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Subtype classification is critical in the treatment of gliomas because different subtypes lead
to different treatment options and postoperative care. Although many radiological- or
histological-based glioma classification algorithms have been developed, most of them
focus on single-modality data. In this paper, we propose an innovative two-stage model to
classify gliomas into three subtypes (i.e., glioblastoma, oligodendroglioma, and
astrocytoma) based on radiology and histology data. In the first stage, our model
classifies each image as having glioblastoma or not. Based on the obtained non-
glioblastoma images, the second stage aims to accurately distinguish astrocytoma and
oligodendroglioma. The radiological images and histological images pass through the two-
stage design with 3D and 2D models, respectively. Then, an ensemble classification
network is designed to automatically integrate the features of the two modalities. We have
verified our method by participating in theMICCAI 2020 CPM-RadPath Challenge andwon
1st place. Our proposed model achieves high performance on the validation set with a
balanced accuracy of 0.889, Cohen’s Kappa of 0.903, and an F1-score of 0.943. Our
model could advance multimodal-based glioma research and provide assistance to
pathologists and neurologists in diagnosing glioma subtypes. The code has been
publicly available online at https://github.com/Xiyue-Wang/1st-in-MICCAI2020-CPM.
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1 INTRODUCTION

Glioma is one of the most common tumors originating from the brain, which accounts for about 80%
of malignant brain tumors in adults (Banerjee et al., 2020). It is characterized by high morbidity, high
recurrence, high mortality, and low cure rate (Ostrom et al., 2018). Glioma can be divided into three
subtypes (Louis et al., 2016), such as glioblastoma, oligodendroglioma, and astrocytoma. The timely
detection and treatment for each glioma subtype can effectively reduce mortality. For patients,
different glioma subtypes means different risks (Mesfin and Al-Dhahir, 2019; Wang et al., 2019;
Ostrom et al., 2020). For neurologists, accurate classification of glioma subtypes is critical to help
customize proper therapeutic intervention (Decuyper et al., 2018). Therefore, glioma subtype
classification has important implications.

Before 2016, the classification of glioma subtypes relied mainly on purely histopathological
criteria (Louis et al., 2007). In the 2016 report of the World Health Organization (WHO) on the
classification of central nervous system (CNS) tumors, molecular parameters were used for the first
time to diagnose CNS tumors. Isocitrate dehydrogenase genes mutation, 1p/19q codeletion, and
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histone H3 genes mutations became decisive markers for the
classification of diffuse gliomas (Louis et al., 2016). However, the
tools for molecular analysis of tumors are not readily available in
areas with low medical resource settings. Thus, it leaves room for
glioma diagnosis based only on histopathological analysis (Louis
et al., 2016; Pei et al., 2021). Also, non-invasive radiology images
(e.g., magnetic resonance imaging, MRI) can also offer an
alternative for tumor classification (Reza et al., 2019).

There are two common ways to observe gliomas (Mesfin and
Al-Dhahir, 2019), as shown in Figure 1. MRI is a non-invasive
technique, which provides images of the brain in 2D and 3D
formats (Abdelaziz Ismael et al., 2020). Generally, there are four
different MRI sequences, including the T1-weighted (T1), the T1-
weighted gadolinium contrasted (T1-Gd), the T2-weighted (T2),
and the T2-weighted fluid-attenuated inversion recovery
(FLAIR). Different glioma subtypes have different radiological
features. The use of radiological images alone may not be
sufficient to reliably distinguish different glioma subtypes (van
Lent et al., 2020). In addition to MRI, hematoxylin and eosin
(H&E) stained tissue biopsy image is another technique to
observe brain tumors. It can provide histological features (e.g.
necrosis, hemorrhage, polymorphism, and nuclear heterogeneity,
etc.) to distinguish glioma subtypes (Wesseling and Capper,
2018). The histopathological images are often considered as
the gold standard for tumor diagnosis (Jothi and Rajam,
2017). However, it provides only histological information and
is not comprehensive enough. Clinical studies have shown that
using combined information from MRI scans and tissue biopsies
is more helpful in the diagnosis of gliomas than using unimodal
images (Young et al., 2015). However, the viewing of multimodal
images is time-consuming and subjective. Even among experts,
the diagnosis for the same tumor image (especially samples with
complex feature information) is often inconsistent, which is
called interobserver variability (Ker et al., 2019; Faust et al.,
2019; van den Bent, 2010). With the increasing number of

patients and the limited number of pathologists, this
variability needs to be solved urgently (Ohgaki et al., 2004;
Okamoto et al., 2004). Deep learning is a powerful tool that
can not only provide physicians with more objective clinical
references but also improve the efficiency in the tumor
classification process (LeCun et al., 2015; Mobadersany et al.,
2018; Faust et al., 2019). This is a possible alternative to using
deep neural networks to learn different types of image features for
glioma classification.

In this paper, we train a 3D fully convolutional network for
radiology images classification (3D MRI model) and a 2D fully
convolutional network for histopathological whole-slide image
(WSI) classification (2D WSI model). In the experiments, it is
easy to encounter the same problem as clinicians, where the
features of glioblastoma are easy to learn while astrocytoma and
oligodendroglioma are difficult to distinguish. This is due to the
presence of “mixed gliomas” (Huse et al., 2015). Some gliomas
contain a mixed feature of astrocytoma and oligodendroglioma,
which makes the classification of astrocytoma and
oligodendroglioma extremely challenging. To address this
problem, we adopt a two-stage strategy that focuses on two
different classification tasks, respectively. In the first stage of the
learning task, the model classifies brain tumors into glioblastoma and
others. In the second stage, the model focuses on learning the
differences between oligodendroglioma and astrocytoma.
Meanwhile, this approach alleviates the data imbalance problem
to some extent. The MRI and WSI data pass through the two-
stage design with their corresponding 3D and 2D models,
respectively. Then, an ensemble classification network is designed
to automatically integrate the features of the two modalities.

The contributions of our work are summarized as follows:

• We design two complementary MRI- and WSI-based
models with ensemble learning to achieve higher
diagnostic performance than most glioma grading methods.

FIGURE 1 | Visualization of glioblastoma (G), oligodendroglioma (O), and astrocytoma (A) in four sequences of MRI images and paired pathology images.
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• To address the clinical problem of differentiating mixed
gliomas, we propose a two-stage strategy that allows the
model to focus on learning mixed features between
astrocytoma and oligodendroglioma with good
performance.

• Our method achieves the best classification performance in
the MICCAI 2020 CPM-RadPath Challenge. Our model
and results can be used as benchmarks for automatic glioma
classification algorithms. The code is publicly available for
others to conduct reproducible research.

The rest of the paper is organized as follows: Section 2 shows
the related work; Section 3 describes our algorithm
implementation; Section 4 presents the data and experimental
results; Section 5 summarizes our work.

2 RELATED WORK

Deep learning has achieved remarkable success in the computer
vision community (Badrinarayanan et al., 2017; Isola et al., 2017;
Pelt and Sethian, 2018). Benefiting from its superior performance,
deep learning has also been widely used in the field of medical
image processing, such as prostate MRI analysis (Milletari et al.,
2016; Rundo et al., 2019; Rundo et al., 2020), neuronal structure
segmentation (Ronneberger et al., 2015), brain tumor detection
(Han et al., 2019), etc. For computer-assisted brain glioma
diagnosis, current methods are based on unimodal (MRI or
WSI). There is still a lack of multimodality-based glioma
classification studies. Next, we will review MRI- and WSI-
based glioma classification methods, respectively.

2.1 MRI-Based Approaches
Many methods have been proposed to classify gliomas using MRI
images through deep learning methods based on radiological
characteristics (Mohan and Subashini, 2018).

2.1.1 Single Sequence-Based Approaches
Some studies focus on the glioma classification with single
sequence images, such as the T1 sequence images (Hsieh et al.,
2017; Kaya et al., 2017; Ge et al., 2018; Yang et al., 2018; Abdelaziz
Ismael et al., 2020), the T1-Gd sequence images (Koley et al.,
2016; Singh et al., 2017; Jang et al., 2018; Dikici et al., 2020; Zhou
et al., 2020), the T2 sequence images (Wu et al., 2017; Yogananda
et al., 2020), and the FLAIR sequence images (Gao et al., 2016;
Wu et al., 2018; Su et al., 2019). Single sequence image diagnosis
often relies on limited radiological features (Arbizu et al., 2011).

2.1.2 Multiple Sequence-Based Approaches
There are also some studies that classify tumors based onmultiple
sequences (T1 with T1-Gd, T1 with T2, and others) in MRI (Wu
et al., 2019; Alis et al., 2020; Chen et al., 2020; Hamghalam et al.,
2020; Lu et al., 2020; Zhang et al., 2020). However, most of these
studies simply divide gliomas into high-grade gliomas (HGG)
and low-grade gliomas (LGG). Further work on subtype
classification is relatively scarce, which is due to the difficulty
of subtype characterization using MRI (Reifenberger et al., 2017).

2.2 WSI-Based Approaches
Some other methods have also been proposed to automatically
classify gliomas based on histological features by deep learning
methods, which will greatly improve diagnostic efficiency and
improve patient outcomes (Jothi and Rajam, 2017; Mobadersany
et al., 2018; Jin et al., 2020).

2.2.1 Glioma Binary Classification
Several studies possess excellent performance in the WSI-based
binary glioma classification. Ertosun et al. first proposed a
modular approach to apply convolutional neural network for
histopathological glioma classification (Ertosun and Rubin,
2015). Then, Yonekura et al. further investigated the
automated glioma analysis method with deep learning
techniques (Yonekura et al., 2017). Rathore et al. distinguished
gliomas by learning phenotypic information (Rathore et al.,
2020). Hou et al. trained patch-level classifiers to accomplish
the glioma classification (Hou et al., 2016). While Zhu et al.
learned patient-specific information from WSI for classification
(Zhu et al., 2017).

All these methods use The Cancer Genome Atlas (TCGA)
public dataset. However, limited by image annotation, they also
simply classified gliomas into glioblastoma (GBM) and LGG. This
does not provide substantial help for better treatment. There are
also some studies that have created their own private datasets
(Ker et al., 2019; Jin et al., 2020), where (Ker et al., 2019) used a
full convolutional neural network (CNN) to distinguish normal
brain, LGG, and HGG.

2.2.2 Glioma Multiple Classification
Jin et al. demonstrated that a more refined glioma subtype
classification would benefit the design of treatment plans (Jin
et al., 2020). They developed a new weighted cross-entropy based
DenseNet model to automatically classify five types of glioma
subtypes: oligodendroglioma, anaplastic oligodendroglioma,
astrocytoma, anaplastic astrocytoma, and glioblastoma, with a
patient-level accuracy of 87.5%. Nevertheless, the private dataset
lacks third-party verification, and another problem is that
publicly reproducible studies may not be possible.

The traditional glioma subtype classification under the single
modality has insufficient information. Unlike previous studies,
automatic classification methods based on multimodal brain
images have been recently investigated. These related works
mainly came out of the MICCAI 2019 and 2020 CPM-
RadPath Challenge (Chan et al., 2019; Pei et al., 2019;
Hamidinekoo et al., 2020; Lerousseau et al., 2020; Pei et al.,
2020; Yin et al., 2020; Zhao et al., 2020). Based on the CPM-
RadPath data, we expect to propose an accurate automatic
classification method based on multimodal data.

3 METHODS

This paper applies two kinds of fully convolutional networks to
achieve an end-to-end glioma subtype classification. In the
following, we introduce the image preprocessing and network
framework in detail.
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3.1 Data Preprocessing
The MICCAI 2020 CPM-RadPath Challenge provides
publicly available H&E stained digital histopathology
images and matched multi-sequence radiology images,
including three subtypes of gliomas: astrocytoma,
glioblastoma, and oligodendroglioma.

Each image in the WSI dataset is very large (e.g., 95,200 ×
87,000 pixels) and cannot be directly fed into our network. We
crop these WSIs into patches with a size of 1,024 × 1,024 pixels.
Then, the OTSUmethod is adopted to remove non-tissue regions
(Otsu, 1979). Following the current studies (Ma and Jia, 2019; Pei
et al., 2019; Pei et al., 2020; Pei et al., 2021), we exclude
meaningless tissues using a simple but effective threshold
technique. Specifically, we first calculate the mean value and
standard deviation of each patch in RGB space and maintain
patches with a mean value between 100 and 220 and standard
deviations above 20 (Pei et al., 2019; Pei et al., 2020; Pei et al.,
2021). Then, we convert each patch to the hue saturation value
(HSV) space and exclude patches with the mean value below 50 in
the H channel (Ma and Jia, 2019).

The volume of the original MRI image is 240 × 240 ×
155 pixels. The beginning and end images (slices) in the scan
are removed due to their limited brain tissue. As a result, the
number of MRI images per sequence is reduced to 128. We
also remove the black background at the edges. These MRI
images in the four sequences are finally cropped into small
images of size 192 × 192 × 128 pixels, which facilitates
computational efficiency.

3.2 Model Details
Figure 2 illustrates the overall architecture of our proposed
glioma classification system, which is composed of a 2D WSI
model (Figure 3) and a 3D MRI model (Figure 4). Both models
adopt our two-stage strategy. The first stage classifies MRI images
or histopathological images as glioblastoma and non-

glioblastoma. Based on the obtained non-glioblastoma data,
the second stage aims to distinguish astrocytoma and
oligodendroglioma. The reason for using the two-stage strategy
is the uneven data distribution. The differences between
astrocytoma and oligodendroglioma are so subtle that it can
be difficult to distinguish between the two. In contrast,
glioblastoma is easier to identify. As confirmed by our
experimental results, our two-stage strategy helps to improve
the overall accuracy.

Multiple related tasks can help learn from each other by
potentially sharing representations, thus improving
generalization ability. Therefore, for the 2D WSI model, we
develop several multi-task-based convolutional neural
network models, where the backbones include EfficientNet-
B2, EfficientNet-B3 (Tan and Le, 2019), and SEResNeXt101
(Hu et al., 2018). Specifically, EfficientNet is a benchmark
network that achieves performance gains by scaling network
width, network depth, and resolution, which greatly reduces
the number of parameters and computation complexity of the
model. EfficientNet-B1 to B7 are obtained by synthetically
optimizing the width, depth, and resolution of the
EfficientNet. SEResNeXt101 is derived by embedding
squeeze-and-excitation (SE) blocks into the ResNeXt
model. ResNeXt replaces the original residual learning
block (He et al., 2016) with parallel blocks of the same
topology, which improves the model performance without
significantly increasing the parameters. The SE block obtains
the weight of each feature channel and assigns more weights to
important features while suppressing features that are not
useful for the current task. The outputs of these three
classification models are averaged to obtain the final
classification results.

Before the fully connected classification layer, the generalized-
mean (GEM) pooling (Radenović et al., 2018) is applied to the
learned features, which is defined as

FIGURE 2 | The proposed pipeline using multi-modality data to classify glioma subtypes. A two-stage classification strategy is applied to both the 2D pathology
(WSI) and 3DMRI images. The glioblastomawithmore serious anatomy representation is detected in the first step. Then, in the second step, our algorithm focuses on the
classification of astrocytoma and oligodendroglioma.
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f(g) � [f(g)1 . . .f(g)k . . .f(g)K ]T, where, f(g)k

� ⎛⎝ 1

|Xk| ∑x ∈ Xk
xpk⎞⎠ 1

pk

(1)

where X is the input features and f(g) represents the output
vector, respectively. pk ∈ [1, +∞), when pk = 1, the equation
denotes the average pooling, when pk tends to positive infinity,
the equation represents the max pooling, respectively. K denotes
the channel of the output feature vector f(g). Following
(Radenović et al., 2018), this work set pk to 3.

After the GEM operation, age information of patient should
also be taken into account (Reni et al., 2017; Ostrom et al., 2018).
The reason is that glioma subtypes have different age
distributions, where astrocytoma is more often seen in young
men while glioblastoma is more frequently distributed in the
older groups (Tamimi and Juweid, 2017). In our work, age is used
as additional feature, which is concatenated with the extracted
image features for the final classification task. Finally, these
combined features are adopted as input to a classification
branch and a regression branch. The two branches adopt a

cross-entropy (LBCE) and a smooth L1 loss (Lloc), respectively,
to achieve a more robust brain tumor classification.

LBCE � −∑
l
[(yl logŷl) + (1 − yl)log(1 − ŷl)] (2)

smoothL1 �
⎧⎪⎨⎪⎩ 0.5(ŷl − yl)2

if
∣∣∣∣∣∣ŷl − yl

∣∣∣∣∣∣< 1,∣∣∣∣∣∣ŷl − yl

∣∣∣∣∣∣ − 0.5 otherwise.
(3)

Lloc � ∑
l
[smoothL1(ŷl − yl)] (4)

where yl and ŷl denote the ground-truth and predicted labels for
the lth sample, respectively.

For the 3DMRI model, the input images are four types of MRI
sequence images, including T1, T1-Gd, T2, and FLAIR. Each 3D
MRI image is cropped to 192 × 192 × 128 pixels. 3D ResNet is
adopted as a backbone to learn the residual representation
between the input and output, which has become the basic
feature extraction network in the computer vision community.
Then, global average pooling and fully connected layers are used
to generate the final classification results. We also employ the
cross-entropy and smooth L1 loss functions. Finally, the output

FIGURE 3 | The detailed 2D CNN network. The backbone includes EfficientNet-B2, EfficientNet-B3, and SE-ResNext101. In the final feature representation, the
meta-information (age) is included.

FIGURE 4 | The detailed 3D CNN network. The four MRI modalities are integrated as the network input. All images are cropped to a fixed size of 128 × 192 ×
192 pixels. The backbone adopts the 3D ResNet, followed by a global average pooling and a fully connected layer to classify the brain tumor.
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probabilities of the 2D WSI and 3D MRI models are averaged to
drive the final classification results.

4 EXPERIMENTAL RESULTS AND
DISCUSSIONS

In this section, we first present the utilized data from theMICCAI
2020 CPM-RadPath Challenge and describe the evaluation
metrics and experimental setups. Then, we show the detailed
classification results and validate the benefits of our proposed
multimodal framework and two-stage strategy for glioma
classification. Finally, we show the visualization results of three
different glioma subtypes in the classification process.

4.1 Datasets
We utilize a public dataset released from theMICCAI 2020 CPM-
RadPath Challenge1, which is proposed for three subtypes of
glioma classification, including Glioblastoma,
Oligodendroglioma, and Astrocytoma. It includes paired
radiology scans and digitized histopathology images with
global image-level labels. The CPM-RadPath Challenge splits
these data into three parts: training (270 cases), validation (35
cases), and testing (73 cases).

It is noted that only the annotations of training data are
released. Thus, our model is developed depending on the
training set. The validation and test sets have not released
their labels, which can be regarded as two unseen test sets. All
these data are collected using multi-parametric MRI (mp-MRI)
and digital pathology scanners at 16 international institutions.

Specifically, all mp-MRI scans are acquired using 1–3T
scanners. The MRI scans are provided as the NIFTI files (.
nii.gz). Each case includes four sequences: T1, T1-Gd, T2, and
FLAIR. All MRI images have been preprocessed, co-registered to
the same anatomical template, and interpolated to the same
resolution (1 cubic mm) in all three directions. Annotations
are generated by board-certified neuroradiologists,
neurosurgeons, and neuropathologists with at least 4 years of
experience.

Meanwhile, tissue specimens are made from tissues removed
from the patient during surgery and then stained with
hematoxylin and eosin (H&E), which are scanned at 20× or
40× magnification to generate digital histopathology images
called WSIs. The color and intensity of WSIs varied across
images due to different acquisition times, image fading, or
image acquisition artifacts. All WSIs are stored in tiled tiff
format. Sixteen professional neuropathologists with at least
4 years of experience annotate these cases by referring to the
2016 WHO classification scheme.

4.2 Evaluation Metrics
The algorithmic performance is evaluated using three metrics,
including F1-score, balanced accuracy, and Cohen’s kappa. The
F1 score is a weighted average of accuracy and recall, which takes

into account both false positives and false negatives. The balanced
accuracy score is a more appropriate metric to evaluate data with
imbalanced categories, which is defined as the arithmetic mean of
the proportion of correct predictions in each category. Cohen’s
kappa is used for consistency testing and can also be used to
measure classification accuracy. A higher kappa coefficient means
that the classifier is more effective.

It is assumed that true positive (TP), false positive (FP), false
negative (FN) is the number of true positives, false positives, and
false negatives respectively. The three metrics can be computed as
follows.

Sensitivity � TP

TP + FN
(5)

Precision � TP

TP + FP
(6)

F1 Score � 2p(PrecisionpSensitivity)
Precision + Sensitivity

(7)

Balanced Accuracy � ∑c

Class�1Sensitivity/c (8)

Kappa � p0 − pe

1 − pe
(9)

In the balanced accuracy score, c is the number of classes. In
Cohen’s kappa, p0 is obtained by dividing the sum of the number
of correctly classified samples by the total number of samples. It is
assumed that the true number of samples for each category is a1,
a2,..., ac, and the predicted number of samples for each category is
b1, b2,..., bc. The total number of samples is denoted by n. In
Kappa, the pe is calculated by

pe � a1 × b1 + a2 × b2 + . . . + ac × bc
n × n

(10)

4.3 Experimental Setups
Our training data are augmented by horizontal flipping, vertical
flipping, random scaling and rotation, and random jitter. We use
the ImageNet pre-trained weights to initialize the 2DWSI and 3D
MRI models, and the weights of the decoder part are initialized
randomly. We used the Adam optimizer (Kingma and Ba, 2015)
with an initial learning rate of 3 × 10−4 for all experiments. The
learning rate decreases by 10 times at the 50th and 80th epochs.
The training batch size is set to 24. All networks are implemented
based on the PyTorch framework and trained using four NVIDIA
Tesla P40 GPU cards.

We used 5-fold cross-validation based only on the training set
to find the optimal network parameters for each deep learning
model. The best-performing fold is taken as the final training
model for the given architecture. It is noted that multiple models
with different backbones are trained at each stage of the 2D WSI
model, and their ensemble is used to obtain the final results.

4.4 The Classification Results
Table 1 shows the results of our ablation experiments conducted
on the validation data in the CPM-RadPath challenge. Table 2
shows the contribution of different components in our 2D1https://miccai.westus2.cloudapp.azure.com/competitions/1.
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classification framework. These networks are trained using the
same parameter settings as described in the previous section.

As the performances shown in Table 1, our two-stage
classification strategy contributes to gaining higher accuracy
on three evaluation metrics. Moreover, the classification model
of MRI andWSI data can complement each other to obtain more
robust and accurate results. We conducted a corresponding
ablation study to verify the benefits of our proposed
multimodal framework and two-stage strategy. We use the
same training schedule and parameter settings as the full
method described in Section 4.3 for comparison with the
ablation method (i.e., with the corresponding components
removed).

The experiments demonstrate that our proposed multimodal
framework can help improve the accuracy of glioma subtype
classification. To validate the importance of multimodal image
information, we use MRI or WSI alone as the training set under
the most ideal conditions (two-stage), and the balanced accuracy
is reduced by 6.7% or even 15.6%. It is well known that in such
tasks with unbalanced data, the balanced accuracy provides a
better measure of the performance of the algorithm (Brodersen
et al., 2010). In addition, there is also a greater than 5% drop in F1
score in this case and a greater than 10% drop in Kappa. In
contrast, the multimodal complementary model can reach the
best results with 88.9% of the balanced accuracy on the
validation set.

Also, we demonstrate the benefit of our two-stage scheme.
Another set of experiments is conducted in this study by
comparing our two-stage approach with the single-stage
alternative. The first stage network is used directly to classify
the three glioma subtypes. As shown in the corresponding rows of
Table 1, compared to the two-stage approach, the single-stage
strategy results in a 3.3 and 5.5% performance decrease in the
balanced accuracy in the MRI validation set and WSI validation

set, respectively. This result further demonstrates the advantages
of our proposed two-stage solution. From the results, it can be
seen that our network can integrate feature information from
MRI and WSI data.

In addition, we also validate the advantages of the multi-task
learning strategy in the 2D WSI model. We use three highly
correlated classification networks to train the 2D WSI model:
EfficientNet-B2, EfficientNet-B3, and SEResNeXt101. As shown
inTable 2, with both classification branch (cls), regression branch
(reg), and a fully connected layer (gem), we obtain better results
than other methods.

4.5 Comparison With the Other
Top-Performing Methods in the
CPM-RadPath Challenge
Table 3 lists the results of the top six teams in the MICCAI
2020 CPM-RadPath Challenge. As shown in Table 3, our method
has obtained the best classification performance in the
testing phase.

In particular, we outperform the second-place team,
Tabulo, by 8.8% in terms of balanced accuracy. According
to a report submitted to the challenge organizer, Tabulo
utilizes two additional publicly available datasets: the
Multimodal Brain Tumor Segmentation Challenge 2019
(BraTS-2019)2 and MoNuSAC3. While our method does not
use any external data, all models on the classification pipeline
are not pre-trained on medical data. Plmoer, a team from the
University of Pittsburgh Medical Center, which processes
noisy labels in many patches from WSI of each category. It
is similar to us while our two-stage strategy brings an obvious
improvement. The Marvinler team used multi-instance
learning for the WSI processing, which tends to have high
memory requirements. In addition, the Hanchu team requires
an additional image segmentation task, yet this does not
improve the model performance. The Azh2 team trains a
densely connected network for a specific configuration of
the DenseNet, which also performs much worse than
our model.

TABLE 1 | Ablation experiment results on CPM-RadPath 2020 validation data.

Method Balanced accuracy Kappa F1 score

3D MRI model (One stage) 0.700 0.665 0.800
3D MRI model (Two stage) 0.733 0.712 0.829
2D WSI model (One stage) 0.767 0.758 0.857
2D WSI model (Two stage) 0.822 0.808 0.886
Ensemble (One stage) 0.800 0.799 0.886
Ensemble (Two stage) 0.889 0.903 0.943

The benefits of the multimodal and two-stage framework for glioma classification efforts.
The bold values in the table represent the maximum value of each column.

TABLE 2 | Experimental performance of the 2D WSI model for ablation on
validation data.

Method Balanced accuracy Kappa F1 score

2D WSI model (cls) 0.722 0.659 0.800
2D WSI model (reg) 0.744 0.753 0.857
2D WSI model (cls + reg) 0.800 0.803 0.885
2D WSI model (cls + reg + gem) 0.822 0.808 0.886

“Cls”means a classification branch, “reg”means a regression branch, and “gem”means
a fully connected layer. The bold values in the table represent the maximum value of each
column.

TABLE 3 | MICCAI 2020 CPM-RadPath final scores and ranking in the test set.

Rank Balanced accuracy Kappa F Score

Sen (our) 0.750 0.601 0.753
Tabulo 0.662 0.546 0.726
Plmoer 0.654 0.505 0.712
Marvinler 0.652 0.471 0.671
Hanchu 0.519 0.249 0.507
Azh2 0.507 0.209 0.438

Scores in the table are obtained from docker container runs. The bold values in the table
represent the maximum value of each column.

2https://www.med.upenn.edu/cbica/brats2019/data.html.
3https://academictorrents.com/details/
c87688437fb416f66eecbd8c419aba00dd12997f.
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It should be noted that we are not able to upload the 3D MRI
model in time, so this result is only available for the 2D WSI
model with the two-stage strategy. However, it can be seen from
Table 1 that the 2D WSI model combined with the 3D MRI
model will improve the result substantially. So, we believe that
better results will be obtained if the ensemble model is uploaded.
Since the test dataset is not yet open, we would like to include the
results of the ensemble model with the two-stage strategy if the
test dataset is open.

4.6 Comparison With Related Works
Table 4 summarizes relevant work on the MICCAI 2019 and
2020 CPM-RadPath Challenge. These results are all obtained on
the validation set and are all in the one-stage classification
framework.

The early work (Chan et al., 2019; Pei et al., 2019) first
segmented the tumors before classifying them in 2019,
however, the final classification results are not satisfactory. In
the MICCAI 2020 CPM-RadPath Challenge, (Pei et al., 2020; Yin

TABLE 4 | Comparison with related works on CPM-RadPath validation data.

Studies Methods Data Balanced
accuracy

Kappa F1
score

Pei et al. (Pei et al., 2019) U-Net model for segment tumors, and 3D CNN model for classification CPM-RadPath 2019
data set

0.749 0.715 0.829

Chan et al. (Chan et al., 2019) VGG16 model and Resnet50 model for image feature extraction, and
k-means clustering model for classification

CPM-RadPath 2019
data set

— — 0.780

Hamidinekoo et al.
(Hamidinekoo et al., 2020)

DCN model for classification CPM-RadPath 2020
data set

0.723 0.554 0.714

Yin et al. (Yin et al., 2020) After the cell kernel segmentation and noise reduction process, 3D
Densenet model used for classification

CPM-RadPath 2020
data set

0.944 0.971 0.952

Lerousseau et al. (Lerousseau
et al., 2020)

3D Densenet for MRI, and EfficientNet-B0 for WSI CPM-RadPath 2020
data set

0.911 0.904 0.943

Pei et al. (Pei et al., 2020) 3DCNN for segmentation and classification of MRI, and 2DCNNmodel
for WSI classification

CPM-RadPath 2020
data set

0.800 0.801 0.886

Zhao et al. (Zhao et al., 2020) VGG16 model for WSI, and segmentation-free self-supervised feature
extraction model for MRI

CPM-RadPath 2020
data set

0.889 0.903 0.943

Ours The two-stage multimodal model for classification CPM-RadPath 2020
data set

0.889 0.903 0.943

Scores in the table are all obtained from validation set. The bold values in the table represent the maximum value of each column.

FIGURE 5 | Visualization of the probabilities of the output results. We evaluate the probability that each patch belongs to A/O/G. Green represents A, red represents
O, and blue represents G. In addition, we show the patches of different glioma subtypes and normal tissues separately.
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et al., 2020; Zhao et al., 2020), still use the segmentation before the
classification framework, with a significant improvement over last
year’s results. The performance of these methods is affected by the
segmentation results. Methods in (Hamidinekoo et al., 2020;
Lerousseau et al., 2020) and our solutions do not require the
segmentation process.

Without segmenting the images, a direct comparison between
our method and (Lerousseau et al., 2020) is feasible because of the
similar performance on the validation set. However, in the
MICCAI 2020 CPM-RadPath Challenge, method in
(Lerousseau et al., 2020) performs not well on the test set and
the model does not have strong generalization ability. Similarly,
although methods in (Yin et al., 2020; Zhao et al., 2020) perform
equal or better than our method on the validation set, our method
obtains first place on the final competition test set.

4.7 Visualization of Results
We visualize the output of our classification model. We show here
the visualization of pathological images of three different glioma
subtypes on a classification model. The input patch size is 1,024 ×
1,024 pixels, and then each patch is put into ourmodel to calculate the
predicted probability for each glioma subtype. Each patch is labeled
with the color that represents its probability. Finally, every patch is
integrated to obtain the overall probability of the WSI belonging to
glioblastoma or oligodendroglioma, or astrocytoma. As shown in
Figure 5, probabilities are converted to color maps in logarithmic
form. Therefore, those lower probabilities (<50%) are shown as very
light colors, and higher probabilities (≥50%) are shown as dark colors.

Two pathologists were invited to view these pathological
images and their corresponding patches, and they confirmed
the presence of the typical glioma subtype patches and normal
patches, which are shown in the right two columns of Figure 5.

5 CONCLUSION

In this paper, we propose a two-stage glioma classification
algorithm that integrates multimodal image information to
classify brain glioma into three subtypes: astrocytoma,
glioblastoma, and oligodendroglioma. We train a 2D WSI
model and a 3D MRI model to learn histopathological image
information and radiological image information, respectively.
Our classification algorithm is designed based on the feature
difference between lower and severe glioma grades. In our
two-stage strategy, the first stage separates out the more severe
glioblastoma, and the second stage focuses only on learning
the difference between astrocytoma and oligodendroglioma.
Our two-stage strategy is applied to the 2DWSI model and the
3D MRI model, respectively. The ablation experiments show
that our proposed multimodal framework and two-stage
strategy have achieved more accurate classification

performance compared to the unimodal approach and one-
stage classification approach. In addition, the 2D WSI model
employs an ensemble strategy, which shows higher
classification accuracy compared to directly training a
single backbone.

Our method has been validated in the publicly available MICCAI
2020 CPM-RadPath Challenge and has ranked first in the challenge,
which indicates that the proposed method has the potential to help
neurologists or physicians make a fast and accurate glioma diagnosis.
However, the limited data is a drawback of this work. Collecting
paired multimodal imaging data is difficult due to patient privacy
concerns and the heavy clinical workload of physicians. In future
work, we will continue to focus on the disclosure of such multimodal
data and perform algorithm validation onmore data. Further, we will
attempt to adopt unsupervised or self-supervised learning techniques
to reduce the tedious annotation workload of pathologists.
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