. Nodes outside the mask (the base of the aortic
branches) were also excluded because the WSS obtained
are not true WSS and are basically obtained from the

aortic branches. Figure 5 summarizes the augmentation
strategies, alongside a global overview of the network input
and output.

The network was trained using Adam optimizer for 100

epochs, with a batch size (m) of 16. Cosine annealing learning
rate was used on a repeating cycle for every 10 epochs, with a

learning rate set between 10−4 and 10−7. Tensorflow 2.0 (29) was
used as the backend of the training. The network was trained on

a Titan X GPU with 16GB memory.
From the 43 CFD simulations, 37 simulations were used

for training, 3 for validation, and 3 simulations reserved for
testing. The datasets were split randomly, with 8 left ventricular

hypertrophy cases ending up in the training set, 1 case in the

test set. It is worth noting that the data generated using CFD
simulations do not represent the actual in vivomeasurements.

The training set consisted of flatmaps extracted directly from

the CFD point clouds. To ensure that the network can generalize

well to 4D Flow MRI data, the validation and test sets consisted

of flatmaps extracted from the following data representations:

(1) CFD point clouds, (2) downsampled 2.4 mm3 uniform grid

(to mimic the MRI resolution), and (3) 2.4 mm3 grid with
noise (normal distribution, SD of 2% venc to simulate 4DFlow

data). More detailed explanations on the sampling process
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from CFD point clouds to simulate MRI are explained in the
next section.

The training set comprised 46,676 unique flatmap
combinations (mainly due to the combinations of velocity
sheets with different distances), and the validation set consists
of 3,996 unique flatmap combinations. Additionally, the sliding
window strategy ensures the network “sees” different parts of the
flatmap during the training process.

Loss Function Definition
A combination of loss functions was utilized, to ensure minimum
difference of the WSS vectors and distributions (pattern
similarity) between the predicted and reference values. First, we
minimized the mean absolute error (MAE) between each of the
predicted wall shear stress vector components and the reference
values. Additionally, as wemodeled theWSS flatmap as an image,
we could optimize the pattern similarity between the predicted
WSS magnitude and the ground truth WSS. Finally, an L2
regularization term was added to the network that can generalize
to the new dataset, which was controlled by regularization weight
(λ) scaled to the batch size (m). The complete loss function is
given as

loss = lMAE + ω lSSIM +
λ

2m

N
∑

i=1

w2
i

with ω = 1.5 and λ = 10−2 to balance each of the loss terms to
the same scale.

The Structural Similarity (SSIM) index, commonly used to
measure the similarity of two images x and y, was added as a loss
term to ensure WSS pattern similarity. SSIM is calculated based
on three components: luminance (l), contrast (c), and structure
(s). The luminance can be measured from the local average (µ)
image values, while contrast is measured from the local SD (σ),
and the structure index is measured using Pearson correlation (r).

Luminance comparison function l
(

x, y
)

can be defined as

l
(

x, y
)

=
2uxuy + C1

u2x + u2y + C1

while contrast comparison function c
(

x, y
)

is defined by

c
(

x, y
)

=
2σxσy + C2

σ 2
x + σ 2

y + C2

and structural comparison function s
(

x, y
)

is used to measure the
linear correlation between the two images:

s
(

x, y
)

= r =
σxy + C3

σxσy + C3

with σxy being the covariance of the two images, denoted as

σxy =
1

n

n
∑

i=1

(xi − ux)(yi − uy)

C1, C2, and C3 are constants added for numerical stability. C1 =

(K1 L)
2, C2 = (K2 L)

2, and C3 = C2/2 are defined with K1 = 0.01
and K2 = 0.03 as in the original article (30), with L being the
maximum true WSS within a patch.

Overall, SSIM is a combination of all the terms above:

SSIM
(

x, y
)

= l
(

x, y
)α

. c
(

x, y
)β

. s
(

x, y
)γ

where α, β, and γ are positive numbers, denoting the relevance of
each term, with α = β = γ = 1. With that definition, SSIM loss is
described as

lSSIM = 1− SSIM(x, y)

A built-in SSIM implementation from Tensorflow was used
for the training process, with the default local region of 11 ×

11 pixels.

Evaluation
Overall, evaluation of the network was performed in three
different stages:

1. Evaluation on CFD simulation data (point cloud data) The
network was validated on 6 CFD simulations with each of
72-time frames (n = 432). The input flatmaps were extracted
directly from CFD point clouds.

2. Evaluation of CFD simulation data (synthetic MRI grid) The
network was validated on 6 CFD simulations with each of
20 time frames (n = 120). The CFD point clouds were
first interpolated into 3D grid representation (synthetic MRI)
before extracting the flatmaps. The network was validated on
two different grid resolutions (2.4 and 1.2mm isotropic) and
with/without noise, resulting in four sets of validations.

3. Evaluation on in vivo 4D FlowMRI The network was validated
on all 43 in vivo cases, with each of 20 time frames (n = 860).
These 43 cases were utilized previously for the aortic geometry
extraction only. The flow information obtained from these in
vivo cases does not resemble the generated CFD simulations.

Evaluation Metrics
For quantitative assessment, performance was evaluated with
respect to the difference in point-to-point WSS magnitude per
time frame, reported as mean absolute error (MAE) and relative
error. Relative error was calculated as the ratio of absolute WSS
difference and peak reference WSS value at the specified time
frame. In addition, Pearson correlation (r) was also reported
to evaluate the pattern similarity or WSS distribution for every
time frame.

For quantitative and qualitative assessment, TAWSS and OSI
were also calculated at each point in the template. TAWSS
represents the average WSS over a cardiac cycle, while OSI
represents the oscillation of the WSS direction over a cardiac
cycle, computed as follows:

TAWSS =
1

T

∫ T

0

∣

∣

−→wss
∣

∣ dt

OSI = 0.5 ×

(

1 −
|
∫ T
0
−→wss dt|

∫ T
0 |

−→wss | dt

)
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where T is the span of time for a cardiac cycle. OSI ranges
from 0 to 0.5, with 0 describing no change in WSS during a
cardiac cycle, and 0.5 where there is a change of direction of 180o

during a cardiac cycle. Additionally, a single-measure intraclass
correlation coefficient (ICC) based on a two-way mixed-effects
model was independently calculated for each measured TAWSS
value to assess the degree of absolute agreement betweenWSSNet
and ground truth CFD.

Surface Extraction Error
The registration step was performed to align and deform the
template mesh to the aorta-only geometry, which is not without
error. This imprecision of the vessel wall causes the inward
points where velocity sheets were extracted to not be at the
exact distance from the wall. While this imprecision introduces
error to the training data, it also simulates actual inaccuracy in
segmentation, where it is hampered by spatial resolution and
partial volume effects. To measure the inaccuracy of the mesh
registration step, we evaluated the surface distance for every node
in the template mesh.

Validation on CFD Point Clouds
To evaluate the performance of WSSNet to reproduce CFDWSS
estimations, the evaluation metrics were computed using the
velocity data obtained directly from the CFD point clouds, on the
3 validation and 3 test cases, with each case consisting of 72 time
frames (dt = 10ms). For this validation, we evaluate the results
by measuring MAE, relative error, Pearson correlation, TAWSS,
and OSI compared to the ground truth WSS from CFD.

Finally, linear regression analysis was performed against
reference values derived from CFD, assessing TAWSS and OSI,
separately. Bland-Altman plots of the same data were also
extracted to assess potential network bias. ICC was evaluated to
assess the absolute agreement between the TAWSS values from
the network against the ground truth CFD.

Validation on Synthetic MRI From CFD Point Clouds
To evaluate the capability of the network in predicting WSS
fromMR image resolution data, we first sampled the point cloud
CFD dataset into a voxelized uniform image grid. To match the
commonly acquired MRI spatial resolution, data were generated
with isotropic spatial sampling of dx = 2.4. Furthermore, spatial
sampling of dx = 1.2mm was also performed to see how
the network performs in different resolutions. Both resolutions
were sampled at temporal resolution (dt) of 40ms, within the
range of common MRI acquisition. Additionally, noise (normal
distribution, the SD set to 2% of the venc; venc = 1.5 m/s) was
added to evaluate the performance of the network in the presence
of noise. Thus, the evaluation set consisted of noise-free and noisy
data at both resolutions.

Afterward, we performed the same procedures to extract the
coordinate flatmaps and interpolate the velocity sheets from the
synthetic MRI grid. Velocity sheets were extracted using linear
interpolation at 1.0 and 2.0mm at the inward direction normal to
the surface. Subsequently, these coordinate flatmaps and velocity
sheets were then used as input to the network.

As a comparison, the parabolic fitting method (9, 11) was
selected as it is commonly employed and requires similar input.
The method requires 3 velocity points, where the velocity at the
wall is assumed as 0, due to the no-slip boundary condition. With
the given resolution (dx = 2.4 and 1.2mm), the parabolic fitting
method is expected to underestimate the WSS values. For this
validation, we performed the same quantification with the CFD
point clouds dataset (MAE, relative error, Pearson correlation,
TAWSS, and OSI) because the ground truth WSS was known.

Linear regression analysis was performed for both methods
against reference values derived fromCFD, assessing TAWSS and
OSI at different resolutions: noise-free 2.4mm, noisy 2.4mm,
noise-free 1.2mm, and noisy 1.2mm. Bland-Altman plots were
extracted to assess potential network bias for the noisy 2.4mm
dataset. Additionally, Bland-Altman plots were extracted to
assess the agreement between the parabolic fitting method and
WSSNet predictions for the noisy 2.4mm dataset. For each of
the resolutions, ICC was evaluated for both methods to assess the
absolute agreement between the TAWSS values from the network
against the ground truth CFD.

Validation on in vivo Cases
To assess WSS on in vivo data, the method was applied to the in
vivo 4D Flow data from the same 43 cases used in the patient
specific CFD simulations. The same registered surface meshes
were used to extract the coordinate flatmaps and velocity sheets.
Velocity sheets were extracted with inward distances of 1.0 and
2.0mm due to the inherent MRI resolution at approximately dx
= 2.4mm. Figure 6 shows an overview of the analysis pipeline
for 4D Flow MRI to WSS flatmap.

For these in vivo cases, the WSS reference values are not
available. Due to the expected difference in WSS magnitudes
(between WSSNet and parabolic fitting), only Pearson
correlation was evaluated between the two methods. In
addition, TAWSS and OSI were also visualized.

Linear regression analysis was performed against WSSNet
predictions as reference values, assessing TAWSS and OSI,
separately. Bland-Altman plots of the same data were also
extracted to assess bias between the two methods.

RESULTS

Surface Extraction Error
The WSS ground truth was obtained from the CFD point
closest to the registered template mesh nodes. Surface
distance errors for the aortic vessel wall were 0.32 ±

0.14mm, rising to 2.38 ± 1.08mm at the base of the
aortic branches where there was no true wall. Nevertheless,
the error was small relative to the current MRI resolution
(2.4 mm).

Validation on CFD Point Cloud Dataset
A complete evaluation was performed on the 3 validation
and 3 test cases, with each case consisting of 72 time
frames (dt = 10ms). Overall, WSS estimates were accurate
(MAE 0.55 ± 0.60 Pa, relative error 4.34 ± 4.14%) and
showed excellent Pearson correlation with CFD WSS
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FIGURE 6 | Complete overview of the inference workflow for 4D Flow MRI. All the steps are fully automated, except for the segmentation and mesh truncation steps

(marked with blue text).

TABLE 1 | Wall shear stress (WSS) magnitude and pattern similarity

measurements for the validation and test cases from the CFD simulations.

Case (characteristics) MAE (Pa) Rel error (%) Pearson correlation

Val #1 (normal) 0.44 ± 0.41 5.97 ± 4.82 0.92 ± 0.06

Val #2 (normal) 0.44 ± 0.50 3.70 ± 4.03 0.93 ± 0.03

Val #3 (normal) 0.49 ± 0.43 4.67 ± 4.22 0.92 ± 0.02

Test #1 (normal) 0.57 ± 0.75 2.87 ± 3.43 0.91 ± 0.04

Test #2 (LVH) 0.93 ± 1.04 5.76 ± 5.24 0.88 ± 0.09

Test #3 (normal) 0.44 ± 0.48 3.09 ± 3.12 0.94 ± 0.03

Overall 0.55 ± 0.60 4.34 ± 4.14 0.92 ± 0.05

For each case, results were measured from all time frames (n = 72, dt = 10ms). MAE,

mean absolute error; LVH, left ventricular hypertrophy. Average values are shown in bold.

(0.92 ± 0.05). More detailed quantitative measures per
case are given in Table 1. Figure 7 shows the qualitative
results for each of the cases, represented by the TAWSS
and OSI.

Figure 8 shows linear regression plots and Bland-Altman
representations for the calculated TAWSS and OSI. In general,
very high correlations are observed between TAWSS and OSI
estimated by WSSNet and ground truth CFD, with linear
regression slopes and coefficients of determination of k = 0.88
and R2 = 0.90, and k = 0.88 and R2 = 0.91 for TAWSS and
OSI, respectively. Bland-Altman analysis shows a minimal bias
(0.08 Pa) and limits of agreement of ± 1.29 Pa for TAWSS,
and no bias for OSI with limits of agreement of ± 0.04. ICC
shows excellent agreement (0.95) between TAWSS calculated
fromWSSNet and ground truth CFD.

Validation on CFD Synthetic MRI Dataset
Velocity sheets were extracted from the synthetic MRI dataset on
the same 6 validation/test cases. Compared with the prediction
on the sheets extracted from the CFD point clouds, a decrease in
performance was observed when inference was performed on dx
= 2.4mm (MAE 0.94 ± 0.87 Pa), while Pearson correlation was
still highly maintained (r = 0.82 ± 0.08). The addition of noise
slightly decreased the performance further (MAE 0.99± 0.91 Pa,
r = 0.79 ± 0.10). ICC showed good agreement with similar
values, 0.86 and 0.85, for noise-free and noisy data, respectively.

At twice the resolution (dx= 1.2mm),WSSNet showed better
performance in predictingWSS (MAE= 0.65± 0.67 Pa, r= 0.89
± 0.06) compared to the base resolution (dx = 2.4mm). The
addition of noise at 1.2mm resolution impacted the performance
slightly (MAE = 0.71 ± 0.71 Pa, r = 0.85 ± 0.10), showing
reduced error and Pearson correlation. ICC went back up to 0.92
for both noise-free and noisy data at 1.2mm resolution, getting
closer to the CFD validation counterpart (0.95).

On the other hand, the parabolic fitting method showed
much larger differences (MAE 2.89 ± 1.85 Pa and 2.33 ±

1.67 Pa at dx = 2.4mm and 1.2mm, respectively). The values
were underestimated, mostly at regions of peak WSS. In terms
of Pearson correlation, the parabolic fitting results showed
moderate correlation with the CFD ground truth (r= 0.65± 0.12
and 0.69± 0.11, at dx= 2.4 and 1.2mm, respectively).

Qualitative assessments are shown in Figure 9, represented
as TAWSS and OSI. WSSNet predictions show good pattern
similarity at both resolutions, with less detail recovered at dx =

2.4mm. The parabolic fitting method showed WSS magnitude
roughly 3 times lower than the CFD magnitude. For both
algorithms, the OSI pattern appeared similar at both resolutions.
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FIGURE 7 | Time-averaged WSS and oscillatory shear index (OSI) comparison between WSSNet and ground truth CFD. Time-averaged WSS (TAWSS) and OSI were

calculated from all time frames (n = 72). 3D representations of the TAWSS from WSSNet are shown on the left side of each flatmap.

Table 2 shows a complete overview of the metrics for both
methods on different resolutions.

Figure 10 shows linear regression plots and Bland-
Altman representations for both methods. In general, good
correlations are observed for TAWSS between WSSNet and
CFD ground truth, with linear regression slopes and coefficients
of determination of k = 0.79 and R2 = 0.75 reported for the
noise-free 2.4mm resolution, and k = 0.78 and R2 = 0.74 for
the noisy 2.4mm resolution. Slightly higher values are seen
for WSSNet at 1.2mm (k = 0.82 and R2 = 0.87 for noise-free;
k = 0.81 and R2 = 0.85 for noisy). As a comparison, the
parabolic fitting method shows poor correlations with CFD
ground truth (k = 0.14 and R2 = 0.43 for noise-free and noisy
2.4mm; k = 0.18 and R2 = 0.56 for noise-free and noisy
1.2mm).

In terms of OSI, WSSNet shows moderate correlation at
2.4mm (k = 0.67 and R2 = 0.73 for noise-free; k = 0.64 and
R2 = 0.70 for noisy) and good correlation at 1.2mm (k = 0.83
and R2 = 0.86 for noise-free; k = 0.80 and R2 = 0.82 for

noisy). Similarly, the parabolic fitting method shows moderate
correlation at 2.4mm (k = 0.65, R2 = 0.66 for noise-free; k =

0.66 and R2 = 0.64 for noisy) and slightly better correlation at
1.2mm (k = 0.74, R2 = 0.71 for noise-free; k = 0.74, R2 = 0.68
for noisy).

Bland-Altman plots were assessed at noisy 2.4mm resolution
to show the quality of results at commonMRI resolution without
any preprocessing. Bland-Altman plot indicated minimal
TAWSS bias (0.32 Pa) with limits of agreement of 2.19 Pa
betweenWSSNet and reference CFD. For OSI, the Bland Altman
plot indicated minimal bias (−0.02) with limits of agreement
of 0.08.

To compare the agreement between the parabolic fitting
method and WSSNet, the Bland-Altman plot was also assessed
at noisy 2.4mm resolution. For TAWSS, Bland-Altman indicated
a bias of −3.34 Pa, with higher TAWSS values showing larger
differences (underestimation) by parabolic fitting method than
WSSNet. Conversely, the Bland-Altman plot for OSI shows only
a minimal bias (0.01) with narrow limits of agreement (0.05).
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FIGURE 8 | Top: Regression plot for TAWSS and OSI between estimated values from WSSNet and ground truth CFD. TAWSS and OSI have computed over 6 cases

(3 validation and 3 test) averaged over 72 time frames (dt = 10ms). Bottom: Bland-Altman plots for TAWSS and OSI. The plots show a point-wise comparison within

the flatmap. The plots show 20% of the data points, randomly selected.

Validation on in vivo 4D Flow MRI Cases
For the in vivo dataset, validation was performed on all 43 cases at
the base resolution (2.375mm x 2.375 × 2.75mm) as is without
any denoising. WSS was computed for all the cases with both
the parabolic fitting method and WSSNet at every time frame.
The resulting TAWSS and OSI were then compared between
both methods.

Figure 11 shows linear regression and Bland-Altman plots
for TAWSS and OSI comparing both methods, using WSSNet
predictions as reference values. Relative toWSSNet, the parabolic
fitting method shows poor correlation (k = 0.20 and R2 = 0.65)
for TAWSS but excellent OSI correlation (k = 0.91 and R2 =

0.71). Bland-Altman plot of TAWSS shows a bias of −2.05 Pa
with a similar downward trend observed in the synthetic
MRI, with higher TAWSS showing more underestimations.
Conversely, the Bland-Altman plot of OSI shows minimal bias
(−0.02) with limits of agreement < 0.08.

Figure 12 shows visual comparisons of some of the cases
using both methods. Visual inspection confirms the similarity
between the computed TAWSS pattern, even though a clear

difference in magnitude can be seen from the visualization.
The spatiotemporal average WSS was 2.95 ± 1.57 Pa and
0.95 ± 0.46 Pa, for WSSNet and parabolic fitting method,
respectively. Visual pattern similarity in OSI between both
methods can be seen, which was observed in the synthetic MRI
cases before. To quantify the similarity between WSS patterns,
Pearson correlation was computed at every time frame, resulting
in 0.68± 0.12.

DISCUSSION

This study demonstrates the feasibility of estimating WSS from
low-resolution 4D Flow MR images using a deep learning
method trained on a synthetic dataset acquired from CFD.
Inference speed was 9 frames per second (26 cases per min)
on a CPU for a typical 4D Flow MR image. The preprocessing
step, which consisted of mesh registration and velocity sheet
extraction, took ∼10min. Currently, aortic curve segmentation
remains a manual process, which can be improved in the
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FIGURE 9 | Time-averaged WSS and OSI comparison between WSSNet and parabolic fitting method at a different spatial resolution of synthetic MRI (dx = 2.4mm,

2.4mm with noise and 1.2mm). For reference, TAWSS and OSI flatmaps from ground truth CFD are provided in the left-most column. TAWSS derived from the

parabolic method were much lower and showed different dynamic ranges (0–4Pa) to highlight pattern similarity between methods. 3D representations of the TAWSS

from WSSNet2.4+noise are shown on the left side of each flatmap.

TABLE 2 | WSS magnitude and pattern similarity measurements for the validation

and test cases of the CFD simulations.

Method (resolution) MAE (Pa) Rel error (%) Pearson

correlation

ICC(A,1)

WSSNetCFD 0.55 ± 0.60 4.34 ± 4.14 0.92 ± 0.05 0.95

WSSNet2.4mm 0.94 ± 0.87 6.35 ± 5.67 0.82 ± 0.08 0.86

WSSNet2.4mm+noise 0.99 ± 0.91 7.13 ± 6.27 0.79 ± 0.10 0.85

WSSNet1.2mm 0.65 ± 0.67 4.80 ± 4.47 0.89 ± 0.06 0.92

WSSNet1.2mm+noise 0.71 ± 0.71 5.66 ± 5.13 0.85 ± 0.10 0.92

Parabolic2.4mm 2.89 ± 1.85 14.63 ± 6.83 0.65 ± 0.12 0.09

Parabolic2.4mm+noise 2.89 ± 1.85 14.63 ± 10.69 0.59 ± 0.11 0.09

Parabolic1.2mm 2.33 ± 1.67 11.23 ± 5.82 0.69 ± 0.11 0.13

Parabolic1.2mm+noise 2.65 ± 1.75 13.07 ± 9.76 0.68 ± 0.11 0.13

The table shows the comparison of WSSNet and parabolic fitting on different spatial

resolutions (dx = 2.4 and 1.2mm isotropic) with and without noise (n = 120 each). The

result from the CFD point clouds (WSSNetCFD) is included for comparison (n= 432). Intra-

class correlation (ICC) is computed from time-averaged WSS. Baseline values (WSSNet

on CFD data) are shown in bold.

future. This workflow is several orders of magnitude faster than
computational simulations while still offering good accuracy,
which is not attainable using conventional methods at standard
MRI resolution.

Spatial and Velocity Informed Neural
Network
Previous studies have shown neural network’s capability to
estimate hemodynamic variables from geometric features
(15–18). While these methods were able to estimate
hemodynamic variables with sufficient accuracy, the estimated
values produced were time-averaged or specific to a static
boundary condition, as no other quantities (i.e., pressure,
velocity) were provided as input values. Consequently, these
methods learned strictly from spatial features and were agnostic
to flow. In practice, clinical data contains temporal information,
for instance, flow velocity, which can be used to derive other
hemodynamic variables, such as pressure and WSS.

The aortic template mesh utilized in this study is based on
Liang et al. (18) which consisted of 5,000 nodes, which when
unwrapped into a UV map, becomes a 50 × 100 quadrilateral
mesh. We adapted the template into a 48 × 93 grid to
accommodate the circumferential direction in fitting the U-Net
input size (48 × 48) and the longitudinal direction to enable
compatibility with applying subdivision matrices on the coarse
template (12 × 24). The subdivision matrices are equivalent
to applying subdivision surfaces two times, which increased
the number of nodes to 2n and 2n-1 in a single pass, for
circumferential and longitudinal direction, respectively. While
the size of the circumference is fixed (48), different templates
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FIGURE 10 | Top: Linear regression plots of TAWSS for synthetic MRI using WSSNet (black) and parabolic fitting method (brown) at different resolutions (dx = 2.4 and

1.2mm) with and without noise, compared with ground truth CFD. Middle: linear regression plots for OSI at different resolutions (dx = 2.4 and 1.2mm) with and

without noise, compared with ground truth CFD. Bottom left: Bland-Altman plots of TAWSS and OSI between WSSNet and ground truth CFD at 2.4mm noisy

synthetic MRI. Bottom right: Bland-Altman plots of TAWSS and OSI between parabolic fitting method and WSSNet at noisy 2.4mm synthetic MRI. The plots show

20% of the data points, randomly selected.

with different longitudinal axis lengths can be used (i.e., 48 ×

N template). As previously mentioned, the coarse mesh and
subdivision surfaces were optional and were used to speed up the
registration process. Because the network was trained on a patch-
basis, a template that contains an extension of the aorta (e.g.,
more distal part of the descending aorta) may still be predicted
by the network, and simply assumed as another patch. With this
approach, the network is not fixated on specific markers across
the aortic vessels but is more general in predicting WSS, as long
as the vessel can be unwrapped into a UV map with the specified
circumference size (U= 48).

In this study, we extended on these previous works by adding
velocity sheets and coordinate flatmaps, which are crucial to
calculate spatial velocity gradients at the vessel wall. We were
motivated by previous widely used velocity-based methods, such
as the linear extrapolation method, velocity-based-with-wall-
position method, and the parabolic fitting method (11, 31). The
idea of these methods is to calculate spatial velocity gradients
from several inward distance velocities normal to the wall. Potters
et al. (10) further implemented the velocity-based method using
spline fitting for volumetric image with a similar approach using
3 or more velocity points (including wall point, which is assumed
to be 0). While it is possible to use more than 3 points, Potters

et al. showed that using 3 points resulted in more accuracy, given
enough voxels were available across the diameter.

To ensure the network learns different distances of velocity
sheets, the training data contained various predefined distances
from the wall surface. To mitigate zero values at the velocity
sheets caused by the registration error, the first velocity sheets
were extracted at a 0.3mm inward distance from the surface.

From the aforementioned studies, spatial hemodynamic
variables (i.e., WSS, ECAP, pressure) can be derived from
geometric features alone. Conversely, conventional velocity-
based methods are already used for in vivo cases resulting in
spatiotemporal WSS. By combining these two concepts, we were
able to train a network capable of estimating spatiotemporalWSS
more accurately, by using geometry and velocity information.

It is noteworthy that WSSNet returns the WSS vectors at
the vessel surface, which is useful for deriving other variables,
such as TAWSS, OSI, and different WSS components (i.e.,
circumferential and longitudinalWSS). Previous studies explored
the importance of this directional WSS (2, 32) and WSS angle
(33). Increased axial WSS can be an indicator of the presence
of high-risk plaque (32) and another study suggested that axial
WSS might explain different morphologies in ascending aorta
dilatation (2). WSS angle was suggested to be an independent
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FIGURE 11 | Top: Linear regression comparing the TAWSS and OSI derived from the estimation of WSSNet and parabolic fitting method from in vivo 4D Flow MRI.

WSSNet estimates are used as the reference values. Bottom: Bland-Altman plots of TAWSS and OSI between the parabolic fitting method and WSSNet for in vivo

cases (n = 43). The plots show 5% of the data points, randomly selected.

predictor for proximal aortic dilatation for patients with bicuspid
aortic valves (33).

Validation of WSS in CFD Point Clouds vs.
Uniform Grid
Similar to other studies using deep learning, our training
dataset was generated using CFD. While our target data is
represented using a grid structure, we opted to train the network
from the velocity sheets extracted directly from point clouds.
Extracting velocity sheets from CFD point clouds allowed us
to obtain smoother and velocity-rich information at flexible
inward distances, unaffected by spatial sampling and any partial
volume effect.

To showcase the generalizability of the network, we validated
the network using a synthetic MRI dataset. The synthetic dataset
was generated by sampling the CFD point clouds into MRI grid
resolutions (dx= 2.4 and 1.2mm). Additionally, we evaluated the
robustness of the network in the presence of noise in the dataset.
Subsequently, velocity sheets were extracted from the synthetic

MRI, to simulate partial volume and discretization effects
within the velocity sheets. Using WSSNet, reduced accuracy was
identified at the velocity sheets acquired at a low resolution
grid (dx = 2.4mm). However, similar accuracy was observed
with noise, showing the network is robust to noise. On the
other hand, the parabolic fitting method shows much lower WSS
values, and the values increase slightly with the presence of noise,
which has been described previously (34). Increased accuracy
was observed at higher spatial resolution (dx = 1.2mm) for
both methods. This is in agreement with previous studies that
higher spatial resolutions lead to a higher average WSS (9–11).
Nevertheless, WSSNet performance on low resolution synthetic
MRI (dx = 2.4mm) shows good accuracy and robustness to
noise. Based on this validation on the synthetic MRI dataset,
we can expect similar performance on the in vivo dataset with
similar resolution.

To demonstrate the viability of our approach for 4D Flow
MRI, we further tested the network in in vivo cases on base
resolution (dx = 2.4mm), similar to the test performed in the
synthetic MRI. While there are no reference WSS values for in
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FIGURE 12 | Time-averaged WSS and OSI comparison between WSSNet and parabolic fitting method in 4 cases of in vivo 4D Flow MRI. TAWSS derived from the

parabolic method were much lower and shown using different dynamic ranges (0–4Pa) to highlight pattern similarity between methods 3D representations of the

TAWSS and OSI from WSSNet are shown on the left side of each flatmap.

vivo cases, based on the previous validation on the synthetic
MRI data (Figure 10), the regression and Bland-Altman plots in
Figure 11 show similar trends. Moreover, visual observation and
structural similarity (Pearson correlation) also show adequate
results in terms of the WSS distribution.

In addition, Bland-Altman plots in Figures 10, 11 show
similar trends with a previous study conducted by Cibis et al. (14),
with ours showing a much larger bias. While their comparison
shows the WSS difference between MRI and CFD resolution at
the carotid arteries using the smoothing-spline fitting method,
we show the difference between parabolic fitting and WSSNet at
MRI resolution. This result demonstrates the network’s capability
to perform at a similar level of accuracy as CFD, with evaluation
performed at MRI resolution only.

Compared with other factors (i.e., segmentation accuracy,
venc), the spatial resolution had the most significant impact on
WSS estimation, as shown by Petersson et al. (11), with WSS
in MRI typically underestimating true WSS. In their study, the
relationship between WSS estimation methods with voxel size,
venc, and segmentation accuracy has been assessed extensively.
Other non-velocity-based methods were also assessed but were
outside the scope of this study.

Our average WSS in in vivo cases, using the parabolic fitting
method (0.95± 0.46 Pa), are relatively similar to previous studies
(1, 10). The differences are probably related to the different fitting
methods (parabolic vs spline fitting). WSSNet shows a higher
spatiotemporal averageWSS of 2.95± 1.57 Pa. As we have shown
in the synthetic MRI dataset, the accuracy of WSSNet is similar
to CFD.

For the parabolic fitting method, despite the regression
coefficients for TAWSS being low (at 2.4 and 1.2mm), the
correlations for OSI are much higher. It can be observed from
Figure 10 that the systematic WSS underestimations (9) lead
to a low correlation. However, OSI is a dimensionless metric
measuring the changes in WSS direction, relative to its own
magnitude. Therefore, it is independent of the WSS magnitude.
As a result, the correlation of OSI between different methods can
be compared independently from the magnitudes. This can be
observed from the visualization of TAWSS and OSI (Figure 9)
where both methods show TAWSS in different scales, but show
OSI at the same scale and have a similar distribution.

Consistent regression coefficients for both methods compared
to CFD reference values, in terms of TAWSS and OSI can be
seen on the synthetic MRI dataset, with the higher resolution
data showing a slight increase in correlation. The addition of
noise to the data only affected the results slightly. Similar to the
syntheticMRI, we also observed a similar correlation between the
two methods for both TAWSS and OSI (Figure 11). This further
verifies thatWSSNet can be applied to in vivo cases, and exhibited
similar behavior as when it was applied to synthetic MRI cases.

Additionally, Figures 10, 11 also show that the TAWSS
estimates were higher in synthetic MRI (0–12 Pa) compared to
the in vivo cases (0–8 Pa). These differences are likely caused
by the choice of simplified boundary conditions (constant
pressure at the outlet, outflow ratio) which produced different
flow characteristics. However, despite the fact that the in vivo
predictions are lower, the network can adapt to different flow
patterns and still estimate WSS values accurately, since it is
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trained on a variety of patient-specific geometries and boundary
conditions with the time-varying flow.

The choice of turbulence model also affects the CFD
simulations and estimated WSS as ground truth data. Different
turbulence models might produce different results, but the effect
is likely to be small. The use of a laminar model is also an option,
however, the WSS computed by a laminar model is known to
be underestimated in the turbulent regime. Also, as observed
in previous studies (35, 36), laminar models give rise to lower
WSS estimates than turbulence models, which are less accurate
for peak WSS estimates. Additionally, while the estimates might
introduce differences in values, the WSS patterns are similar.

Importance of WSS Distribution Pattern
Time-averaged WSS (TAWSS) and OSI patterns have been
suggested as disease risk indicators, such as for atherosclerosis
and aortic dilatation (1, 5, 37). Callaghan et al. (1) presented
a normal pattern and range of WSS from 4D Flow MRI
across a large population. Higher WSS was observed in the
descending aorta compared with the aortic arch. In addition,
this study suggested that WSS values are highly dependent
on velocity, vessel diameter, and the aortic arch curvature. As
previously mentioned, other studies have shown high accuracy
in estimating hemodynamic variables, such as ECAP, based only
on geometric information (spatial coordinates and curvature)
(16, 17). While the presented results are accurate in in silico
cases, pattern distribution and similarity were moderate. Liang
et al. (18) also leveraged a geometric approach, with the predicted
results showing similar aortic stress distributions, though it
was not quantified and was only tested against finite element
models. Another study combined vessel diameter and curvature
information, showing good time-averaged WSS predictions in
coronary arteries, with pattern similarities compared through
visual inspection (15). Pattern matching is typically performed
by checking areas of overlap using bins, categorizing WSS
magnitudes from low to high (14).

In our study, we chose to use both velocity and geometric
information, which is not only able to predict averaged or spatial
results but can also predict spatiotemporal WSS. Moreover, our
method is optimized using SSIM loss to ensure the network
is able to recognize patterns based on spatial and velocity
information. SSIM is a commonly used metric for image
processing and computer vision, which can be applied to image
data representation. Our results showed that WSSNet is able to
recover finer WSS pattern details only by a two-fold resolution
increase, which by no means is sufficient to accurately estimate
WSS values. A much higher resolution is typically necessary to
resolve the high gradient changes near the wall.

Overall, recent studies have suggested that WSS is a potential
biomarker for atherosclerosis, aortic dilatation, and aneurysm
(1, 5, 37). WSS measurement also has improved risk stratification
in patients with carotid and coronary artery disease (38). Despite
its clinical relevance, the available methods mostly rely on CFD
analysis, which is computationally costly and not practical for a
clinical setting (39). Therefore, by developing this method, we
aim to extract the implicit knowledge from the CFD simulations,
reducing a great deal of computation cost, while improving

the applicability to a clinical setting. However, a more rigorous
evaluation of patients is needed to ensure this approach can be
applied for clinical applications.

Limitations and Future Study
Our study has several limitations. First, a modest number of
geometries were used to run the CFD simulations. Additional
geometries could be used to improve the generalizability of the
network. Furthermore, different boundary conditions may help
to generate more variations in the training dataset.

Second, WSS computed using CFD are dependent on several
assumptions, which may introduce errors. The choice of a
turbulence model may also affect the calculation of WSS,
due to how the CFD software approaches the calculation of
wall viscosity (with the contribution of turbulence viscosity).
Although there may be differences in WSS magnitudes
introduced by different turbulent models, these differences are
small and the WSS patterns are relatively similar. Furthermore,
our approach relies on the dataset, where physical properties were
inherently derived from the CFD simulations. The simplification
of boundary conditions (e.g., plug profile, constant pressure)
might have a significant impact on the patient-specific flow and
WSS values (40). However, the impact onWSSNet results is likely
to be small, as it learns from local velocities and spatial features.

Third, WSSNet requires a large amount of data to train. While
it is possible to generate more data through CFD simulations, a
more sustainable solution is needed. An alternative for CFD, such
as Physics Informed Neural Network (PINN), enables physics-
informed solutions to generate surrogate solutions faster than
CFD (41). This approach may speed up the data generation
process tremendously. Additionally, this method also allows
direct estimation of WSS, which may solve this problem in
one single step. However, this method requires retraining
for each new geometry. In our case, where 4D Flow MRI
datasets are already available, an algorithm like WSSNet offers a
direct estimation of WSS using the available measurements and
geometry information.

Finally, while representing the data as flatmaps saves
computation power, and can be considered as a strength
of this model, it is not a flexible representation. Using this
representation, more complex geometries (including the aortic
branches) cannot be represented as a rectangular grid using
UV mapping. A more flexible data representation (i.e., mesh or
graph) or a different network structure (i.e., SplineCNN, Graph
Convolutional Networks) may open a lot more possibilities
for more complex geometries (17, 42, 43). Graph data
representations have the potential to remove completely the
registration step from this workflow, which will improve the time
and may be more readily applicable for a clinical setting.

To summarize, several future directions can be taken to extend
the capability of this method, namely the addition of data to
expand the network generalization capability, a more flexible
data representation, and robustness to noise. Nevertheless, our
study highlights the potential of combining geometric and
velocity information in training deep neural networks to infer
hemodynamic variables for 4D Flow MRI.
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CONCLUSION

In conclusion, we have presented a method to estimate WSS
from 4D Flow MRI, with accuracy close to CFD. Our method
is based on principles of similar previous WSS estimation
methods, without being constrained by spatial resolution. More
importantly, it is applicable to existing clinical MRI without any
adjustments. We have shown accurate estimations for both CFD
and in vivo cases regarding WSS magnitude and distribution
throughout the aortic vessel.
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