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Abstract: Candida albicans is a major fungal pathogen of humans, accounting for 15% of nosocomial
infections with an estimated attributable mortality of 47%. C. albicans is usually a benign member of
the human microbiome in healthy people. Under constant exposure to highly dynamic environmental
cues in diverse host niches, C. albicans has successfully evolved to adapt to both commensal and
pathogenic lifestyles. The ability of C. albicans to undergo a reversible morphological transition from
yeast to filamentous forms is a well-established virulent trait. Over the past few decades, a significant
amount of research has been carried out to understand the underlying regulatory mechanisms, sig-
naling pathways, and transcription factors that govern the C. albicans yeast-to-hyphal transition. This
review will summarize our current understanding of well-elucidated signal transduction pathways
that activate C. albicans hyphal morphogenesis in response to various environmental cues and the cell
cycle machinery involved in the subsequent regulation and maintenance of hyphal morphogenesis.

Keywords: polymorphism; hyphal morphogenesis; hyphal activation; signal transduction pathways;
cell cycle regulation

1. Introduction

Candida albicans is a commensal fungus that is usually a benign member of the mi-
croflora in the gastrointestinal tract, genitourinary tract, mouth, and skin of most healthy
individuals [1–4]. C. albicans is also an opportunistic fungal pathogen responsible for
infections ranging from mild superficial infections to life-threatening candidemia [5]. The
use of modern medical therapies such as broad-spectrum antibiotics, cancer chemotherapy,
and solid organ transplant has led to an increase in the population vulnerable to invasive
candidiasis [6,7]. C. albicans is a leading cause of hospital-acquired infections; in the inten-
sive care unit (ICU), candidemia may represent up to 15% of nosocomial infections with an
estimated attributable mortality of 47% [7–11].

C. albicans displays a wide range of virulence factors and fitness attributes, including
its capacity for rapid evolution of resistance to commonly used antifungals (e.g., azoles,
polyenes, and echinocandins) and its ability to form biofilms on medical devices, con-
tributing to its success as a pathogen. One striking feature that allows C. albicans to cross
the commensal-to-pathogen boundary is its ability to switch reversibly between two mor-
phological forms, namely unicellular budding yeast, or filamentous form (hyphae and
pseudohyphae), in response to various environmental cues that reflect the host environ-
ment [12–19].

Yeast, hyphal, and pseudohyphal forms of C. albicans are all present in tissues of human
patients and animals with systemic invasive candidiasis [20,21]. Yeast cells exhibit a round-
to-oval cell morphology that arises from budding and nuclear division [22]. In contrast,
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hyphae consist of tubular cells that remain firmly attached following cytokinesis without a
constriction at the site of separation. Pseudohyphae share features resembling both yeasts
and hyphae, which are branched chains of elongated yeast cells with constrictions at the
septum. Both yeast and hyphal forms have crucial and complementary roles important for
infection [23]. For instance, the yeast form is required for adhesion to endothelial cells and
dissemination into the bloodstream, while the hyphal form is required for tissue penetration
during the early stages of infection and yielding resistance towards phagocytosis [24–29].
Hyphae-specific virulence factors such as adhesins (Hwp1, Als3, Als10, Fav2, and Pga55),
host tissue degrading proteases (Sap4, Sap5, and Sap6), and cytolytic peptide toxin (Ece1),
aggrandize the host cell damage during infection [22,30].

Although C. albicans can undergo an array of morphological transitions such as the
formation of chlamydospores, gray cells, GUT (gastrointestinally induced transition) phe-
notype, and white/opaque cells, the yeast-to-hyphae transition appears to be the most
critical virulence trait [12,15]. Mutants locked in either the hyphal or yeast form have
shown diminished virulence, suggesting that the ability to switch between the two morpho-
logical forms is essential for virulence [31,32]. Recent advances in mechanistic studies have
provided insights into the morphological regulation, coordination, and interplay between
environmental factors and genes associated with pathogenesis. This review provides an
update on the signal transduction pathways involved in activating C. albicans hyphal mor-
phogenesis and how the cell cycle progression and its machinery further aid the regulation
and maintenance of sustained hyphal growth.

2. Environmental Cues Inducing the Yeast-to-Hyphae Transition

C. albicans has adapted to growth in the human host and can transit from yeast to hyphae
under a diverse range of environmental cues, as shown in Figure 1 [16,17,19]. Depending
upon the cues encountered, morphogenesis can be triggered via several pathways which
activate different regulatory circuits.

Figure 1. External hyphal-inducing signals. The yeast-to-hyphae transition in C. albicans can be
triggered by various environmental cues such as high temperature (37 ◦C), high CO2 concentration
(~5%), pH 7, nutrition deprivation, serum, peptidoglycan, N-acetylglucosamine, and inhibited by
quorum-sensing molecules from endogenous and exogenous sources.

2.1. Host Niches

The human host presents one of the most favorable environments for C. albicans
morphogenesis due to the presence of multiple inducing factors such as elevated (body)
temperature (37 ◦C), the presence of serum, elevated carbon dioxide (CO2) levels (~5%), and
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low glucose content (0.1%) [33–36]. Hyphal initiation requires an increase in temperature
to 37 ◦C and the release of quorum-sensing molecules (e.g., farnesol) for the temporary
clearance of the major transcription repressor of hyphal morphogenesis Nrg1 [37]. Elevated
temperature is also known to promote filamentation through the molecular chaperone
Hsp90 and the transcription factor Sfl2 [38,39]. In combination with elevated temperature,
the host serum is one of the strongest inducers of C. albicans hyphal morphogenesis [40].
Our group has previously demonstrated that bacterial peptidoglycans present in the host
serum trigger the hyphal growth of C. albicans by directly activating the cyclic AMP
(cAMP)-protein kinase A (PKA) signaling cascades through adenylyl cyclase Cyr1 [35,41].
Similarly, CO2, another potent inducer of filamentous growth, is also known to activate
the cAMP-PKA pathway by binding to Cyr1 [42]. In C. albicans, a carbonic anhydrase
Nce3 is involved in CO2 signaling and conversion of CO2 to bicarbonate (HCO3

-) [33].
Especially in host niches with limited CO2 (e.g., on the skin), the CO2/HCO3

- equilibration
controlled by Nce3 is crucial for the pathogenesis of C. albicans. The G-protein-coupled
receptor Grp1 and the Gα protein Gpa2 act as the glucose-sensing network for C. albicans
morphogenesis [43]. Low glucose concentration present in the bloodstream results in
the maximal hyphal formation, while high glucose concentrations repress it [36]. The
factors mentioned above have been shown to activate the fungal cAMP-PKA signaling
pathway [33,44–46].

2.2. Hypoxia (Low Oxygen)

Hypoxia is a clinical characteristic of inflammatory conditions, representing zones
of intense immune activity [47,48]. C. albicans can modulate the host response under
hypoxia and anoxia (absence of oxygen) to evade immune responses [47]. As a commensal,
C. albicans adapts to hypoxia condition by repressing the transcription factor of filamentous
growth Efg1. Interestingly, Efg1 has a dual role in hyphal morphogenesis. Under hypoxia,
it acts as a repressor at temperatures ≤ 35 ◦C, while under normoxia (normal oxygen
level), Efg1 is a strong inducer of hyphal formation [48]. efg1∆/∆ mutants displayed
hyperfilamentous growth at temperatures ≤ 35 ◦C during hypoxic growth on agar surface
or during embedment in agar but not during growth in liquid media [48,49]. In contrast,
Ace2 is essential for hyphal morphogenesis under hypoxia while being dispensable under
normoxia [50,51]. Efg1 and Ace2 share functional overlap; chromatin immunoprecipitation
on microchips (ChIP) analyses revealed that hypoxic repressors (Efg1 and Bcr1) and hypoxic
activators (Ace2 and Brg1) are connected in regulatory circuits in controlling hyphal
morphogenesis under hypoxia conditions [48]. Additionally, Efg1 was implicated in the
Cek1-mediated pathway under hypoxia at ≤35 ◦C; low Efg1 phosphorylation levels inhibit
Cek1 and Cph1, preventing hyphal morphogenesis. The low Efg1 phosphorylation levels
also inhibited hyphal morphogenesis through the cAMP-PKA pathway.

2.3. pH Conditions

C. albicans is constantly exposed to fluctuations in pH ranging from acidic to slightly al-
kaline in different human body niches such as the digestive tract, vagina, oral cavity, blood,
and tissues [52]. pH sensing is mediated through Rim101, an important regulator of the
yeast-to-hyphae morphological transition [53–55]. Upon activation, the transcription factor
Rim101 enters the nucleus and mediates pH-dependent responses [56]. Remarkably, C. albi-
cans is not only capable of sensing and adapting to environmental pH but can also modulate
extracellular pH by alkalinizing its surrounding environment and auto-inducing hyphal
formation [57]. Furthermore, alkalinization has been shown to counter the macrophage
acidification during engulfment, promoting its survival in the macrophage [58].

2.4. N-Acetylglucosamine (GlcNAc)

GlcNAc is commonly found as a structural component of the mucosa of the gastroin-
testinal tract, bacterial cell wall peptidoglycan, and fungal cell wall chitin [59,60]. Given
the ubiquitous nature of GlcNAc in host niches and microbial cells, it could potentially



Pathogens 2021, 10, 859 4 of 29

serve as a critical signaling molecule that regulates the switch between the commensalism
and pathogenicity of C. albicans [61]. Figure 2 depicts an update on GlcNAc signaling
pathways and their involvement in hyphal morphogenesis. Ngt1 was identified as a
membrane transporter specific for GlcNAc, indicating the importance of GlcNAc in intra-
cellular signaling [62]. However, metabolism or breakdown of GlcNAc intracellularly is
not required in the C. albicans hyphal morphogenesis as triple deletion mutants that lack
all three catabolic genes (HXK1, NAG1, and DAC1) can exhibit filamentous growth with
the addition of exogenous GlcNAc [63]. Interestingly, genetic screens have revealed two
novel transcription factors, NGS1 and RON1, which play essential roles in both the GlcNAc
catabolism and GlcNAc-induced filamentous growth [64]. NGS1 encodes a protein similar
to the GNAT family of histone acetyltransferase Gcn5, while RON1 encodes a protein
similar to the Ndt80-like DNA-binding domain [65]. Ngs1 was discovered as a novel
GlcNAc signal sensor and transducer for GlcNAc-induced transcription in C. albicans [65].
Ngs1 targets the promoters of GlcNAc-inducible genes constitutively via the transcription
factor Rep1 [65]. Ron1 was initially thought to act as both an activator and a repressor of
hyphal morphogenesis. However, ron1∆/∆ mutants constructed using the CRISPR/Cas9
method did not display observable GlcNAc-induced filamentous growth [64,66]. It is
noteworthy that, upon the addition of GlcNAc, ndt80 ron1 double deletion mutants could
overcome the hyphal defects observed in ndt80∆/∆ mutants. Collectively, it suggests that
Ron1 functions as a repressor of filamentous growth in the absence of Ndt80 [66]. The
GlcNAc signaling pathway was initially believed to be related to the cAMP-PKA pathway
as cyr1∆/∆ mutants cannot form hyphae under a broad range of conditions, including
GlcNAc [67]. However, it was later discovered that the fast-growing cyr1 pseudo revertant
strains could undergo filamentous growth in a GlcNAc containing medium [68]. This
indicates that GlcNAc can stimulate a signaling pathway independent of the cAMP-PKA
pathway that has yet to be fully elucidated. An alternative pathway involved in the GlcNAc
signaling is the pH-sensing Rim101 pathway. Production of excess ammonia during Glc-
NAc catabolism results in an increase in extracellular pH (>5), which indirectly stimulates
the hyphal induction in C. albicans via the Rim101 pathway [60,69].

2.5. Amino Acids Sensing

C. albicans can utilize amino acids as alternative carbon sources during growth in glucose-
poor, amino acid-rich conditions [57]. Amino acids that can be catabolized to arginine and
proline are potent inducers of hyphal morphogenesis [70–72]. C. albicans detects extracellular
amino acids via the plasma membrane-localized SPS (Ssy1-Ptr3-Ssy5) complex, which regu-
lates two paralogous transcription factors, Stp1 and Stp2 (Figure 2) [73–75]. In the presence of
extracellular amino acids, the amino acid sensor Ssy1 (Cys1) activates amino acid permease
(AAP) genes [76], while the peripherally membrane-associated Ptr3 recruits casein kinase
I (CKI), which activates the endoproteolytic activity of the endoprotease Ssy5 [76,77]. Ssy5
endoproteolytically cleaves the nuclear exclusion domain of Stp1 and Stp2, facilitating their
translocation to the nucleus [74]. Processed Stp1 regulates the expression of SAP2, which
encodes the major secreted aspartyl proteinase, and OPT1, which encodes an oligopeptide
transporter. The active Stp2 activates the expression of a subset of AAP genes [74,75]. The
endoplasmic reticulum (ER) chaperone protein Csh3 is required for the proper expression and
plasma membrane localization of Ssy1 and AAPs [78]. ssy1∆/∆, ptr3∆/∆, ssy5∆/∆, csh3∆/∆,
and stp2∆/∆ mutants fail to respond to the presence of extracellular amino acids and display
impaired filamentous growth [73–76,78]. Amino acid-induced morphogenesis has recently
been shown to be dependent on proline catabolism, with a strict requirement for Ras1
activity [79]. Proline catabolism in the mitochondria leads to elevated cellular ATP levels,
which exceed the critical threshold of ATP needed to induce cAMP synthesis, leading to
hyphal morphogenesis [71,79,80].
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Figure 2. N-acetylglucosamine (GlcNAc) and amino acid-induced signal transduction pathways in C. albicans. Ngt1,
localized in the plasma membrane, transports GlcNAc into the cell. However, when GlcNAc is present in high concentrations,
it can enter the cell through diffusion. The main signal transduction pathway for GlcNAc-induced hyphal growth was
initially thought to be the cAMP-PKA pathway. Recently, the transcription factors Ngs1 and Rep1, which are involved in
GlcNAc catabolism, were found to stimulate hyphal growth via a cAMP-independent pathway. GlcNAc catabolism also
increases the extracellular pH, which favors the hyphal growth via the alternate Rim101 pathway. Extracellular amino
acids are detected via the plasma membrane-localized SPS (Ssy1-Ptr3-Ssy5) complex. The SPS-sensor activation leads to
endoproteolytic processing at the nuclear exclusion domain of transcription factors Stp1 and Stp2. Processed Stp1 regulates
the expression of secreted aspartyl proteinase (e.g., SAP2) and oligopeptide transporters (e.g., OPT1 and OPT3), while
processed Stp2 regulates the expression of amino acid permeases (APPs).

2.6. Quorum Sensing

In addition to host environmental cues, C. albicans morphogenesis is also regulated by
several endogenous and exogenous quorum-sensing molecules (QSMs) [81–85]. Tyrosol
and farnesol are well-known QSMs produced by C. albicans, which accelerate and inhibit
the yeast-to-hyphae transition, respectively [81,86,87]. C. albicans also produces aliphatic



Pathogens 2021, 10, 859 6 of 29

alcohols (e.g., ethyl alcohol, isoamyl alcohol, 1-dodecanol, 2-dodecanol, and nerolidol) and
aromatic alcohols (e.g., 2-phenylethyl alcohol and tryptophol) that inhibit filamentation
and subsequent biofilm formation [88,89]. Farnesol and 1-dodecanol were implicated in
the Ras1-cAMP signaling pathway, and hyphal defects can be restored upon the addition
of dibutyryl-cAMP [89]. Farnesol also inhibits filamentous growth through the negative
regulators Tup1 and Nrg1 [90]. The hyphal morphogenesis of C. albicans can also be regu-
lated by interaction with other microorganisms found in the host environment [91,92]. For
instance, the coexistence of C. albicans and Gram-negative bacteria, such as Pseudomonas
aeruginosa, Stenotrophomonas maltophilia, and Burkholderia cenocepacia, is commonly found
as mixed infections in the lungs of cystic fibrosis (CF) patients [93]. Exogenous QSMs,
namely, 3-oxo-C12-homoserine lactone and phenazines (pyocyanin, phenazine methosul-
fate, and phenazine-1-carboxylate) secreted by P. aeruginosa, were found to inhibit the
hyphal development of C. albicans [82,94]. Diffusible signal factor (DSF), representing a
new class of widely conserved quorum-sensing signals from Gram-negative bacteria, has
been implicated in inter-kingdom signaling between C. albicans and bacteria [95]. DSF (cis-
11-methyl-2-dodecenoic acid) produced by S. maltophilia, and BDSF (cis-2-dodecenoic acid)
produced by B. cenocepacia play a role in the yeast-to-hyphae transition [95]. DSF released by
S. maltophilia has been reported to interfere with two key virulence factors of C. albicans: the
yeast-to-hyphae transition and biofilm formation [96]. Recent microarray studies revealed
the involvement of repressors (Ubi4 and Sfl1) and the activator (Sfl2) of filamentous growth
in BDSF regulation of hyphal morphogenesis [97]. With the addition of BDSF, elevated lev-
els of Ubi4 and Sfl1 and degradation of Sfl2 block the yeast-to-hyphae transition. C. albicans
is also commonly found along with other microorganisms in inter-kingdom biofilms [98].
Many bacteria and fungi can secrete glucanases into the environment that digest glucan,
the most abundant fungal cell wall component [99,100]. C. albicans itself secretes at least
three glucanases (Xog1, Exg2, and Spr1) which are involved in cell wall remodeling during
cell division and morphogenesis [101,102]. Interestingly, it has been found that β-1,3-
glucanase, secreted by bacteria and fungi, can induce filamentous growth in C. albicans
even at low temperatures (22 ◦C), in a cell density-dependent manner [103]. cek1∆/∆ and
efg1∆/∆ mutants cannot form hyphae in response to β-1,3-glucanase, suggesting that the
Cek1-mediated pathway is involved [103].

2.7. In Vitro Conditions

Hyphal growth can also be induced using synthetic growth media such as Lee’s
medium (pH 7), spider medium, and mammalian tissue culture M199 under laboratory
conditions [104–106]. Nitrogen starvation-induced filamentation occurs in the low nitrogen
SLAD medium via ammonium permease Mep2 sensing [107,108]. Methionine, an amino
acid in Lee’s medium, has been reported as the main inducer of yeast-to-hyphae transition
via G-protein-coupled receptor Gpr1 sensing [36]. Recently, the methionine permease
Mup1 and the S-adenosylmethionine decarboxylase Spe2 were discovered to be crucial
for cAMP production in response to methionine [109]. Both nitrogen and amino acid
catabolism activate hyphal morphogenesis via the cAMP-PKA pathway.

3. The cAMP-PKA Pathway

The cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway is
highly conserved in eukaryotes and regulates many cellular processes in C. albicans [44,110].
This pathway plays a critical role in morphogenesis, positively regulating filamenta-
tion [111–113]. One of the well-studied regulatory targets of the cAMP-PKA pathway is
the transcription factor Efg1, which stimulates the expression of numerous hyphal-specific
genes through the activation of the transcription factor Ume6 (Figure 3).
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Figure 3. Signal transduction pathways that govern hyphal growth in C. albicans. Activation of filamentous growth in C.
albicans by various environmental cues and signal transduction pathways; the cAMP-PKA pathway, the Cek1-mediated
pathway, the PKC pathway, and the embedded matrix.

The cAMP-PKA pathway is triggered either directly through the adenylyl cyclase Cyr1
or via the small GTPase Ras1, which activates Cyr1, depending upon the stimuli encoun-
tered (Figure 3) [114]. Cyr1, in direct association with Cap1 (cyclase-associated protein),
drives the conversion of ATP to cAMP [46]. PKA holoenzyme is activated upon cAMP
binding to the homodimer regulatory subunit Bcy1, inducing a conformational change
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releasing the two catalytic subunits, Tpk1 and Tpk2, which then activate downstream
target proteins or genes through phosphorylation or the binding of promoter regions to
induce transcription (Figure 3) [110,115–117]. Tpk1 and Tpk2 are partially redundant.
Tpk1 is required for hyphal formation on solid media, whereas Tpk2 is needed for hy-
phal formation in liquid media and invasive growth into solid media [116]. While the
loss of either subunit does not block filamentation, loss of both Tpk1 and Tpk2 com-
pletely blocks filamentation [39,116]. cAMP levels are negatively regulated by Pde1 (low-
affinity phosphodiesterase) and Pde2 (high-affinity cAMP phosphodiesterase), which
increase the rate of cAMP degradation [118,119]. Loss-of-function mutations or deletion of
PDE2 increase cAMP levels, leading to constitutive activation of the pathway and hyper-
filamentation [119,120]. The pde2∆/∆ mutants exhibit reduced virulence due to reduced
adhesion capability [121]. On the contrary, the pde1∆/∆ mutants can still undergo filamen-
tation [122]. Interestingly, pde1 pde2 double deletion mutants exhibit attenuated virulence
as compared to pde2∆/∆ mutants [121].

The adenylyl cyclase Cyr1 is required for hyphal development and virulence but is
not essential for basal growth in C. albicans [67]. Deletion of CYR1 has a global impact on
gene expression, resulting in many alterations in response to environmental cues [67,123].
Cyr1 contains several highly conserved functional domains, which include a Gα domain,
a Ras-association (RA) domain, a leucine-rich repeat (LRR) domain, a cyclase catalytic
(CYCc) domain, and a Cap1 (cyclase-associated protein 1) binding domain (CBD) [124,125].

The small GTPase Ras1, an upstream activator of Cyr1, transduces extracellular signals
(serum in combination with elevated temperature or nitrogen starvation) to Cyr1 [44,107,114].
Ras1 usually exists in the cell in an inactive (GDP-bound) form, and its switch to the
active form (GTP-bound) is regulated by the GTPase-activating protein (GAP) Ira2; the
guanine nucleotide exchange factor (GEF) Cdc25 drives the GTP-Ras1-to-GDP-Ras1 switch
(Figure 3) [126]. Active Ras1 directly interacts with Cyr1 through the RA domain, stimu-
lating cAMP production [44,114]. Cyr1 activity depends upon the binding of Cap1 at the
CBD domain and the binding of G-actin to Cap1 to form a tripartite complex, which serves
to maintain the activation of the pathway [46,127]. Deletion of CAP1 results in lowered
cAMP levels and blocks in morphogenesis.

The presence of serum drives morphogenesis via Ras1 activation of the cAMP-PKA
pathway. Deletion of RAS1 impairs serum-induced filamentous growth, which can be
overcome by supplementation with cAMP, and overexpression of cAMP signaling com-
ponents rescues its defects [128,129]. The serum contains various active factors, such as
glucose and bacterial peptidoglycan fragments, that can stimulate the pathway. The Gα

domain of Cyr1 is the binding site for a heterotrimeric G-protein α subunit Gpa2, which
is activated by the G-protein-coupled receptor Gpr1 in response to glucose and amino
acids [34,130]. However, neither Gpr1 nor Gpa2 is required for serum-induced hyphal
formation in liquid media [43]. Glucose-induced activation of cAMP synthesis appears
to be mediated by Cdc25-Ras1 interaction and not Gpr1 binding of Cyr1 [36,43,45]. The
LRR domain of Cyr1 recognizes and binds muramyl dipeptides (MDP), subunits of bacte-
rial peptidoglycan present in serum [35,39,41]. Deletion or mutation of the LRR domain
abolishes cAMP-PKA activation in the presence of MDPs [35]. CO2 or HCO3

- bind to the
CYCc domain, stimulating the production of cAMP required for hyphal growth [33]. Both
endogenous and exogenous QSMs farnesol and 3-oxo-C12-homoserine lactone (HSL) block
the hyphal growth by binding to the CYCc domain and inhibiting the activity of Cyr1 [82].

Temperature-dependent morphogenesis via the cAMP-PKA pathway is governed by
the heat shock chaperone protein, Hsp90, whose expression is regulated by the heat shock
transcription factor, Hsf1 [131]. Under basal conditions, Hsp90 and its co-chaperone Sgt2
interact with Cyr1 and repress it [39,132]. Temperature elevation results in cellular stress
leading to an increase in competing Hsp90 client proteins, thereby relieving Hsp90 repression
of Cyr1. Inhibition of Hsp90 leads to filamentous growth under non-inducing conditions.

Cell cycle perturbation also induces morphogenesis via the Ras-cAMP-PKA signaling
pathway. Disrupting cell cycle progression by treating with the DNA synthesis inhibitor
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hydroxyurea (HU) arrests cells in the S phase, while prolonged depletion of Cln3 arrests
cells in the G1 phase [133,134]. Arrested cells switch to filamentous growth and re-enter
the cell cycle via Ras1-activation of the cAMP-PKA pathway [133,134]. However, while cell
cycle arrest in G1 and S phase induces morphogenesis, different mechanisms are involved.
HU-induced filamentation does not require the downstream transcription factor Efg1, and
the hyphal-specific transcription factor Ume6 and the G1 cyclin Hgc1 but involves other
PKA target genes [133,135]. In contrast, filamentation due to Cln3 depletion requires Efg1,
Ume6, and Hgc1 [133–135].

4. The MAPK Pathways

The mitogen-activated protein kinase (MAPK) signal transduction pathway consists
of three components: the MAP kinase kinase kinase (MAPKKK), the MAP kinase kinase
(MAPKK), and the MAP kinase (MAPK) (Figure 3). MAPK signaling is dependent on three
phosphotransfer steps. Upon activation, MAPKKK becomes phosphorylated and triggers
the phosphorylation of the MAPKK, which in turn phosphorylates the MAPK [136,137].
In C. albicans, the Cek1-mediated MAPK pathway and the PKC MAPK pathway are
activated by different stimuli. They serve as patterns of cascades that are essential for its
morphogenesis and virulence, as shown in Figure 3 [137,138]. Apart from the cAMP-PKA
signaling pathway, Ras1 also signals through the MAPK signaling cascade (Cek1-mediated)
to coordinate filamentation in response to nitrogen starvation conditions via the Mep2
sensor [107].

4.1. The Cek1-Mediated MAPK Pathway

C. albicans extracellular signal-regulated kinase (ERK)-like 1 (Cek1)-mediated MAPK
pathway is involved in cell wall biogenesis and virulence [139,140]. The Cek1-mediated
MAPK pathway also plays an important role in hyphal development through the activation
of downstream transcription factor Cph1, a positive regulator of filamentation [106,141].
This pathway can be induced by several factors such as low nitrogen, cell wall damage,
osmotic stress, and embedding matrix. Under nitrogen starvation conditions, this path-
way is activated by the ammonium permease Mep2 via a Ras1-dependent manner [107].
Cdc42, an essential GTPase, and its GEF Cdc24 are required for filamentous growth and
virulence [142,143]. Upon interactions with Cdc24 and Ras1, activated Cdc42 turns on
downstream effectors, including p21-activated kinase (PAK) Cst20 and Cla4, which then
triggers concerted phosphorylation of the Ste11 (MAPKKK), Hst7 (MAPKK), and Cek1
(MAPK) (Figure 3) [138]. Mutations in the Cek1-mediated cascade cause defects in hy-
phal development to a different degree under certain conditions and result in attenuated
virulence in animal models [144,145]. The Cek1-mediated MAPK pathway can also be acti-
vated through its upstream transmembrane proteins via cell wall damage or osmotic stress.
Sho1, Opy2, and Msb2 form a complex that interacts with Cdc42 and Cst20, triggering
Cek1 phosphorylation [144]. sho1∆/∆, opy2∆/∆, and msb2∆/∆ mutants display altered
sensitivity to cell wall damaging agents such as Congo Red, zymoylase, and tunicamycin,
suggesting their roles in cell wall biogenesis [146,147]. sho1∆/∆ mutants are sensitive to
osmotic stress (i.e., 1 M sodium chloride), suggesting its additional role in osmotic stress
signaling. The Cek1-mediated MAPK pathway responds to embedded matrix conditions
by initiating a signaling cascade that ultimately activates Cph1 via Cek1 [22]. Rac1, Lmo1,
and its exchange factor Dck1 are essential for invasive filamentous growth in the embed-
ding matrix [148,149]. In contrast to Cdc42, Rac1 is not required for serum-induced hyphal
growth [150]. rac1∆/∆, lmo1∆/∆, and dck1∆/∆ mutants were observed to exhibit filamen-
tous growth defects on solid agar and increased sensitivity to cell wall damaging agents,
such as Calcofluor White and Congo Red [148]. Intriguingly, the overexpression of the Cek1
MAP kinase in rac1∆/∆, lmo1∆/∆, and dck1∆/∆ mutants restores invasive filamentous
growth on solid media, suggesting that Rac1, Lmo1, and Dck1 function together upstream
of the Cek1-mediated MAPK pathway during invasive filamentous growth [148]. The
downstream transcription factor, Cph1, is essential for hyphal growth on solid agar but
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not in liquid media [106]. It was found that efg1 cph1 double deletion mutants cannot
form filaments under hypha-inducing conditions and are avirulent in animal models [31].
However, efg1 cph1 double deletion mutants can form filamentation when embedded in the
matrix, suggesting the involvement of other transcription factors for hyphal development
under this condition [151].

4.2. The PKC MAPK Pathway

The protein kinase C (PKC) MAPK pathway is commonly known as the cell wall
integrity pathway [137]. Pkc1 activation leads to a MAPK cascade activation of Bck1
(MAPKKK), Mkk1 (MAPKK), and Mkc1 (MAPK). Cellular morphogenesis in C. albicans is
a highly dynamic process controlled by a master regulator, Rho1, in response to various
stressors (Figure 3) [152]. Rho1, the master regulator of the cell wall integrity signaling
cascade, is activated by the GEF Rom2 and inactivated by the GAP Lrg1 [153]. Recently,
the PKC MAPK pathway was discovered to regulate C. albicans morphogenesis through
the co-regulation of cAMP signaling [154]. Interestingly, Rho1 plays an important role
in filamentation through Pkc1. Pkc1 was found to be a global regulator of C. albicans
morphogenesis through the regulation of adenylyl cyclase Cyr1. A reduction of Cyr1
activity was observed in pkc1∆/∆ mutants [154]. Lrg1 deactivates Rho1 by locking it in its
inactive form, which suppresses the yeast-to-hyphae transition. C. albicans morphogenesis
is independent of its canonical MAPK cascade. Deletion of BCK1 or MKC1 does not impair
the filamentous growth in response to the Hsp90 inhibitor geldanamycin or serum [155].
Although the downstream transcription factors of Mkc1 have previously been proposed
to be Efg1, Czf1, and Bcr1, to date, C. albicans morphogenesis through distinct effector(s)
remains elusive [154,155].

5. Negative Regulators of Hyphal Morphogenesis

C. albicans morphogenesis is negatively regulated by the transcriptional repressors
Tup1, Nrg1, and Rfg1 [156–158]. Tup1 is a global transcriptional repressor, and its in-
activation leads to constitutive filamentous growth and derepression of hyphal-specific
genes [130,156,159]. Nrg1 and Rfg1 are well characterized DNA-binding proteins, which
regulate different subsets of hyphal-specific genes by recruiting co-repressor Tup1. A DNA
microarray analysis revealed significant up-regulation of 61 genes in response to serum
and 37 ◦C [160]. Approximately half of these genes are found to be repressed by the tran-
scription factors Tup1, Nrg1, and Rfg1, suggesting their importance in repressing hyphal
morphogenesis. C. albicans cells that lack these repressors develop into pseudohyphae with
the expression of hyphal-specific genes [161]. Surprisingly, only nrg1∆/∆ mutants form
hyphae in response to serum. In addition, nrg1∆/∆ mutants appear to display stronger
hyphal phenotypes than rfg1∆/∆ mutants, suggesting its predominant role in the negative
regulation of hyphal growth [162].

5.1. The Farnesol-Mediated Inhibition Pathway

Though Tup1 is found to act independently of the cAMP-PKA and MAPK pathways to
regulate morphogenesis, it seems to play a crucial role in the farnesol response pathway [90,159].
Farnesol, an endogenous QSM, is produced when the cell densities of C. albicans are high.
While farnesol can block the yeast-to-hyphae transition, it cannot block the elongation
of pre-existing filaments [163–165]. Morphological and transcriptional studies, which
investigated the possible functional overlap between farnesol and hyphal transcriptional
repressors, have demonstrated the direct involvement of Tup1 in the farnesol-mediated
inhibition of filamentous growth [90]. tup1∆/∆ and nrg1∆/∆ mutants display elevated
levels of farnesol and are constitutively filamentous even in the presence of exogenous
farnesol. In the presence of farnesol, TUP1 levels increase, but NRG1 and RFG1 levels
are unaffected [90]. Further targeted studies on the farnesol-mediated inhibition pathway
have unraveled its dedicated mechanistic control of filamentous growth [166]. Upon
inoculation of cells, where farnesol inhibition is relieved, the transcriptional repressor Cup9
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is constantly degraded by the N-end rule E3 ubiquitin ligase Ubr1, allowing the expression
of kinase Sok1 and subsequent degradation of Nrg1. In contrast, the presence of farnesol
inhibits the degradation of Cup9, thereby repressing Sok1 expression, which in turn blocks
the degradation of Nrg1 and hyphal development [166].

5.2. The Roles of Negative Regulators Tup1 and Nrg1 in Hyphal Elongation

Critical regulators of hyphal initiation and the activation of hypha-associated genes,
such as Efg1, Cph1, Czf1, and Flo8, are shown in Figure 4. Thereafter, a second regulatory
network is required for the hyphal elongation process and long-term maintenance of
hyphal growth through Hgc1, Eed1, and Ume6, which are negatively regulated by Tup1
and Nrg1 [144,167–169]. Eed1 was first identified in oral tissue infections from patients
suffering from oral disease, and its associated regulatory network was explored through
comprehensive transcriptomics analysis [167]. Eed1 is positively regulated by Efg1 as
the overexpression of EED1 partially rescues the hyphal defects in efg1∆/∆ mutants.
EED1 expression is significantly up-regulated in the continuously filamentous nrg1∆/∆
and tup1∆/∆ mutants under non-hyphae-inducing conditions [167]. In contrast, under
hyphae-inducing conditions, EED1 levels were slightly decreased in nrg1∆/∆ and tup1∆/∆
mutants, but elevated 10-fold in wild-type cells. Collectively, this suggests that EED1
is repressed by both Nrg1 and Tup1 in wild-type C. albicans. Ume6 acts downstream of
Eed1 as the overexpression of UME6 restored the hyphal elongation defect observed in
eed1∆/∆ mutants [167]. UME6 expression levels were significantly down-regulation in
eed1∆/∆ mutants [167]. HGC1 expression is detected within 5 min of hyphal induction,
whereas UME6 expression is only detected after 15 min upon induction [170]. This suggests
that a Ume6-independent mechanism initially induces HGC1. Nrg1 and Tup1 negatively
regulate both Ume6 and Hgc1 [161,169]. Ume6 could also be induced as a result of relief of
transcriptional repression by the Nrg1-Tup1 complex.

Figure 4. Regulation of hyphal elongation requires mechanisms for initiation and long-term maintenance. Initiation of
hypha growth requires transcription factors such as Efg1, Cph1, Czf1, and Flo8. Subsequent elongation process and maintenance
require the involvement of Hgc1, Eed1, and Ume6. Both Eed1 and Ume6 are negatively regulated by Tup1 and Nrg1.

5.3. O2 and CO2 Signaling Pathways for Sustained Hyphal Development

The stability of hyphae-specific transcription factor Ume6 is governed by two parallel
pathways in response to O2 and CO2 concentrations [171,172]. Ofd1 negatively regulates the
stability of Ume6 by E3 ubiquitin ligase Ubr1 under hypoxia conditions. ofd1∆/∆ and ubr1∆/∆
mutants can maintain hyphal elongation in atmospheric O2 and 5% CO2 [171,172]. However,
deletion of UBR1 does not block Ume6 degradation in atmospheric CO2, suggesting
the involvement of additional E3 ubiquitin ligase in response to CO2 [172]. Recently, it
was discovered that CO2, an inducer of filamentous growth, also plays a critical role
in the sustenance of hyphal growth in response to high CO2 (5%) [172]. In the CO2
signaling of sustained hyphal growth, a type 2C protein phosphatase (PP2C) Ptc2 and
a cyclin-dependent kinase Ssn3 were identified to be the major positive and negative
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regulators, respectively [172]. High CO2 induces Ptc2-mediated dephosphorylation of
Ssn3. Consequently, the hypophosphorylated Ssn3 fails to phosphorylate Ume6 at the
S437 residue. This prevents subsequent ubiquitination of Ume6 by the E3 ubiquitin ligase
SCFGrr1, resulting in stabilization of Ume6 for the sustenance of hyphal growth.

5.4. Negative Regulators as Potential Drug Targets

Recent discoveries have introduced novel compounds that inhibit C. albicans hy-
phal and biofilm formation through the up-regulation of negative regulators Tup1 and
Nrg1 [173,174]. Treatment of C. albicans with novel synthetic SR analogues, 5-[3-substituted-
4-(4-substituted benzyloxy)-benzylidene]-2-thioxo-thiazolidin-4-one derivatives, resulted
in a 3 to 4-fold increase in the expression of TUP1 and a 2-fold increase in the expres-
sion of NRG1, which effectively inhibits the hyphal morphogenesis [173]. Copper oxide
nanoparticle (Cu2O-NP) was found to inhibit the yeast-to-hyphae transition through the
down-regulation of RAS1 and up-regulation of NRG1 and TUP1 [174]. Exploiting the
negative regulators as drug targets holds excellent potential for future clinical applications.
There is a growing interest in applying nanoparticles on medical devices, prosthetic devices,
and catheters to combat polymicrobial biofilms in clinical settings.

6. Mechanisms of Hyphal Morphogenesis
6.1. Septin Ring Formation

Although the septin subunits are static in budding yeast cells, upon hyphal induction,
Cdc3, Cdc12, and Sep7 form a stable core, while the Cdc10 subunit becomes dynamic,
shuttling between the septin ring and the cytoplasm [175]. Cdc3 and Cdc12 are essential,
whereas Cdc10 and Cdc11 are not. However, the deletion of CDC10 and CDC11 leads to
defects in cytokinesis. During hyphal growth, Cdc11 is phosphorylated by the cyclin-CDK
(cyclin-dependent kinase) complex Ccn1-Cdc28, and another cyclin-CDK complex Hgc1-
Cdc28 maintains its phosphorylated state; mutations to the phosphorylation sites in Cdc11
impair the maintenance of polarized growth [176]. Cdc11 phosphorylation by the septin
ring-associated kinase Gin4 primes it for further phosphorylation by Ccn1-Cdc28 [176].
Both cdc10∆/∆ and cdc11∆/∆ mutants have abnormalities in septum formation during
hyphal growth and form curved hyphae [177,178]. Cdc10 dynamics are dependent on
Sep7 and its phosphorylation status [175]. sep7∆/∆ mutants can form hyphae, but the
hyphal compartments separate after cytokinesis. Ccn1-Cdc28 and Hgc1-Cdc28 phospho-
rylate Gin4, which in turn phosphorylates Sep7 [179,180]. Deletion of GIN4 disrupts the
formation of septin rings in germ tubes resulting in a severe cytokinesis defect; gin4∆/∆
mutants form pseudohyphae constitutively and cannot form true hyphae upon serum
induction [181]. Depletion of Gin4 in G1 cells blocks septin ring formation [180]. Sep7
is dephosphorylated by the protein phosphatase 2A (PP2A), mediated by the structural
subunit Tpd3 and the catalytic subunit Pph21 [182]. Deletion of PPH21 or TPD3 or its
regulators, CDC55 or RTS1, leads to the hyperphosphorylation of Sep7 and the disruption
of septin organization [182,183]. cdc55∆/∆ mutants grow as pseudohyphae under yeast
growth conditions, while rts1∆/∆ mutants grow as round, enlarged multinucleated cells.
Both cdc55∆/∆ and rts1∆/∆ mutants display hyphal defects.

The nucleus migrates out from the mother cell to the septin band within the developing
hyphae, and the first nuclear division occurs in this subapical compartment [184]. One
daughter nucleus migrates back to the mother cell, while the other nucleus migrates to
the apical compartment. After mitosis, the protein phosphatase Cdc14, which regulates
mitotic exit, localizes to the septum in yeast cells and dephosphorylates the Mob2-Cbk1
complex, allowing the transcription factor Ace2 to translocate to the nucleus and activate
the transcription of genes involved in cell separation [185]. However, in hyphal cells, Cdc14
does not localize to the septum, and Mob2-Cbk1 remains at the hyphal tip [185]; thus,
cytokinesis does not result in cell separation or the formation of a constriction between cells
as observed in yeast or pseudohyphae, respectively. The septin ring splits into two rings
with the formation of the primary septum dividing the hyphal compartments. Both rings
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are maintained in hyphal cells, unlike in yeast and pseudohyphal cells, where the septin
rings are dissembled after cytokinesis. However, in sep7∆/∆ mutants, Cdc14 can localize
to the hyphal septum, activating the Ace2-dependent cell separation program, resulting in
hyphal cell separation [186]. The subapical compartment of the hyphae is vacuolated and
remains in the G1 phase.

The nucleosome assembly protein, Nap1, plays a role in septin ring formation and
dynamics [187]. Deletion of NAP1 results in constitutively pseudohyphal cells that can
transit to true hyphae under hyphal-inducing conditions. Phosphorylation of Nap1 occurs
in a cell cycle-dependent manner, which involves Gin4 and Cla4, a second septin ring-
associated kinase. Phosphorylated Nap1 translocates from the cytoplasm to the emerging
bud neck. In cdc10∆/∆ and cdc11∆/∆ mutants, Nap1 remains in the cytoplasm even
though it is hyperphosphorylated. After mitosis, Nap1 is dephosphorylated in a manner
that is dependent upon PP2A and Cdc14.

6.2. Polarization of the Actin Cytoskeleton

Actin cytoskeleton polarization is required for the morphogenesis of C. albicans, re-
gardless of cell type. The actin cytoskeleton, made up of actin patches and cables, maintains
directional growth by directing vesicular flow for tip expansion. In yeast and pseudo-
hyphae, polarized growth is driven by the polarisome, a complex that includes the po-
larisome scaffold protein Spa2, the formin Bni1 that serves as the actin cable nucleator,
and the formin-actin-binding protein Bud6 [188]. Actin cables, comprised of long bun-
dles of actin filaments, converge at the apical site. During polarized growth, post-Golgi
membrane-bound secretory vesicles are continuously delivered to the apical site, supplying
material required to expand the plasma membrane and synthesize new cell walls. The
vesicles are tethered to the actin cables by the Rab-type GTPase Sec4, activated by the
GEF Sec2 [189,190], while the class V myosin, Myo2, complexed to the regulatory light
chain Mlc1, provides the motive force for vesicle transport [191]. Upon arrival at the
plasma membrane, the secretory vesicles dock with the exocyst before fusing with the
plasma membrane. The exocyst is a complex that comprises Sec3, Sec5, Sec6, Sec8, Sec10,
Sec15, Exo70, and Exo84 [192]. Sec4 mediates vesicle tethering with the exocyst through its
interaction with Sec15 [189,190].

Although the polarisome and exocyst complexes also localize to the hyphal tip, polar-
ized growth in hyphae is driven by a Spitzenkörper, a vesicle-rich structure responsible for
hyphal growth directionality, which is present during all stages of the cell cycle, including
septation [193]. Spa2, Bni1, and Bud6 coordinate the functions of the Spitzenkörper and
the polarisome complex at the hyphal tip [191,193]. During hyphal growth, the post-Golgi
secretory vesicles travel along actin cables to the Spitzenkörper, which acts as a vesicle
supply center and is maintained at a fixed distance from the hyphal tip (Figure 5). The
vesicle-associated proteins Sec4, Sec2, and Mlc1 are localized to the Spitzenkörper during
hyphal growth [191,194]. At the Spitzenkörper, the secretory vesicles are loaded onto actin
cables nucleated by the polarisome and transported to the plasma membrane, where they
dock with the exocyst. Actin cables are essential in hyphal growth, as their disruption
inhibits hyphal formation [193]. Loss of BNI1 does not affect bud emergence, as germ tube
formation can be initiated in bni1∆/∆ mutants. However, the germ tubes are wider in
diameter, and bni1∆/∆ mutants cannot maintain polarized cell growth [195]. Deletion of
SPA2 leads to polarity and hyphal growth defects [196]. spa2∆/∆ mutants display random
budding with multiple surface protrusions. Similar to the bni1∆/∆ mutants, spa2∆/∆
mutants can form germ tubes. However, unlike in bni1∆/∆ mutants, hyphal growth
can be maintained in the spa2∆/∆ mutants, albeit in the form of severely swollen and
curvy hyphae. Actin depolymerizing drugs, cytochalasin A and latrunculin A, disrupt the
actin cytoskeleton, thus inhibiting hyphal growth and also suppressing the expression of
hyphal-specific genes [143,197,198]. Chlorpropham, a drug affecting actin microfilament
organization, inhibits hyphal growth [199].
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Figure 5. Schematic representation of polarized growth in C. albicans hyphal cells. Polarized growth is driven by Spitzenkör-
per, a vesicle supply center maintained at a fixed distance from the hyphal tip. Post-Golgi membrane-bound secretory
vesicles are continuously delivered to the site of polarized growth. Secretory vesicles, tethered by the Rab-type GTPase
Sec4 and the GEF Sec2, are transported to the hyphal tip via actin cables with the class V myosin Myo2 complexed to the
regulatory light chain Mlc1, providing the motive force. The vesicles accumulate in Spitzenkörper before docking with the
exocyst, which consists of Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84 subunits, before fusing with the plasma
membrane. Spa2, Bni1, and Bud6 coordinate the functions of the Spitzenkörper and the polarisome complex at the apical
site of the hyphal tip. Endocytosis, endocytic recycling of polarity proteins, involves the cortical actin patches at the apical
site of the hyphal tip. Actin patch organization and dynamics involve the actin cytoskeletal proteins Sla1 and Sla2, the actin
skeleton-regulatory protein Pan1, and the Vpr1-Wal1-Myo5 complex, which activates the Arp2/3 complex. The landmark
GTPase Rsr1, upon activation by its GEF Bud2, localizes Cdc24 to the site of tip growth, in addition to Ca2+ binding of the
EF-hand motif in Cdc24.

The extensive exocytosis, which occurs at the apical tip and allows for rapid cell wall
and membrane deposition, is counterbalanced by endocytosis. Endocytosis is essential for
hyphal growth. Suppression of endocytosis suppresses hyphal elongation, and inhibition
of endocytosis blocks hyphal formation, while yeast proliferation is unimpeded in both
situations. Actin patches form the sites of endocytosis, which is important for maintaining
polarity through the endocytic recycling of polarity proteins [200,201]. Before budding
or germ tube evagination, cortical actin patches cluster at the apical site [197,202]. Actin
patches are highly dynamic, with a lifetime of 5–20 s [203]. As the bud continues to enlarge
in yeast cells, the cortical actin patches are redistributed isotropically throughout the bud
surface [202]. However, in hyphal cells, the cortical actin patches remain clustered at
the hyphal tip throughout hyphal growth [202]. Endocytosis in C. albicans mainly occurs
via clathrin-mediated endocytosis, and various genes involved in the process have been
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studied. Sla1 and Sla2 are actin cytoskeletal proteins involved in actin patch organization
and dynamics, as well as actin cable polarization, and necessary for normal endocyto-
sis [204–209]. Cortical actin patches formed in sla1∆/∆ mutants are depolarized and less
dynamic and form short filaments [206,210]. sla2∆/∆ mutants cannot undergo hyphal and
pseudohyphal growth as the localization and orientation of actin patches and cables are
defective [204,205]. sla2∆/∆ mutants grow slower and form enlarged cells, as Swe1, the
morphogenesis checkpoint kinase, delays cell cycle progression. Swe1 phosphorylates the
Clb2-Cdc28 complex in response to perturbations to the actin cytoskeleton, thus delaying
the normal transition from polarized growth to isotropic bud growth and delaying nuclear
division. Pan1 is a clathrin-mediated endocytosis scaffold protein that is essential for
endocytosis [211]. Depletion of Pan1 leads to the formation of thick and swollen cells
that have abnormal filamentation. The inhibitory protein kinase Akl1 interacts with Pan1
to repress endocytosis, suppressing hyphal elongation [212]. Deletion of AKL1 results in
faster hyphal elongation rates and longer hyphae, while AKL1 overexpression reduces
hyphal elongation rates. However, overexpression of PAN1 counteracts the effects of
AKL1 overexpression.

The myosin type I protein Myo5, the Wiskott–Aldrich Syndrome protein (WASP)
homolog WAL1, and the WASP-interacting protein Vpr1 form a complex similar to that in
Saccharomyces cerevisiae [213]. The Vpr1-Wal1-Myo5 complex is required for the polarized
distribution of cortical actin patches. The deletion of MYO5 leads to mislocalization of
cortical actin patches, with the patches dispersed throughout the bud and the mother cell,
resulting in excessive isotropic growth [214]. myo5∆/∆ mutants are unable to endocytose
and cannot form hyphae [214]. Deletion of WAL1 and VRP1 leads to defects in polarized
growth [213,215]. wal1∆/∆ mutants can initiate but cannot maintain hyphal growth.
Instead, wal1∆/∆ mutants form elongated, pseudohyphal cells under hyphae-inducing
conditions. vpr1∆/∆ mutants have a defect in hyphal formation that is slightly less severe
than in wal1∆/∆ mutants. Cortical actin patches are depolarized in both the mother
cells and buds of vpr1∆/∆ mutants. Myo5 and Wal1 activate the actin module Arp2/3
complex to initiate actin polymerization. Deleting ARP2 or ARP3 leads to an inability
to form hyphae, although endocytosis is not abolished [208,209]. Deleting RVS161 and
RVS167, which encode Bin-Amphiphysin-Rvs (BAR) domain proteins, results in defective
actin patch polarization, with the rvs161∆/∆ mutants displaying a more severe defect in
endocytosis and morphogenesis than the rvs167∆/∆ mutants [207].

6.3. The Role of Ras- and Rho-Family GTPase

The small Ras- and Rho-family GTPases play essential roles in hyphal maintenance.
The small Rho GTPase Cdc42 is the master regulator of polarized growth. Cdc42 affects
hyphal growth and maintenance in at least two ways. Firstly, Cdc42 affects morphogen-
esis at the transcriptional level. Reduced expression levels of Cdc42 lead to decreased
expression of hyphal-specific genes [216]. Secondly, decreasing cellular levels of active
Cdc42 results in yeast and hyphae larger and rounder in shape, indicative of polarized
growth defect [216,217]. Cdc42 cycles between GDP- and GTP-bound states. The GEF
Cdc24 mediates the formation of GTP-bound Cdc42 [142,216]. [142,216]. The GAPs Rga2
and Bem3 mediate the return of Cdc42 from the GTP- to the GDP-bound form. Cdc42 and
Cdc24, both required for viability, localize to the hyphal tip during hyphal growth [142,216].
Bem3 is localized to the apical zone of polarized growth, while Rga2 is localized to the
septum and is phosphorylated in a hyphal-specific manner [218]. Loss of RGA2 and BEM3
results in the formation of a Spitzenkörper-like structure under pseudohyphal-promoting
conditions, and the mutants have a morphology resembling true hyphae. Bem1 is a polarity
establishment scaffolding protein that binds GTP-bound Cdc42, keeping it localized to the
apical site [219].

The Ras-like GTPase Rsr1, a landmark protein that is the master regulator of the bud
site selection system, regulates the amount and distribution of Cdc42 activity at the hyphal
tip [220,221]. Rsr1 activity is regulated by the GEF Bud5 and the GAP Bud2. Bud5 is
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localized to the apical site, while Bud2 is localized to the subapical region and septin ring.
rsr1∆/∆ mutants have defects in polarized growth; yeast cells are larger and rounder, while
the hyphae are wider than wild-type cells. Rsr1 is involved in regulating the recruitment
and spatial distribution of vesicles at the hyphal tip [220,221]. Loss of Rsr1 affects the size
of the fixed region to which vesicles are delivered and also affects the localization of exocyst
subunits [222]. Rsr1 may play a role in limiting the competition for Cdc42 between the
septum and the hyphal tip.

7. CDKs, Cyclins, and Their Roles in Hyphal Morphogenesis

Maintenance of cell signaling is important for cell cycle progression and cell growth.
The cell cycle-associated cyclins and CDKs tightly regulate the small GTPases and other
components of polarized growth. C. albicans has three G1 cyclins (Ccn1, Cln3, and Hgc1)
and two B-type mitotic cyclins (Clb2, Clb4), of which only Cln3 and Clb2 are essential. The
essential CDK Cdc28 serves as the master regulator that controls cell cycle progression at
G1/S and G2/M phases via specific cyclin interactions that dictate the timing of the phases.
Levels of the G1 and B-type mitotic cyclins oscillate during the cell cycle, and a single
cyclin-Cdc28 complex can regulate multiple events within each phase of the cell cycle.
Cdc28 is usually stable and present at constant levels throughout the cell cycle; however,
its depletion leads to filamentous growth [223]. Ccn1 and Cln3 levels in yeast cells are high
in the G1 phase, coinciding with bud emergence and apical growth, and decline in the
early G2 phase. Clb2 levels peak in the early G2/M phase, while Clb4 levels reach their
peak in the mid-G2/M phase [224]. Levels of both B-cyclins start to decline in the M phase
and disappear during exit from mitosis [185,224].

In hyphal cells, polarized growth continues at the apical site throughout the cell cycle,
indicating the decoupling of cell elongation from the cell cycle. Ccn1 and Cln3 levels
are accumulated earlier and persist for a longer time during hyphal growth [224,225],
extending the G1 phase in the early germ tube. Accumulation of the mitotic cyclins,
Clb2 and Clb4, is delayed in hyphal cells. Although it is not required for the initiation
of hyphal growth, high levels of Ccn1 are required for maintenance of hyphal growth,
along with Cln3. The forkhead family transcription factor, Fkh2, usually undergoes cell
cycle-dependent phosphorylation to induce the expression of genes that regulate cell
cycle progression [226,227]. However, upon hyphal induction, Fkh2 is phosphorylated by
Ccn1/Cln3-Cdc28 and Mob2-Cbk1 in a cell cycle-independent manner, redirecting it to
enhance the expression of hyphal-specific genes such as the hyphal-specific G1 cyclin HGC1
(Figure 6) [226,227]. fkh2∆/∆ mutants grow constitutively as pseudohyphae under both
yeast and hyphal-inducing conditions [226,227]. During hyphal growth, Ccn1-Cdc28 and
Cln3-Cdc28 complexes phosphorylate Mob2, the activator of Cbk1, the cell wall integrity
kinase, inhibiting the activation of Ace2 (Figure 6) [228]. Cln3-Cdc28 complex regulates
cortical actin patches via phosphorylation of Sla1 [206].
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Figure 6. C. albicans morphogenesis is tightly regulated by the cell cycle-associated cyclins and cyclin-dependent kinase
(CDK). The essential CDK Cdc28 serves as the master regulator that controls the cell cycle progression at G1/S and G2/M
phases by forming CDK complexes with specific cyclins. Levels of Cdc28 are relatively stable throughout the cell cycle
and deplete during hyphal growth. In contrast, levels of the G1 and B-type mitotic cyclins oscillate during the cell cycle.
G1 cyclins Cln3 and Ccn1 peak in the G1 phase and decline in the early G2 phase, while B-type mitotic cyclin Clb2 peaks
in the early G2/M phase and declines in the M phase. Upon hyphal induction, Fkh2 is phosphorylated by Cln3-Cdc28
and Ccn1-Cdc28 complexes in a cell cycle-dependent manner to enhance the expression of hyphal-specific genes. The
Hgc1-Cdc28 complex is essential for the maintenance of hyphal growth. The exocyst subunit Exo84 is phosphorylated by the
Hgc1-Cdc28 complex for the regulation of polarized secretion. Phosphorylation of the septin subunit Cdc11 (by Ccn1-Cdc28
and Hgc1-Cdc28 complexes), GAP Rga2 (by the Hgc1-Cdc28 complex), and the polarisome protein Spa2 (by Hgc1-Cdc28
and Clb2-Cdc28 complexes) promote polarized growth. Rga2 is phosphorylated and inactivated by Hgc1-Cdc28, which
relives the repression of the GTPase Cdc42. Phosphorylation of the transcription factor Efg1 and protein kinase Gin4 inhibit
cell separation. Phosphorylated Efg1 binds to promoters of Ace2 target genes, inhibiting their transcription. Phosphorylated
Gin4 modifies the dynamics of the septin ring by subsequent phosphorylation of Sep7 and deactivating the cell separation
program via inhibition of the protein phosphatase Cdc14.

The hyphal-specific G1 cyclin Hgc1 does not regulate the cell cycle but plays a crit-
ical role in hyphal morphogenesis (Figure 6) [169]. Besides suppression by Tup1 and
Nrg1, the expression of HGC1 is positively regulated by the transcription factor Ume6,
which ensures that Hgc1 is expressed throughout the cell cycle as long as the inducing
conditions remain [169]. Hgc1 interacts with Cdc28, forming a complex regulating by
phosphorylation regulators and components of cell polarity, membrane trafficking, and
cell separation, which is required to maintain hyphal growth (Figure 6). The Hgc1-Cdc28
complex phosphorylates and inactivates Rga2, sequestering it from the hyphal tip to allow
Cdc42 localization at the hyphal tip to persist during polarized growth [217,229]. Hgc1-
Cdc28, together with Clb2-Cdc28, phosphorylates Spa2, localizing the polarisome to the
hyphal tip [230]. Hgc1-Cdc28 complex phosphorylates the exocyst subunits Exo84 and
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Sec2, allowing them to be recycled at the growing hyphal tip [194,231]. The Hgc1-Cdc28
complex phosphorylates Efg1, leading to Efg1 competitively binding to promoters of Ace2
target genes, thereby repressing the expression of cell separation activators to prevent cell
separation after cytokinesis [232]. The Hgc1-Cdc28 complex also plays a role in regulating
the septin ring dynamics during hyphal growth via Sep7 [175].

The cyclins Pcl1 and Pcl5 and the CDK Pho85, although not essential for cell cycle pro-
gression, contribute to morphogenesis in response to environmental cues. The Pcl1-Pho85
complex is required for temperature-dependent filamentation induced by Hsp90 inhibi-
tion [233]. The transcription factor Hms1 is required for filamentation induced by high
temperatures. The Pcl1-Pho85 complex phosphorylates Hms1, which then binds to hyphal-
specific genes. It also regulates the degradation of the transcription factor Gcn4, which is
indirectly involved in filamentous growth in response to amino acid starvation [234]. Gcn4
induces PCL5 expression, and the Pcl5-Pho85 complex phosphorylates Gcn4, leading to its
degradation [235,236].

8. Cell Cycle Perturbation Leads to Morphogenesis

Although hyphal growth is not directly controlled by the cell cycle, perturbing the cell
cycle can cause significant pseudohyphal growth under non-hyphal-inducing conditions or
block hyphal growth under hyphal-inducing conditions [134,135,237]. Loss of Ccn1 does
not induce morphogenesis but causes a filamentation defect under serum induction [225].
Depletion of Cln3, Clb2, or Clb4 results in filamentous growth in the absence of hyphal-
inducing stimuli [134,237]. Cells depleted of Cln3 undergo cell cycle arrest in the G1
phase and form filaments before the resumption of the cell cycle [135]. In the absence
of mitotic cyclins, polarized growth promoted by G1 cyclins is not entirely suppressed,
and filamentation occurs. Clb2-depleted cells form elongated projections during cell cycle
arrest and are inviable, whereas Clb4-depleted cells grow constitutively as pseudohyphae
and remain viable [224]. Depletion of Cdc28 also promotes filamentous growth [223].

Genotoxic stresses that disrupt cell cycle progression and activate DNA damage/replic
ation checkpoints lead to filamentation [238]. Pharmacological inhibition of cell cycle
progression by the DNA replication inhibitors hydroxyurea (HU) and aphidicolin (AC) or
DNA damage induced by UV radiation or the alkylating agent methylmethane sulfonate
(MMS) result in S phase arrest, inducing filamentous growth [133,239,240]. Checkpoint
proteins play a crucial role in response to DNA replication and DNA damage stresses.
The protein kinase Rad53 plays a central role in the DNA replication and DNA damage
checkpoint. rad53∆/∆ mutants cannot switch to filamentous growth in response to DNA
replication inhibitors and DNA damage; mutations to the Rad53 FHA domains inhibit
filamentation in response to DNA damage, but not cell cycle arrest [241,242]. Deletion
of RAD9, which encodes a checkpoint protein upstream of Rad53, blocks DNA damage-
induced filamentation [241]. Depleting the DNA repair protein Rad52 or deleting its
gene results in the accumulation of spontaneous DNA damages that trigger the DNA
damage checkpoint, resulting in filamentous growth [243]. After the stress is relieved,
deactivation of the cell cycle checkpoint is necessary for the cell cycle to progress. Rad53
is dephosphorylated by the protein phosphatase 2A-like complex Pph3-Psy2. Deletion
of PPH3 that encodes the catalytic subunit, PSY2 that encodes the regulatory subunit,
or TIP41 that encodes the regulator of the Pph3-Psy2 complex enhances MMS-induced
filamentous growth and delays the filament-to-yeast transition following DNA damage
stress relief [239,240]. The histone acetyltransferases Hat1 and Hat2 are required for the
repair of DNA damages caused by endogenous and exogenous agents; hat1∆/∆ mutants
accumulate DNA damages rapidly and switch to filamentous growth [244].

Perturbations to mitosis can also lead to the switch to filamentous growth under non-
hyphal-inducing conditions. The cell cycle regulatory polo-like kinase Cdc5 is required
for the early stages of nuclear division and chromatin separation and mediates spindle
formation during the S phase [245]. Depletion of Cdc5 leads to mitotic inhibition and
blocks the cell cycle in the G2 phase, leading to hyphal-like growth; however, the cells
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eventually lose viability [245]. The cytoplasmic dynein, Dyn1, mediates nuclear movement
during mitosis. Deletion of DYN1 or depletion of Dyn1 results in filamentous growth,
which requires the spindle position checkpoint protein Bub2 [246,247]. Pharmacological
perturbation of mitosis by the microtubule inhibitor nocodazole and deletion of MAD2
that encodes a spindle assembly checkpoint protein leads to pseudohyphal growth [248].

Degradation of cyclins and CDK inhibitors is regulated mainly by ubiquitin-proteasom
e-dependent proteolysis and is required for orderly cell cycle progression. Degradation
of these cell cycle regulatory proteins is mediated by two multiprotein ubiquitin ligase
E3 complexes, the Skp1-Cullin/Cdc53-F-box (SCF) complex and the anaphase-promoting
complex/cyclosome (APC/C) complex. The multiprotein SCF complex, consisting of
the linker protein Skp1, the scaffold protein Cullin/Cdc53, and a substrate recognition
F-box protein, plays a central role in regulating the temporal and spatial degradation
of cell cycle regulatory proteins. Depleting the essential CDC53 or the deletion of the
F-box protein genes CDC4 and GRR1 leads to filamentous growth. SCFCdc4 is required
for the degradation of the CDK inhibitor Sol1 and the transcription factors Ume6 and
Gcn4 [235,236,249]. Deleting CDC4 leads to constitutively filamentous growth with a mix of
hyphal and pseudohyphal cells [250]. As Sol1 represses the Clb2-Cdc28 complex, deletion
of CDC4 stabilizes Sol1, inhibiting the switch from apical to isotropic growth, resulting in a
pseudohyphal phenotype. However, deleting SOL1 in the cdc4∆/∆ mutant background
still gives rise to constitutively filamentous growth [249]. SCFGrr1 is required for the
degradation of Ccn1 and Cln3. The deletion of GRR1 stabilizes Ccn1 and Cln3 levels, and
the grr1∆/∆ mutants grow constitutively as pseudohyphae under yeast conditions [251].

The APC/C complex mediates protein degradation during mitotic progression [252].
While little is known about the APC/C complex in C. albicans, the two co-activators, Cdc20
and Cdh1, have been identified recently. Cdc20 is essential and mediates the degradation of
Clb2 and Cdc5. Depletion of Cdc20 results in the accumulation of Clb2 and Cdc5, leading
to a delay in metaphase and telophase; Cdc20-depleted cells grow as long filaments over
time [252]. Cdh1 likely plays a role in regulating mitotic exit by influencing Clb2 and
Cdc5 degradation; deletion of CDH1 results in a delay in Clb2 degradation and elevated
levels of Cdc5 [252]. cdh1∆/∆ mutants display pleiotropic phenotypes, with a mix of yeast,
elongated buds, and pseudohyphae.

9. Conclusions

In summary, the extensive research findings over the years have provided us with
illuminating insights into the activation and regulation of hyphal morphogenesis in C.
albicans. The factors involved are often crucial in controlling the balance between commen-
salism and invasive infection by C. albicans. The yeast-to-hyphal transition in C. albicans is
highly dependent on the complex interplay between internal signal transduction signaling
pathways and external environmental cues that reflect the host niches. This transition is
governed by a complex network of signaling pathways, including the cAMP-PKA pathway,
the MAP kinase pathways, and the Cek1-mediated and PKC pathways. Activation of
these pathways in response to various cues triggers the activation of specific transcription
factors such as Efg1, Flo8, Ume6, Tec1, and Cph1. Crosstalk between the cAMP-PKA
and MAP kinase pathways add a further layer of complexity to the existing signaling
network as multiple signaling pathways can converge to the same set of transcription
factors. Following hyphal initiation, subsequent hyphal development requires delicate
mechanisms to maintain hyphal elongation. Polarized growth requires continuous delivery
of membrane-bound secretory vesicles, along the actin cables, to the site of polarized
growth. The vesicles accumulate as Spitzenkörper in the subapical region before docking
with the exocyst and polarisome components. This exocytosis process is counterbalanced
by the endocytosis process. Cell morphology of C. albicans is known to be tightly linked
to cell cycle progression through cyclin-CDK complexes. One of the most important CDK
complexes is the Hgc1-Cdc28 complex, which governs multiple cellular processes required
for hyphal development. The Hgc1-Cdc28 complex plays important roles in polarized
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growth, polarized secretion, and inhibition of cell separation, which ensures the formation
of long tubular cells without constriction at the septal junction. Lastly, perturbation of
the cell cycle can either induce or impair the highly polarized growth in C. albicans under
different conditions.

10. Future Directions

However, much remains to be explored and unraveled in C. albicans morphogene-
sis. While the mechanisms behind hyphal induction during cell cycle arrest have been
uncovered, there are still missing gaps. Future work could uncover the genes that regulate
filamentation in response to the cell cycle perturbation and elucidate how the signals are
transduced to the cAMP-PKA pathway and the activated downstream transcriptional
regulators. The link between nutrient and osmotic stress and filamentous growth via the
PKC pathway has been uncovered, but the downstream transcriptional regulators remain
elusive. Applying evolutionary tools of systems biology in combination with animal-based
studies will propel discoveries in this field. The recent development of the transposon-
mediated mutagenesis systems in haploid C. albicans strains would allow genome-wide
screening for novel genes with functions that influence morphogenesis [253,254]. Future
work towards identifying additional downstream transcriptional regulatory genes could
open up new avenues towards antifungal therapy development.
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