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Abstract. Export of cargo from the ER occurs through 
the formation of 60-70-nm COPII-coated vesicular car- 
riers. We have applied serial-thin sectioning and stere- 
ology to quantitatively characterize the three-dimen- 
sional organization of ER export sites in vivo and in 
vitro. We find that ER buds in vivo are nonrandomly 
distributed, being concentrated in regional foci we refer 
to as export complexes. The basic organization of an 
export complex can be divided into an active COPII- 
containing budding zone on a single ER cisterna, which 
is adjacent to budding zones found on distantly con- 
nected ER cisternae. These budding foci surround and 
face a central cluster of morphologically independent 

vesicular-tubular elements that contain COPI coats in- 
volved in retrograde transport. Vesicles within these 
export complexes contain concentrated cargo mole- 
cules. The structure of vesicular-tubular clusters in ex- 
port complexes is particularly striking in replicas gener- 
ated using a quick-freeze, deep-etch approach to 
visualize for the first time their three-dimensional orga- 
nization and cargo composition. We conclude that bud- 
ding from the ER through recruitment of COPI! is con- 
fined to highly specialized export complexes that 
topologically restrict anterograde transport to regional 
foci to facilitate efficient coupling to retrograde recy- 
cling by COPI. 

XPORT of protein from the ER is the first step in the 
vectorial movement of cargo through compart- 
ments of the secretory pathway of eukaryotic cells. 

Pioneering studies by Palade (1975) established that the 
site of exit from the RER in pancreatic acinar cells is 
through transitional elements, a region of partly rough, 
partly smooth tubular ER juxtaposed to the cis face of the 
Golgi stack. Morphologically, ER-derived vesicles are 60- 
70 nm in diameter and contain an electron-dense coat 
when viewed using transmission electron microscopy (Zie- 
gel and Dalton, 1962). This characteristic coat contains 
COPII components that are assembled in response to the 
activation of the Sarl GTPase, a machinery now recog- 
nized to be evolutionarily conserved in yeast and mamma- 
lian cells (for review see Barlowe, 1995). 

While the formation of ER to Golgi carrier vesicles in 
secretory tissues is largely confined to the transitional re- 
gion facing the juxtanuclear Golgi apparatus (Palade, 
1975), studies in other cell lines have shown that export 
from the ER can originate from multiple sites that appear 
randomly distributed throughout the cytoplasm and, in 
most instances, distant from the Golgi complex. The rela- 
tionship of these peripheral sites to the transitional region 
found in secretory cells is unknown, although they are now 
recognized to consist of clusters of small vesicles and tubu- 
lar elements (Saraste and Kuismanen, 1984; Schweizer et al., 
1990; Saraste and Svensson, 1991; Lotti et al., 1992) re- 

ferred to as vesicular tubular clusters (VTCs) 1 (Balch et al., 
1994). While VTCs are readily detectable at 37°C in vivo 
(Saraste and Kuismanen, 1984; Saraste and Svensson, 
1991) and at 32°C in vitro (Plutner et al., 1992; Pind et al., 
1994a), visualization of these structures can be markedly 
enhanced by incubation of cells at reduced temperature 
(15°-16°C) (Saraste and Kuismanen, 1984), presumably 
due to a rate-limiting step in membrane flow through 
these intermediates. Elements of VTCs lack luminal conti- 
nuity with the ER (Saraste and Svensson, 1991; Balch et al., 
1994; Connolly et al., 1994), although tubular extensions of 
ER into these structures have been observed (Stinch- 
combe et al., 1995), particularly in cells infected with cer- 
tain viruses (Tooze et al., 1984; Krijnse-Locker et al., 
1994), reinforcing their close relationship to ER export. 

VTCs are dynamic structures with varied morphology in 
different cell types. In the past, VTCs have been suggested 
to be the site of O-glycosylation (Tooze et al., 1988), acyla- 
tion (Rizzolo et al., 1985), and generation of the mannose- 
6-phosphate signal for lysosomal protein targeting (Pel- 
ham, 1988). Several endogenous proteins serve as useful 
markers for VTCs. These include the small GTPase Rab2 
(Chavrier et al., 1990), the transmembrane protein p58 in 
rat cells or its human homologue p53 (Schweizer et al., 
1988; Saraste and Svensson, 1991), which actively cycle be- 
tween the ER and VTCs, and the COPI subunit 13-COP 
(Oprins et al., 1993; Pepperkok et al., 1993; Pind et al., 
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1994a; Aridor et al., 1995). VTCs play a pivotal role in the 
segregation of anterograde and retrograde transported 
proteins (Aridor et al., 1995; Tang et al., 1995). Segrega- 
tion is believed to involve the COPI coat complex whose 
assembly is driven through activation of the ARF1 GTP- 
ase (Aridor et al., 1995; Letourneur et al., 1995). 

While VTC composition and function have been de- 
scribed qualitatively through use of immunofluorescence 
(Lotti et al., 1992; Aridor et al., 1995; Lippincott-Schwartz 
et al., 1995) and immunoperoxidase (Connolly et al., 1994; 
Stinchcombe et al., 1995) approaches, the topology of ER 
budding sites and, in particular, their relationship to VTCs 
have not been studied quantitatively at high resolution. In 
the present paper, we use both transmission TEM and im- 
munoelectron microscopy in conjunction with quick-freeze, 
deep-etch methods to reconstruct these relationships mor- 
phometrically and to confirm that cargo is concentrated 
during vesicle budding. We find that almost all ER buds 
detected in the cell were concentrated in regional loci fac- 
ing VTCs, which had a characteristic diameter and vesicu- 
lar-tubular composition. As such, the topological organiza- 
tion of buds and VTCs defines a morphological unit of 
function, which we refer to as export complexes. We con- 
clude that budding from the ER is not evenly distributed 
along the membrane, but is confined to specific export 
sites. These are highly enriched in COPII and COPI trans- 
port components and are likely to promote the coupling of 
anterograde and retrograde transport. 

Materials and Methods 

Materials 
A polyclonal antibody specific for yeast Sec23p that cross-reacts with a 
mammalian homologue (Orci et al., 1991) was obtained from R. Schek- 
man (University of California, Berkeley). Affinity-purified antibodies 
specific for yeast Secl3p that cross-reacts with a mammalian homologue 
(Shaywitz et al., 1995) were a generous gift of C. Kaiser (Massachusetts 
Institute of Technology, Cambridge, MA). A hybridoma cell line express- 
ing an mAb specific for the carboxyl terminus of vesicular stomafitis virus 
glycoprotein (VSV-G) (P5D4) was provided by T. Kreis (University of 
Geneva, Switzerland) (Kreis, 1986). Secondary antibodies were obtained 
from the following sources: Texas red--conjugated goat anti-mouse IgG 
from Zymed Laboratories (South San Francisco, CA), 6 nm gold--conju- 
gated goat anti-mouse and anti-rabbit antibodies from Jackson Immu- 
noresearch Laboratories (West Groven, PA), and 10 nm gold--conjugated 
goat anti-mouse antibodies from Amersham Corp. (Arlington Heights, 
IL). Sarl wild type and the H79G and T39N mutant proteins were pre- 
pared as described (Aridor et al., 1995). All other reagents, except where 
indicated, were obtained from Sigma Chemical Co. (St. Louis, MO). 

Cells and Virus 
Normal rat kidney (NRK) and rat basophilic leukemia (RBL) cells (RBL- 
2H3) were maintained in monolayer culture in a-MEM supplemented 
with penicillin, streptomycin, and 7% (NRK) or 16% (RBL) FBS (Gemini 
Bioproducts, Calabasas, CA) as described (Plutner eta]., 1992). Ts045- 
VSV (Lafay, 1974) was propagated in BHK-21 ceils as described (Beckers 
et al., 1987). Cells were infected with ts045-VSV at a multiplicity of 10-20 
plaque-forming units per cell as described (Davidson and Balch, 1993). 

Epon Embedding and Serial Sectioning 
Cells were fixed in 2.5% glutaraldehyde (GA) in PBS for 1 h at room tem- 
perature (rt), scraped in GA, and pelleted at 15,000 g in a microcentrifuge 
for 10 rain. The tight pellet was washed in veronal-acetate buffer (pH 6.0) 
and stained in 1% buffered OsO4 for 1 h at rt. After washing in veronal- 
acetate buffer, pellets were stained en bloc with 2% uranyl acetate in 
veronal-acetate buffer, dehydrated in alcohol and acetone, and embedded 

in Epon 812 (Electron Microscopy, Sciences, Fort Washington, PA). For 
serial sectioning, the cell pellet was cut with a glass knife followed by trim- 
ming of the resulting block to obtain an ~40 ×300 ~xm pyramid. A ribbon 
of 25-35 consecutive sections of 65 nm in thickness was cut with a dia- 
mond knife on Reichert ultramicrotome 2E and transferred to a single 2 × 
1.5 mm slot grid (Electron Microscopy Sciences) precoated with a Form- 
var/carbon film. Sections were counterstained with a saturated solution of 
uranyl acetate in methanol for 10 rain at rt and Reynold's lead citrate for 
10 min. Budding structures on the ER and VTCs were followed in consec- 
utive sections, and images were overlaid to reconstruct continuity between 
structures. 

Transmission EM and Morphometry 
Stereological Parameters. An estimation of the mean volume of the cells 
was performed by two independent methods (Baddeley et al., 1985; Grif- 
fiths et al., 1989). In the first case, RBL cells were grown on glass cover- 
slips. Cells were fixed with 2.5% GA in PBS, pH 7.4, overnight. The cells 
were then viewed and photographed under phase contrast with an Axio- 
phot (Zeiss, Oberkochen, Germany) with a ×20 objective lens. The im- 
ages were enlarged photographically 10 times, and the mean surface of the 
cell projection was determined by the point-counting method (Weibel, 
1979) using a 5-ram square lattice grid. Approximately 10,000 RBL cells 
were used for the estimation of the mean surface of the cell projection 
onto a planar surface. The cells on coverslips were stained and embedded 
in Epon as described above. After polymerization, the coverslips were de- 
tached from the resin by plunging into liquid nitrogen. Thin-strips of em- 
bedded cells in resin were then combined face to face and reembedded on 
top of an Epon block to produce "vertical" sections (Griffiths et al., 1984). 
Images of cells were taken with a transmission electron microscope 
(1200EX; JEOL USA, Peabody, MA) and photoenlarged (×3,500 total 
magnification), and the mean height of ~250 cells in a monolayer was 
measured by the point-counting method (Weibel, 1979). The mean cell 
volume (Vc.r.) was then determined according to formula: 

Vc.r. = Sc.p. x Hc., (l) 

where Sc.p. is the mean surface of the cell projection (determined by the 
phase-contrast light microscopy), and Hc. is the mean height of the cell 
(determined by TEM). 

For estimation of the mean cell volume using the second method, NRK 
and RBL cells were grown on 35-mm tissue-culture dishes (Costar Corp., 
Cambridge, MA), fixed in the dish in 2.5% GA in PBS for 1 h at rt, and 
processed for TEM as described above. The cell pellet was cut with a dia- 
mond knife on a Reichert ultramicrotome 2E. 60-65-nm sections were 
counterstained as described above. Approximately 1,200 RBL and 800 
NRK cells were randomly chosen and photoenlarged to a magnification of 
14,000. The mean surface of the cells on sections were measured by the 
point-counting method (Weibel, 1979). The mean cell volume was found 
according to formula (Weibel and Gomez, 1962): 

Vc.r. = 1.4 (Sc.s.) 3J2, (2) 

where Sc.s. is the mean cell surface on thin-section, The surface to volume 
ratio was found according to formula: 

Sv. = ~l/~;P x d, (3) 

where I is the number of intersections on a grid, P is the number of points 
on the grid, and d is the distance between the points (Weibel, 1979). Both 
procedures yielded nearly identical results for RBL cells, The values ob- 
tained from the second procedure are reported in Table I. 

The stereological parameters of nuclei, ER, and Golgi apparatus were 
determined using the same sections. Randomly taken cell contours were 
enlarged to a total magnification of 14,000 as described above. Using the 
point-counting method, we determined the nucleus volume to cell volume 
ratio and a nucleus surface to nucleus volume ratio as described (Weibel, 
1979). Randomly chosen fields of cells containing ER or Golgi mem- 
branes were magnified to 31,000 to establish the ER(Golgi) volume to cell 
cytoplasm volume ratio by the point-counting method (Weibel, 1979). 
Some of these images were photoenlarged to 120,000 to determine the 
ER(Golgi) surface to volume ratio. The ER(Golgi) surface was found by 
formula 3. Corrections of bias due to section thickness were done as de- 
scribed (Weibel and Paumgartner, 1978). For the ER volume, the correc- 
tion factor was 0.51 and 0.65 for the ER surface. Assuming that two-thirds 
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of the Golgi complex was composed of cisternae and one-third of tubules, 
the correction factors for Golgi volume and surface were estimated to be 
0.6 and 0.64, respectively. 

Estimation of Number and Deasity of Total ER-derived Buds. To estimate 
the number ER-derived buds, we used two distinct criteria: (a) a bud was 
considered an elevation on the surface of the ER with a width of 60-80 nm 
and covered with a characteristic coat on the external leaflet of the mem- 
brane: and (b) buds had a direct connection with the ER membrane and 
were extruded from the membrane by at least 50% of their circumference. 
The total number of ER buds per cell was determined as described (Lu- 
cocq et al., 1989). To obtain this value, we multiplied the total number of 
ER buds detected in thin-secfions of ~300 cells by the mean volume of 
cells and divided that value by the total volume contributed by the ~300 
cells. The latter value was found by multiplying the thickness of a section by 
the total surface area of the ~300 cell sections in which ER buds were counted. 

By using relatively thick sections corresponding to the average diame- 
ter of an ER bud and the above two criteria, we were able to avoid double 
counting most of the ER buds present on consecutive thin sections. To es- 
tablish this point independently, we performed a separate experiment in 
which the total number of ER buds was counted on several stacks of serial 
thin-sections. By comparing the number of ER buds determined by this 
reconstruction approach to the number determined by counting of indi- 
vidual sections (indirect method), we found that overestimation by the lat- 
ter technique was <10-15%. Hence, both methods could be used inter- 
changeably. We also found that the indirect method showed a high 
reproducibility. In spite of the high degree of ER bud enrichment in local 
zones, the comparison of estimates of the total number of buds per cells 
between groups of as few as 35 randomly taken cells with a total surface of 
section of 2,500 tJ.m 2 gave a value of variance of less than 5% from one 
group to another. In addition, in four different experiments, the value of 
the total number of buds per cell was found to be the same. Because of 
technical simplicity, we routinely used the indirect method to estimate the 
average number of buds per cell. 

Estimation of Number and Density of ER Membranes and ER-derived 
Buds in the GolgiExclusion Zone. The Golgi exclusion zone is defined as 
the Golgi-containing region found in the pericentrosomal region of RBL 
cells and includes directly adjacent bud-bearing cisternae of the ER. The 
surface area of the Golgi exclusion zone in each individual section within a 
stack of 11-20 consecutive sections (referred to as a disector [Sterio, 1984; 
Lucocq et aL 1989]) was determined by the point-counting method (Wei- 
bel, 1979), and the mean surface area in each disector was calculated for 
12 different cells (range from 30-90 ~tm2). To find the volume of the Golgi 
exclusion zone included in the disector, the mean surface area of the Golgi 
exclusion zone in each disector was multiplied by the thickness of the sec- 
tion and the number of individual sections (35 to 105 ixm 3 for 12 individual 
disectors). The total number of ER buds within each disector of a given 
cell was found by reconstruction from serial sections. The volumetric den- 
sity of ER buds was calculated by dividing the number of buds found 
within each disector by the volume of the disector. The total volume and 
surface of ER membranes in the Golgi exclusion zone was found by the 
point-counting method (Weibel, 1979). By dividing the total number of 
ER buds by the ER surface within the Golgi exclusion zone, we calculated 
the density of ER buds in this region. 

Estimation of Number and Density of ER Membranes and ER-derived 
Buds outside of the Golgi Exclusion Zone. The density of ER buds outside 
of the Golgi exclusion zone was found according to the procedure de- 
scribed above for the Golgi exclusion zone. 

Estimation of Number and Density of ER Membranes and ER-derived 
Buds in Export Complexes. The local density of buds on individual cister- 
nae associated with export complexes was determined as follows: using a 
stack of sequential serial sections, we followed one continuous bud-bear- 
ing zone of ER membrane that contained at least four buds. The distances 
between the most distant ER buds in the stack were directly measured in 
both the plane of the section and the depth of the stack. These two dis- 
tances were multiplied by one another to get a surface area of the plane of 
the ER bud-bearing region. The total number of ER buds in such a zone 
(obtained by reconstruction as described above for the Golgi exclusion 
zone) was then divided by the area of the bud-bearing zone to determine a 
local ER bud surface density. 

Es.lmation of Number of VTCs. The number of VTCs per cell was de- 
termined using the disector method (Sterio, 1984) as described (Lucocq 
et al., 1989). Sections of 26 random cells were photographed at a cali- 
brated magnification of 7,000 throughout 25-35 consecutive sections in 
which they were present. Each "end section" was designated the "look- 
up" section, and all clusters present in the other sections, but not in the 
look-up section, were counted (Q). Then the volume of disector (Vdi~) was 

determined by multiplying the average surface of individual cells in the 
stack found by the point-counting method by the depth of the dissector, 
which is equal to the thickness of the section multiplied by the number of 
sections in the disector. The total number of clusters in individual ceils 
(Nc lu s t c r s / c e l l )  w a s  determined by the formula, 

Ncluster~icel I = Vc.r. × ~QIVji ~. (4) 

Total Number of Vesicular Profiles" in VTCs. To determine the number 
of elements in VTCs, the value reported assumes that all elements found 
in consecutive sections are discontinuous with one another. This value is 
likely to be an overestimate, as some of the tubular structures within 
VTCs may extend across several sections. The number of elements in 
VTCs was determined by direct counting of individual profiles on each se- 
rial section. These were summed throughout all sections through a given 
VTC to obtain a total value. 

Probability Measurements. To estimate the probability of a bud having 
proximity to a second bud in the cell, images of serial sections were photo- 
enlarged to 40,000 to reconstruct a section of the cell in three dimensions. 
300 randomly chosen ER buds were taken as the center of reference (re- 
ferred to as reference buds), and the distance between each individual ref- 
erence bud and other ER buds in the same and consecutive serial sections 
encompassing up to 1.3 p.m distance above and below the reference bud 
was measured directly. A series of concentric shells with a volume equal 
to the volume of the most internal sphere having a 0.2-1xm diam (corre- 
sponding to a volume of 0.0042 i~m 3) was constructed around the refer- 
ence bud. Subsequently, each measured bud was assigned to a shell with 
its distance from the reference bud being that of the corresponding outer 
diameter of the shell. The probability of finding a bud within a particular 
shell was determined by dividing the number of positive shells by the 
number of reference buds, and the value was reported as a percentage. 

SEM. Statistical calculations were performed by determining the SEM for 
the pooled stereological data for each condition as described in the Results. 

Immunolabeling of Cryosections 
NRK cells grown on 35-mm tissue-culture dishes were infected with vesic- 
ular stomatitis virus (strain ts045), postinfected for 4 h at 39.5°C, and per- 
meabilized as described (Plutner et al.. 1992). After incubation at the per- 
missive temperature (32°C) as described in the Results, the cells were 
fixed for 30 min with 3% paraformaldehyde and 0.1% GA in PBS (pH 
7.4), washed for l0 rain in PBS containing 0.05 M glycine, scraped, mixed 
with a preheated (40°C) 10% gelatin in PBS, and centrifuged at 15,000 g in 
a microcentrifuge for 10 min. Cells embedded in gelatin were cooled on 
ice, and a solid pellet was cut into I-ram-wide cubes. After overnight cryo- 
protection by infiltration with a mixture of 2.3 M sucrose in 0.1 M phos- 
phate buffer (pH 7.4) containing 20% polyvinyl pyrrolidene, the cubes 
were mounted on aluminum nails and frozen in liquid nitrogen. Ultrathin 
cryosections cut on a Reichert Ultracut E, equipped with a FC-4 cryoat- 
tachment, were picked up with 2.0 M sucrose-1% BSA in PBS and collected 
on Formvar/carbon-coated nickel grids. Sections were then quenched in 
0.01 M glycine in PBS, incubated for 30 min in 10% FBS-PBS at rt, and for 
1-2 h with primary antibodies diluted in 10% FBS-PBS antibody. Excess 
primary antibody was removed by multiple rinses in 5% FBS-PBS, fol- 
lowed by transfer of the section to a drop of 10% FBS-PBS containing 6 or 
10 nm gold--conjugated anti-rabbit antibodies. After a 2-h incubation at 
rt, the grids were washed in double-distilled water and stained in 2% neu- 
tral uranyl acetate (10 rain), followed by embedment in 3.2% polyvinyl al- 
cohol/0.2% methyl cellulose~ containing 0.2% uranyl acetate. No labeling 
was observed in controls in which primary antibodies were omitted. 

Immunolabeling of VSV-G Using the 
Immunodiffusion Approach and Quantitation of 
VSV-G Concentration in VTCs 
NRK cells were infected with ts045 VSV as described above. After digito- 
nin permeabilization (Plutner et al., 1992) and incubation in vitro as de- 
scribed in the Results, cells were fixed with 0.025% GA/3% paraforrnal- 
dehyde for 30 rain. Cells were washed three times with PBS, quenched 
with 0.05 M glycine in 10% FBS/PBS for 30 rain, and incubated overnight 
with an anti-VSV-G cytoplasmic tail mAb (P5D4) (Kreis, 1986). Cells 
were washed twice with FBS/PBS, followed by incubation with rabbit 
anti-mouse antibodies for l -2  h and with 6 or 10 nm gold conjugated to 
anti-rabbit antibodies for 2 h. Excess unbound antibodies were removed 
by washing, and the cells were fixed with 2.5% GA for 30 rain. Cells were 
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scraped, pelleted, and processed for Epon embedding. For three-dimen- 
sional visualization using quick-freeze, deep etch replicas, immunolabel- 
ing was performed on glass coverslips. 

For quantitation, the Epon-embedded cell pellet was cut as described 
above. Images (xl0,000) were scanned into a computer, and membrane 
outlines of the ER and VTCs were measured using the program NIH Im- 
age, version 5.9. The linear density of gold particles corresponding to 
VSV-G was determined as described (Balch et al., 1994). For determina- 
tion of the distribution of vesicles and VTCs, NRK cells grown on glass 
coverslips were permeabilized and incubated as described in the Results, 
fixed and labeled for VSV-G using the immunodiffusion protocol, and 
embedded in Epon on the glass coverslip as described above. After de- 
tachment from glass, thin layers of cells embedded in Epon were sand- 
wiched against each other and reembedded in Epon. Vertical sections of 
cells were prepared and counterstained as described above. ER to Golgi 
intermediates were identified based on either the presence of gold parti- 
cles corresponding to VSV-G or on their characteristic morphology as de- 
scribed in the Results. 

Preparation of Quick-Freeze, Deep-Etch 
Rotary-shadowed Replicas 
After incubation in vitro as indicated in the Results, semi-intact cells 
grown on 9 × 9 mm glass coverslips were fixed in 2.5% GA in PBS for 1 h, 
washed in PBS, and divided into small pieces (~3 mm2). Coverslips were 
rinsed exhaustively in double-distilled water, followed by a rinse with 10% 
methanol in water, and quick-frozen using a liquid nitrogen-cooled cop- 
per block gravity press (Hitek, Benicia, CA). The cells were fractured 
with a razor blade under liquid nitrogen, freeze dried in a vacuum evapo- 
rator (400; Balzers, Inc., Lichtenstein) and replicated with ~2  nm of plati- 
num that was rotary deposited from 24 ° above the horizontal. The replica 
was then reinforced with ~140/~ of carbon using an electron gun at an an- 
gle of 90 ° to the horizontal. A drop of 2% colloidion solution was applied 
on the replica membrane. The coverslips were detached in a 40% solution 
of hydrofluoric acid, and cells were dissolved in Chlorox. After washing, 
replicas were transferred to Formvar-coated copper grids, the colloidion 
film on replicas was dissolved with amylacetate, and images were exam- 
ined using TEM. 

Results 

ER-budding Activity Is Enriched within the Vicinity of 
the Golgi Apparatus 

The basic stereological parameters of the RBL and NRK 
cell line used in these studies are shown in Table I. To 
morphometrically evaluate the distribution of export sites, 
ER-budding structures were identified as an elevation on 
the surface of the ER with a width of 65-85 nm, extruded 
from the membrane by at least 50% of their diameter, and 
covered with a distinctive electron-dense coat (Fig. 1-3, 
arrowheads). Budding sites emanate from three locations 
in the cell including (a) those associated with the nuclear 
envelope (Fig. 1), (b) those associated with the Golgi ap- 
paratus that are analogous in structure to classical ER 
transitional elements (Palade, 1975; Sesso et al., 1994) 
(Fig. 2), and (c) those found in more peripheral regions 
that lack detectable Golgi (Fig. 3). 

Table L Basic Morphometric Parameters of NRK and 
RBL Cells* 

Ceils Nucleus ER Golgi 

NRK 
Volume (ixm 3) 
Surface (ixm 2) 

RBL 
Volume (txm 3) 
Surface (ixm 2) 

1,205±43 260 ± 14 37.8---2.3 7.8 ± 0.7 
3,868 ---+ 127 262 ± 13 2,448 ± 138 512 ± 42 

n ~ = 5 6 9  n =  185 n = 4 8  n =  105 

780-----38 2 1 7 -  + 12 20.3-----1.5 4 . 3 ± 0 . 4  
6 6 5 ± 2 7  1 7 6 ± 9 . 6  2,031+--90 183-2-16 

n =  113 n =  113 n = 5 6  n =  113 

*All data were determined as described in Materials and Methods. 
n, number of cells counted. 

Buds found at the tip of tubular projections from the 
surface of the ER had an average diameter of 78 ± 6 nm. 
Although tubular projections were generally shorter than 
150 nm (Fig. 1, section 5; arrowheads), they could be as 
long as 350 nm based on reconstruction from serial-thin 
sections. Buds were covered with an ~8-10-nm-thick elec- 
tron-dense coat. On grazing sections and at high magnifi- 
cation, the coat of ER buds possessed a lattice-like appear- 
ance due to a semi-regular array of 4-5-nm elongated 
particles (Fig. 1, inset). These coats are similar to those ob- 
served in pancreatic acinar cells (Merisko et al., 1986). 
Based on analysis of random sections through ~300 cells 
(see Materials and Methods), the average number of buds 
in a cell was found to be 250 ± 10.45% of budding profiles 
were found on ER tubules located in the vicinity of Golgi 
complexes, whereas 55% were located in regions without 
noticeable juxtaposition to Golgi. 11% of total buds were 
observed emerging from the nuclear envelope. Thus, it is 
apparent that a substantial level of membrane exiting the 
ER appears to do so from sites distant from Golgi elements. 

The overall average density of total ER buds based on 
the cross-sectional volume of the cytoplasm was found to 
be 0.5 buds per pom 3, or 0.14 buds per ixm 2 of total ER sur- 
face. However, the average density of ER-budding pro- 
files found within the pericentrosomal area containing the 
Golgi apparatus (referred to as the Golgi exclusion zone) 
was five- to sevenfold higher (3.3 buds per txm 3 of cyto- 
plasm or 0.8 buds per ixm 2 of ER surface) than the average 
value found on the total ER membrane. Outside of the 
Golgi region, the overall mean density was 1.5-3-fold 
lower (0.22 buds per ixm 3 cytoplasm or 0.04 buds per ixm 2 

of ER surface) than the average values found for the cell. 
The markedly increased budding density around the Golgi 
apparatus is consistent with the highly focused export ac- 
tivity observed from ER transitional elements present in 
the Golgi region of pancreatic acinar cells (Palade, 1975). 

Figure 1. Expor t  s i tes ad jacen t  to the  nuc lea r  enve l ope  o f  R B L  cells. Six consecu t ive  serial sect ions  t h r o u g h  a V T C  ad jacen t  to the  nu-  
clear  enve lope .  E R  buds  (arrowheads) e m e r g i n g  f r o m  the  nuc lea r  enve lope  (sect ion 1) and  paral lel  E R  m e m b r a n e  (stars in sec t ion  2--6) 
a re  facing VTCs .  (Inset) Hi ghe r  magni f i ca t ion  view of  two E R  buds.  The  slice o f  the  sec t ion p r e s e n t e d  in the  inset  e n c o m p a s s e s  e i ther  
only the  coat  (right), or  bo th  the  coat  and  the  m e m b r a n e  and  the  lumina l  par t  of  a bud  (left). Indiv idual  4 - 5 - n m  e l ec t ron -dense  par t ic les  
a r r anged  in a s emi regu la r  pa t t e rn  (arrows.) Notice  the  s a m e  a p p e a r a n c e  of the  coat  u n d e r  lower  magni f i ca t ion  of serial  sec t ions  tha t  
con ta in  a h o n e y c o m b e d  a p p e a r a n c e  cons is t ing  of  a s emi regu la r  ar ray of  e l ec t ron -dense  part icles  (arrows). A d j a c e n t  to buds ,  we obse rve  
a typical p l e o m o r p h i c  e l e m e n t  (large asterisk in sec t ion  5) wi th in  a V T C  tha t  has  n u m e r o u s  tubu la r  p ro jec t ions  (small asterisk) in adja-  
cen t  th in-sec t ions  (small asterisks in sec t ions  4 and  6), indicat ive of  its f enes t r a t ed  s t ructure .  T u b u l e s  in the  f enes t r a t ed  e l e m e n t s  of  the  
V T C  possess  a dark  dense  coat  (arrows in sec t ions  4 and  6) typical of  t hose  found  on  Golgi  c o m p a r t m e n t s  and  are  readi ly  d is t inguish-  
able  f r om the  a lveola te  coat  assoc ia ted  with C O P I I  b u d s  e m a n a t i n g  f rom the  ER .  Bar ,  0.1 Ixm. 
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Figure 2. Export complexes adjacent to the pericentrosomal Golgi region of RBL cells. 15 consecutive serial sections through three (a, 
b, and c) Golgi-adjacent export complexes (encircled by dotted lines) are shown with ER buds (arrowheads). Export complex a contains 
13 ER-derived buds, export complex b contains 11 buds, and export complex c contains seven buds. Note the characteristic cup-shaped 
appearance of ER bud-bearing zones especially evident for export complex b. 

ER-budding Activity Is Also Enriched in Peripheral 
Export Complexes 

To develop a deta i led unders tanding of the topological  or- 
ganizat ion of E R  expor t  throughout  the cytoplasm, we 

carr ied out  a morphological  reconstruct ion of those sites 
that  were not  adjacent  to Golgi  elements,  referred to as 
per iphera l  sites. A n  analysis of  per iphera l  sites allows us to 
discriminate the structure of ER-der ived  in termedia tes  

The Journal of Cell Biology, Volume 135, 1996 24 



Figure 3. Export sites in pe- 
ripheral regions of the cell 
cytoplasm that are distant 
from Golgi stacks. 10 consec- 
utive serial sections through 
a peripheral export site of 
RBL cells are shown with 
ER buds (arrowheads). ER 
strands bearing nine buds 
partially surround the VTC. 
Tubular elements of the 
VTC possess a Golgi-like 
uniform, dense, thick coat 
(arrows in sections 7 and 8). 
Bar, 0.1 ixm. 

from that of the fenestrated cis-Golgi network (CGN), 
which is always associated with ER buds near the Golgi. 
ER buds on peripheral sites (Fig. 3) typically emanated 
from short stretches of ER membrane. These regions were 
separated by long distances from other similar budding 
foci. Frequently, ER buds found on different cisternae 
were closely juxtaposed and faced each other. These fea- 
tures are more evident in Fig. 4 (A and B), which presents 
an overlapping reconstruction of serial sections of the pe- 
ripheral site shown in Fig. 3. Budding profiles (blue) pro- 

trude from the ER (green) into a central region containing 
a collection of vesicles and tubular elements comprising 
VTCs (red). This typical organization of peripheral sites is 
also characteristic of budding sites associated with the nu- 
clear envelope (Fig. 1) and budding sites adjacent to the 
Golgi stack (Fig. 2). The close topological relationship be- 
tween ER buds and distinct VTCs suggests that these 
structures function as a compact morphological unit that 
we now refer to in its entirety as an export complex. 

Morphometric analysis of peripheral export complexes 
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revealed that these sites typically contained two to six 
buds emanating from the ER, although this could ap- 
proach a value of 20 for some exceptional, larger clusters 
(Fig. 5 A, closed circles). These sites had an average num- 
ber of buds per site of 4.4 ___ 0.3 (Table II), a value that was 
slightly smaller than the average number of buds per site 
found in export complexes adjacent to Golgi (6.1 +_ 0.4 
buds per site; Table II). By including only ER-budding 
profiles facing VTCs, we were able to estimate a "local" 
bud density in these export complexes. On average, this 
value was 17.2 +__ 2.5 buds per i~m 2 of ER surface, which, 
on a relative scale, is 125 times higher than the average 
bud density found on the total ER surface (0.14 buds per 
ixm 2) and approximately five times higher than the bud 
density found on the surface of the ER within the Golgi 
exclusion zone. 

Buds Are Formed Nonrandomly along the ER Surface 

The apparent nonrandom distribution of ER buds led us 
to quantitatively estimate the probability of a given bud 
having proximity to a second bud in the cell. For this pur- 
pose, we constructed a series of concentric shells of equal 
volume that radiate outward from the center of randomly 
chosen buds. The radius of the first internal shell was arbi- 
trarily assigned a value of 0.1 txm to encompass the entire 
tip of a budding structure. Each increment in the diameter 
of successive shells extending outward from the first shell 
progressively decreased in dimension to encompass the 
same volume in three-dimensional space. Given the aver- 
age number of buds in a cell (~250), the volume of cell cy- 
toplasm (560 i~m3), and the volume of a shell (4.2 × 10 .3 
i~m3), if buds assumed a strictly random distribution, then 
the probability of encountering another bud in a given 
concentric shell would remain equal with a value of 0.18% 
(Fig. 6, diamonds). However, if buds were confined to re- 
gional foci, the probability of encountering a second bud 
would be high in the first series of concentric shells, and 
then fall off very rapidly with increasing distance in three- 
dimensional space. 

The results of such an analysis are shown in Fig. 6 where 
we have plotted the probability of encountering a bud rel- 
ative to its location in sequential concentric shells of equal 
volume (Fig. 6, open circles), or relative to the diameter of 
the outermost surface of a given shell in which a bud is 
found (Fig. 6, closed circles). It is clear that the distribution 
did not follow that predicted for a strictly random budding 
event. The probability of detecting a second bud within 
the first 50 consecutive shells having up to a 0.6-1~m outer 
shell diameter markedly exceeded that of a random distri- 
bution (Fig. 6). After a plateau at a value similar to that 
calculated for a random distribution (up to an outer diam- 
eter of 0.8 Ixm or 100 shells), the probability fell dramati- 
cally within the three-dimensional space defined by the 
outermost shell examined (~1.2 txm). We conclude that 
budding is not a random event along the surface of the 
ER, but rather is remarkably restricted to regional hot 
spots of budding activity associated with export com- 
plexes. 

Structural Organization of Export Complexes In Vivo 

As illustrated in Fig. 4, ER-budding profles  predomi- 

nately faced into an area filled with VTCs in vivo. VTCs, 
defined as a group of four or more 60-80-nm vesicular 
profiles with a characteristic shape and coat, were never 
detected in regions lacking adjacent ER buds. The mem- 
brane profiles of VTCs were distinct from the ER and 
found to be more variable in size compared to the rather 
homogeneous appearance of buds emanating from the ER 
surface. The average diameter of VTCs based on serial- 
thin sections was found to be ~0.4 Cm (Table II) with a 
range that varied from ~0.2 ~m to >1 ~m (Fig. 5 B). Al- 
though technical limitations do not allow us to make a 
complete three-dimensional reconstruction of membrane 
continuities between elements of VTCs, individual profiles 
often appeared to be continuous in several consecutive 
sections and consisted of short tubules that could be con- 
nected together in a more fenestrated structure (Fig. 1, as- 
terisks). Tubules within VTCs characteristically had a 
dense COPI-like coat at their tips (Figs. 1 and 3, arrows) 
(Melancon et al., 1987; Orci et al., 1993a). The presence of 
a COPI-like coat within VTCs is consistent with the nu- 
merous morphological studies that have demonstrated 
that these pre-Golgi intermediates are a major site of 
COPI localization when examined using indirect immu- 
nofluorescence (Lippincott-Schwartz, 1993; Aridor et al., 
1995) or TEM (Oprins et al., 1993; Pind et al., 1994a; Grif- 
fiths et al., 1995b). 

To estimate the total number of elements within a VTC, 
we assumed that each profile appearing in an individual 
section was, in fact, a separate vesicle or tubule. From this 
assumption, the average number of elements was deter- 
mined to be 32 +__ 4 (Table II). Clusters generally con- 
tained between 10 and 60 vesicular-tubular elements, al- 
though some of the clusters contained as many as 150 
elements (Fig. 5 C). Although these values are undoubt- 
edly an overestimate of the total number of luminally dis- 
tinct elements, given that tubules within VTCs are likely to 
extend across several consecutive thin-sections, they serve 
as a useful numerical approximation for the relative size 
and composition of VTCs. When we compared the num- 
ber of elements found in peripheral vs Golgi-adjacent 
VTCs, we observed very similar values, suggesting they 
are of comparable size (Fig. 5 C). Whereas peripheral 
VTCs were generally spherical in shape, those adjacent to 
Golgi possessed a semispherical shape with the CGN oc- 
cupying one hemisphere, and the other hemispheres facing 
ER membranes. Using the disector method to estimate the 
total number of VTCs per cell (Sterio, 1984) (see Materi- 
als and Methods), we found an average value of 74 _ 11 
clusters per cell. This level is similar to that observed using 
more indirect TEM methods (Buccione et al., 1996) or in- 
direct immunofluorescence in other cell lines (Plutner et al., 
1992; Aridor et al., 1995). 

Biochemical Requirements for the Generation of Export 
Complexes In Vitro 

To correlate our morphological observations with previ- 
ous in vitro biochemical studies, we used semi-intact NRK 
cells to examine the potential role of COPII  components 
in the formation of ER-derived buds and VTCs (Plutner 
et al., 1992; Peter et al., 1993; Balch et al., 1994; Pind et al., 
1994b). Semi-intact cells incubated for 30 min at 32°C in 
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Figure 4. Three-dimensional reconstruction of a peripheral export complex. Membrane contours shown in Fig. 3 are illustrated at a 
magnification of 160,000. Transparencies containing the membrane contours were scanned, overlayed, and coaligned based on the posi- 
tion of mitochrondria and ER. Green denotes ER cisternae, blue denotes ER buds, and red denotes tubules and vesicles of VTCs. Ve- 
sicular membrane contours within the VTC whose luminal continuity to the surrounding ER membranes was evident in consecutive sec- 
tions were denoted in green. More intense shades of the same color reflect distance from the uppermost section. The alveolate coats of 
ER buds, where evident, are dictated by stipples. Images are presented either individually with the section number indicated (bottom 
two rows), or as an overlay containing four images (left) for clarity or all eight images (right). The resulting reconstruction shows the 
clustered structure of a typical VTC, surrounded by ER-bearing buds occasionally penetrating the periphery of a VTC, as evidenced by 
the coated portions of ER tubules (blue) adjacent to VTC tubules (red). 

the absence of cytosol failed to genera te  detec table  VTCs 
(not shown). This result  is consistent with the fact that  pre- 
existing VTCs are unstable during permeabi l iza t ion  (Ari-  
do t  et al., 1995) and that cytosol contains essential  soluble 
components  of  the COPI I  machinery required for the ex- 
port  of cargo from the E R  (Barlowe et al., 1994; Kuge et al., 
1994). VTCs genera ted  in vitro in the presence of cytosol 
are near ly  identical  to those observed in vivo. We have 

previously shown that they are composed  of a compact  
network of tubules and vesicles that lack direct luminal 
connect ions to E R  membranes  and frequently label posi- 
tively for B-COP using immunoelectron microscopy (Balch 
et al., 1994; Pind et al., 1994a). However ,  ER-budd ing  pro-  
files, like those observed adjacent  to VTCs in vivo (Figs. 
1-3, arrowheads), were rarely observed in vitro. Since pre-  
vious studies used mild fixation condit ions in conjunct ion 
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Figure 5. Quantitative analysis of the composition of export com- 
plexes. (A) Quantitative analysis of the number of ER buds asso- 
ciated with an individual cluster in Golgi-adjacent (open circles) 
and peripheral (closed circles) export complexes was determined 
from serial sections as described in the Materials and Methods. 
(B and C) Quantitative analysis of the size of VTCs according to 
their diameter (B) or number of vesicular elements associated 
with a VTC (C) was determined by reconstruction of serial sec- 
tions from Golgi-adjacent (open circles) and peripheral (closed 
circles) structures as described in the Materials and Methods. 
Data were collected from complete reconstructions of 116 Golgi- 
adjacent and 164 Golgi-peripheral export complexes in RBL 
cells. 

with an immunodiffusion procedure  to label  VSV-G in 
VTCs (Balch et al., 1994), we reasoned  that  E R  buds may 
be  labile structures. W e  therefore  appl ied  more  stringent 
fixation and embedding  condit ions to preserve ultrastruc- 
rural details (see Mater ia ls  and Methods) .  Unde r  these 
condit ions,  E R  buds were observed that  had a characteris-  
tic coat  resembling those found in vivo and were only de- 
tected adjacent  to VTCs (not  shown), suggesting that even 
in semi-intact  ceils, budding  is restr icted to specialized re- 
gions of the ER,  

To examine the format ion  of buds and their  relat ionship 

Table II. Morphometrie Parameters of Golgi-adjacent and 
Peripheral VTCs* 

Golgi-adjacent Peripheral Total 

Average number per VTC: 
ERbuds 6.0 + 0.4 * 4.4 +_ 0.3 5,1 +__ 0.3 
Vesicular elements 35 ± 3 30 +-- 3 32 +__ 3 

Average diameter of VTC (t~m) 0.40 +- 0.06 0.39 +- 0.06 0.39 +_ 0.06 

*Morphometric parameters were determined as described in Materials and Methods. 
A total of 116 Golgi-adjacent and 163 peripheral reconstructions of export complexes 
was used in generating the data shown, 
:;Mean --- SEM. 

to VTCs in vitro, we made  use of  the nonhydrolyzable  an- 
alog of GTP,  GTP~/S, which permanent ly  activates Sar l  
and other  GTPases,  leading to stable coat  assembly and 
accumulat ion of buds. Interest ingly,  we observed for the 
first t ime using strong fixation condit ions that  nascent  
budding profiles genera ted  in the presence of GTP~/S had 
not  only a cluster appearance  (Pind et al., 1994a), but  also 
frequently had a distinctive "beaded  necklace" appear-  
ance with each vesicle being a bead  (Fig. 7, B and C). The  
vesicles were near ly  identical  in size but lacked luminal 
continuity. These strings of vesicles were similar to the 
shorter  necklaces somet imes observed in vivo under  nor-  
mal incubat ion condit ions (Fig. 7 A).  These necklaces 
were confined to only a small fraction of the total  E R  sur- 
face. By analyzing sections through >600 individual  neck- 
laces, we have never  de tec ted  them to have more  than one 
connect ion to the E R  membrane ,  support ing the possibil-  
ity that  each string grows from a local area  of budding ac- 
tivity. These  observat ions suggest that  budding continues 
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Figure 6. Probability of a given bud having proximity to a second 
bud in the cell. Randomly chosen ER buds present in RBL cells 
were assigned as the center of reference, and distances between it 
and any other buds present in 30 consecutive serial sections were 
determined by building a series of concentric shells with a con- 
stant volume of 0.0042 ixm 3, corresponding to the volume of the 
first internal shell having a diameter 0.2 Ixm (to encompass a sin- 
gle bud) as described in the Materials and Methods. The proba- 
bility was determined by counting the number of buds detected in 
each shell relative to the total number of buds detected (percent- 
age of total). This value is plotted as shell number in which a sec- 
ond bud was found (open circles) or relative to the outermost 
diameter of a particular shell (closed circles). The calculated prob- 
ability of a second bud having a completely random distribution 
in the cell (0.18 %) is presented for comparison (diamonds). 
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Figure 7. Morphological fea- 
tures of ER-derived buds ob- 
served in vivo and in vitro. 
(A) Buds protruding from 
the ER of RBL cells in vivo 
(arrowhead) show a neck- 
lace-like appearance with 
two to three incompletely 
pinched-off vesicles remain- 
ing attached to the single bud 
protruding from the ER. (B) 
Semi-intact NRK cells were 
incubated in vitro in the pres- 
ence of cytosol and ATP as 
described in the Materials 
and Methods. Note that buds 
(arrowheads) can be readily 
detected protruding from 

ER-like elements. (C) ER buds and vesicles (arrowheads) formed in vitro in the presence of GTP~/S show a zig-zag appearance with oc- 
casional singular branches (arrows). (D and E) ER buds accumulated in the presence of the GTP-restricted Sarl[H79G] mutant can 
form grape-like groups (D) or a highly branched network (E). (Arrows) Single branches. Bar, 0.05 Ixm. 

in the absence of GTP  hydrolysis,  but  that the vesicles fail 
to comple te  separa t ion  from one another .  Upon  immuno-  
labeling, we found accumulated vesicles to be substantial ly 
enriched in VSV-G (Pind et al., 1994a) and components  of 
both  COPI  (13-COP) (Pind et al., 1994a; Griffiths et al., 
1995b) and COPI I  coats (Sec13 and Sec 23) (Fig. 8, A-C).  

To establish that  necklaces formed in response to a spe- 
cific block in COPI I  coat  disassembly,  we examined the ef- 

fect of an activated, GTP-res t r ic ted  mutant  of Sar l ,  
Sar l [H79G] ,  which promotes  vesicle accumulat ion in vivo 
and in vitro (Ar idor  et al., 1995; Kuge et al., 1994). Exami-  
nat ion using strong fixation condit ions revealed a striking 
similarity to GTP~/S-formed structures. Vesicles were de- 
tected as both clusters (Fig. 7 D) or  as necklaces (Fig. 8 E)  
emerging from restr icted regions of the ER. As  expected,  
coats were enriched in the COPI I  components  Sec l3p  

Figure 8. ER buds formed in vitro in the presence GTP~S or the Sarl-GTP-restricted mutant contain components of COPII coats. Semi- 
intact NRK cells were incubated in vitro, and cryosectioning and immunolabeling of cell pellets were as described in Materials and 
Methods. Clusters of vesicles (arrows) accumulated in the presence of GTP~/S (A, B, and C) or Sarl[H79G] (D and E) contain Secl3p 
(arrowheads in A, C, and D) and Sec23p (arrowheads in B, and E) as shown by the distribution of gold particles using specific antibod- 
ies. Note that the cisternal portion of the Golgi apparatus with the trans face labeled in C and F remains unlabeled by Sec13p- and 
Sec23p-specific antibodies, whereas clusters (arrows) that are closely adjacent to the Golgi complex contain both Secl3p and Sec23p (C 
and F). Bar, 0.05 txm. 
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(Fig. 8 E) and Sec23p (Fig. 8 F). No COPI staining could 
be detected using an antibody specific for 13-COP in these 
structures (not shown) (Aridor et al., 1995). 

To examine the role of COPII in VSV-G concentration 
and the appearance of VTCs in export complexes, we used 
semi-intact cells infected with a temperature-sensitive form 
of VSV-G whose transport is blocked at the restrictive 
temperature (39.5°C) (Lafay, 1974; Plutner et al., 1992). 
Transfer of cells to the permissive temperature (32°C) 
results in the migration of a synchronous wave of ts045 
VSV-G from the ER to VTCs and subsequent Golgi com- 
partments (Plutner et al., 1992; Balch et al., 1994). After 
incubation at 32°C in vitro, cells were fixed and stained 
with an antibody specific for the cytoplasmic tail of VSV- 
G using the immunodiffusion protocol (Balch et al., 1994). 
As shown in Table III, incubation in the presence of wild- 
type Sarl had little effect on ER export as judged by the 
abundance of VTCs detectable in vitro. In contrast, the 
guanosine diphosphate (GDP)-restricted form of Sarl 
(Sarl [T39N]) drastically reduced the formation of vesicles 
and VTCs (Table III), demonstrating the essential need to 
activate Sarl to promote membrane flow from the ER 
through export complexes. In contrast, incubation in the 
presence of the GTP-restricted mutant (Sarl[H79G]) 
caused a dramatic accumulation of vesicles in clusters and 
an approximate twofold increase in the apparent number 
of clusters per section that could be detected (Table III). 

When we determined the density of VSV-G in clusters 
formed in the presence of the Sarl-GTP restricted mutant, 
it was approximately five- to sixfold higher than that found 
in the ER before incubation (Table III). This fold-concen- 
tration was identical to that observed in VTCs present in 
control incubations lacking inhibitors (Table III). The 
five- to sixfold increase in the density of VSV-G in vesicles 
that accumulate in the presence of the mutant demon- 
strates that VSV-G is concentrated during packaging into 
COPII-coated vesicles. 

Visualization of ER Export by a Three-dimensional 
Technique Confirms the Organization of Export 
Complexes Reconstructed from Serial Thin-Section 

To develop a three-dimensional view of export complexes, 
we applied for the first time a modification of the quick- 
freeze, deep-etch methodologies used previously to visual- 
ize vesicles budding from the plasma membrane (Heuser, 
1980) and Golgi compartments (Weidman et al., 1993). 
The approach is particularly applicable to semi-intact cells 
where the cytosol can be readily washed away to reveal 
structural features of the ER membrane surface. 

After incubation in vitro in the presence of ATP and cy- 
tosol, semi-intact cells were fixed, rapidly frozen, and frac- 
tured to expose internal membranes. After etching and 
replication, intracellular organelles are rendered visible as 
three-dimensional structures. The surface of the ER was 
readily distinguishable from other subcellular compart- 
ments by the presence of ribosomes or, in the case of the 
nuclear envelope, additionally, nuclear pores. Adjacent to 
the surface of the ER, we frequently observed compact 
structures of similar size and apparent vesicular-tubular 
composition to VTCs observed in thin-sections (Fig. 9 A). 
These structures were completely absent in incubations 

Table IlL Effect of Sarl Mutants on the Concentration of 
VSV-G and the Organization of ER-derived Clusters during 
Export from the ER In Vitro 

Protein 

Average number 
vesicles per Number of Number of VSV-G 

ixm 3 vesicles per cluster clusters per ~m 3 density (fold 
of cytoplasm in each section s of cytoplasm m over ER) I 

Control 

(no additions) 2.8 -+ 0.3* 9.3 --- 0.9 0.3 --- 0.1 5.9 ~ 0.7 

Sarl wild type 1.7_+0.2 7 .1_+0.7  0.2_+0.1 5.3___0.5 

Sar l [T39N] 0.2 -+- 0.1 3.6 _+ 0.4 0.05 _+ 0.01 4.6 ___ 1.3 

Sar I [H79G]  6.6 - 0.6 13.0 - 1.3 0.5 _+ 0.1 5.3 _+ 0.3 

GTP"/S 5.2 _+ 0.5 11.3 -+ 1.2 0.5 -+ 0.1 5.2 -+ 0.3 

* Mean -+ SEM. 
* Density of ER-derived vesicles per p,m 3 of cytoplasm was determined as described in 
the Materials and Methods. 
~Total number of elements in clusters (determined as described in the Materials and 
Methods) was divided by total number of clusters detected. 
~Density of clusters determined as described in the Materials and Methods. 
~Fold-concentration of VSV-G over that observed in the ER was determined using im- 
munoelectron microscopy as described in Materials and Methods. 

that lacked cytosol or ATP. They varied in diameter, but 
were generally ~0.3-0.5 ~m across and ranged from a cir- 
cular to a more oblong shape under normal incubation 
conditions. Assuming that the distinctive ~80-nm surface 
undulations correspond to vesicle profiles (Fig. 9 A) and 
that a cluster can be represented as a sphere with a similar 
range of diameters, we estimate that VTCs detected in 
replicas could contain 50-110 individual elements. This 
value is compatible with the number of vesicular profiles 
determined by reconstruction from serial thin-sections. 

To identify whether the above structures formed in the 
presence of cytosol and ATP contained ER-derived cargo 
proteins such as VSV-G, NRK cells were infected with 
ts045 VSV at the restrictive temperature. After permeabi- 
lization and incubation in vitro at 32°C, cells were immu- 
nolabeled for VSV-G using the immunodiffusion protocol 
(Balch et al., 1994) and replicas were prepared. While a 
combination of prolonged incubation using mild fixation 
conditions to label VSV-G and the presence of prominent 
"gold shadows" from the etching and replication reduces 
the ability of the technique to reveal surface features of 
these immunogold-labeled clusters, the distribution of 
VSV-G reveals the striking role of COPII  in concentrative 
export. Before incubation of semi-intact cells at 32°C, gold 
detected on the surface of the ER (Fig. 10 A, arrowheads) 
and nuclear envelope (Fig. 10 B, arrowheads) was distrib- 
uted in an apparent random manner throughout the ER 
cisternal network (Plutner et al., 1992; Balch et al., 1994). 
The surface density of VSV-G in these ER membranes 
was 32 +- 6 gold particles per p~m 2. In contrast, incubation 
for 45 min in the presence of cytosol and ATP led to a dra- 
matic change in the distribution of VSV-G, rearranging 
gold particles to a limited number of VTCs that were well 
isolated from each other (Fig. 10 C). The density of gold 
over VTCs projected as a flat surface parallel to the ER 
membrane (referred to as a planar projection) was ~850 -+ 
250 gold particles per p~m 2, a value markedly higher than 
that observed in the plane of the ER membrane before in- 
cubation. 

We next used replicas to follow the effects of GTP'yS 
and the Sarl-GTP restricted mutant on budding and con- 
centration of VSV-G. As shown in Fig. 10 (B and C), incu- 
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Figure 9. Structure of VTCs adjacent to the ER surface as seen by the quick-freeze, deep-etch replication technique. NRK cells were 
permeabilized and incubated at 32°C for 45 min in the presence of ATP and cytosol (A), or additionally supplemented with 10 ~M GTP~/S 
(B and C) or 1 I~M Sarl[H79G] (D). Clusters viewed as replicas are present on the ER membrane (B and C) or the nuclear envelope (A 
and D) as indicated by the presence of ribosomes (numerous, small projections on ER surface) (A-D) and/or nuclear pores (not 
shown), respectively. GTP~/S accumulated vesicle clusters collapsed onto the surface of the ER during etching usually exhibit a neck- 
lace-like morphology with a zig-zag appearance (B and C). Sarl[H79G] accumulated vesicles appeared as necklace-like structures (not 
shown) or as compact vesicular dusters (D). Note that the cluster in D formed in the presence of the Sar1[H79G] mutant has a more 
vesicular appearance of surface projections than the control cluster shown in A, which appears partially tubular in composition. We 
have noted a frequent association of VTCs with microtubule-like filaments (arrow in A). Bar, 0.1 ixm. 

bation of noninfected semi-intact cells in the presence of 
GTP~/S led to the accumulation of vesicles ~ 8 0  nm in di- 
ameter  that, consistent with T E M  (Fig. 7, B and C), had a 
zig-zag necklace-like appearance  when collapsed on the 
surface of the ER. Immunolabel ing of replicas formed in 
the presence of GTP~/S revealed that VSV-G reached a 
density of 800 _ 200 gold particles per txm ~ in planar pro- 
jection within clusters. When  incubations were carried out 
in the presence of the Sa r l -GTP restricted mutant,  neck- 
laces (not shown) and compact  vesicular clusters were also 
observed on replicas (Fig. 9 D). In the presence of the Sarl  
mutant,  VSV-G reached a density of 700 _+ 200 gold parti- 
cles per ~m 2 in a planar projection of the cluster (Fig. 10 
E), reinforcing our previous observations that the budding 
activity associated with export  complexes involves concen- 
tration. 

Discussion 

We have provided the first quantitative, stereological de- 

scription of the three-dimensional  organization of cellular 
structures involved in transport  of cargo from the E R  to 
the Golgi apparatus. Export  complexes have a hierarchial 
organization that can be conceptually divided into three 
tiers (Fig. 11 A). The first tier (Fig. 11 A, dotted box) con- 
sists of closely adjacent buds on a single E R  cisterna. Each 
can give rise to an individual string or group of ER-  
derived buds containing COPII  coats. These budding loci 
were limited to specific regions of the E R  in vivo, suggest- 
ing the existence of a defined number  of export  sites in the 
living cell. The second tier (Fig. 11 A, cylindrical region 
outlined by dashed lines) comes from the observation that 
buds on one cisterna were often found in close proximity 
to budding profiles emanat ing from E R  cisternae derived 
from distantly connected regions of the ER. The third tier 
of organization encompassing the entire export  complex 
(Fig. 11 A, solid box) includes ER-derived buds that face into 
a region housing a central VTC. Tubular  elements within 
VTCs contain distinctive COPI coats and are luminally 
discontinuous with the ER. While professional secretory 
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Figure 10. VSV-G is concen- 
trated in ER-derived vesi- 
cles and VTCs. NRK cells 
infected with ts045 VSV at 
the restrictive temperature 
(39.5°C) to retain VSV-G in 
the ER were permeabilized 
with digitonin (Plutner et al., 
1992) and either fixed imme- 
diately (A and B) or incu- 
bated for 45 rain at the per- 
missive temperature (32°C) 
in the presence of cytosol 
and ATP (C), or addition- 
ally supplemented with 1 IxM 
Sarl[H79G] (E). After incu- 
bation, cells were fixed and 
VSV-G labeled with 10 nm 
(A-C, and E) or 6 nm (D) 
gold particles using the im- 
munodiffusion protocol as 
described in the Materials 
and Methods. Cells were ei- 
ther prepared for thin-sec- 
tion TEM (D) or for quick- 
freeze, deep-etch replication 
(A-C, and E). At the restric- 
tive temperature, VSV-G 
was uniformly distributed 
within the ER membrane 
(A) or the nuclear envelope 
(B). After a shift to the per- 
missive temperature (B-E), 
VSV-G was concentrated in 
newly formed 80-nm vesicles 
associated with export com- 
plexes. (Arrowheads) Loca- 
tion of 6 nm (D) or 10 nm 
(A-C, and E) gold particles 

corresponding to the distribution of VSV-G. Due to the use of an immunodiffusion protocol before preparation of replicas and the high 
density of label, extended shadows from the gold particles partially obscure membrane outlines. Bar, 0.1 I~m. 

cells such as those found in the pancreas confine export 
predominately to a single transitional region juxtaposed to 
the cis face of the Golgi apparatus (Palade, 1975), the two 
different cell lines used in the present study were found to 
have export complexes distributed throughout the cyto- 
plasm. Our studies provide evidence that budding from 
the E R  occurs in areas of intense morphological special- 
ization. Each level of organization is discussed in detail 
below. 

Tiers I and H Define the Distribution of  
ER-budding Profiles 

While there is an apparent random distribution of export 
complexes in the cytoplasm, we found a very high degree 
of organization in the distribution of E R  buds in the cell. 
We observed not only a high local density on the same 
stretch of E R  membrane (Fig. 11, tier I, dotted boxes), but 
found distantly connected E R  bud-bearing zones encir- 
cling the same VTC (Fig. 11, tier II, dashed cylindrical re- 
gion), suggestive of a regional specialization of the COPII  
export machinery. Consistent with this interpretation, buds 
and vesicles accumulated in semi-intact cells in the pres- 

ence of GTP~/S or the Sar1[H79G] mutant  strongly la- 
beled with antibodies specific for mammalian homologues 
of the yeast components Secl3p and Sec23p. 

Both the GTP-yS and the GTP-restricted Sarl[H79G] 
mutant led to the formation in vitro of ER-derived vesicle 
clusters and strings of vesicles with a necklace-like appear- 
ance. Vesicles accumulated as necklaces had no obvious 
continuity between the lumen of individual vesicles, sug- 
gesting that membrane fission had gone to completion. 
Moreover,  in both thin-section and replicas, clusters that 
formed in the presence of GTP'yS or the Sarl  GTP- 
restricted mutant  clearly had a more vesicular surface ap- 
pearance than those formed in the absence of inhibitors. 
The fact that separation of vesicles appears to be blocked 
in the absence of GTP hydrolysis raises the distinct possi- 
bly that the function of Sarl is normally required for this 
event. Given the fact that uncoating occurs rapidly after 
budding (Aridor et al., 1995), coat disassembly could be 
associated with release of vesicles from necklaces. 

The morphological effect of GTP~S on the budding 
from the E R  is very different from its effect on Golgi 
membranes incubated under identical conditions. In the 
latter case, buds appearing in replicas are isolated, single 
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structures and are uniformly distributed throughout  the 
entire Golgi surface (Weidman et al., 1993). The regional 
confinement  of budding in E R  membranes  to necklaces or 
clusters therefore also supports our interpretat ion that ex- 
port  occurs from areas of luminal and/or membrane  spe- 
cialization. Since budding from the E R  frequently occurs 
from the tips of short, coated tubules emanat ing from E R  
cisternae, clusters and necklaces could be derived from ei- 
ther sequential or synchronous fission of these tubular ele- 
ments. 

In contrast with the fact that export  complexes observed 
in vivo appear  to be completely surrounded by budding 
profiles from topologically distant E R  cisternae (Fig. 11 A, 
tier II), semi-intact cells lacked this feature (Fig. 11 B). 
Thus, permeabil izat ion destroys confinement  of several 
sites to one area and allows them to form in a more ran- 
dom fashion. We have previously noted that ER-der ived 
vesicles and downstream compar tments  are not released 
from semi-intact cells during incubation in vitro at 32°C 
(Beckers et al., 1987). In contrast, assays that reconstitute 
vesicle budding from semi-intact yeast cells (Baker  et al., 
1988) release free 60-nm COPII-coated  vesicular carriers 
(Barlowe et al., 1994). The inability of mammalian semi- 
intact cells to release vesicles suggests that vesicles are 
te thered to a scaffold of unknown composition. In yeast, 
ei ther vesicles are not linked to such a scaffold, or this as- 
pect has not been successfully reconstituted. In either 
event, while the striking degree of morphological  special- 
ization observed in mammal ian  cells may contribute to the 
overall efficiency of budding and transport  in the early 
secretory pathway, it is apparently not essential. 

We have previously suggested that export  from the E R  

is accompanied by concentrat ion of VSV-G (Balch et al., 
1994). This point was the subject of a recent debate  (Balch 
and Farquhar,  1995; Griffiths et al., 1995a). We have now 
applied an independent  approach using quick-freeze, deep- 
etch methodologies  in conjunction with immunolabel ing 
of VSV-G to generate  three-dimensional  replicas that al- 
low us to directly assess the concentration of VSV-G in 
ER-der ived vesicles. We found, on average, a value of 
~800  gold particles per txm 2 in planar projection of clus- 
ters accumulated in ei ther the absence or presence of 
GTP~S, or in the presence of the activated Sa r l -GTP re- 
stricted mutant.  The inclusion of the inhibitors prevents 
further rounds of vesicle budding, ensuring that we are ex- 
amining concentrat ion associated with export  from the 
ER. A planar projection, however,  is not a good approxi- 
mation of the total surface area available on clusters for 
antibody binding. Since only the external surface of vesi- 
cles found on the per imeter  of clusters is available for anti- 
body binding (Balch et al., 1994; Pind et al., 1994a) (see 
Fig. 11 D), a more reasonable estimate of VSV-G density 
can be determined if we assume that the antibody has ac- 
cess to the outer-half  of a shell of 80-nm vesicles that oc- 
cupy the per imeter  of a 0.4-~m sphere (the size of a typical 
VTC). Compared  with the surface area of the planar pro- 
jection (~0.13 ~m2), the surface area of such a populat ion 
of vesicles corresponds to a value of ~0.7  txm 2. This is an 
increase of approximately fivefold over the planar projec- 
tion. Therefore  the actual surface density of VSV-G in 
clusters observed in replicas is 800 gold particles per i~m 2 
divided by 5 or 160 gold particles per ixm 2. This value, 
when compared to the average surface density of VSV-G 
before incubation in vitro (32 gold particles per ~m2), sug- 

Figure 11. Diagram summa- 
rizing the three tiers of orga- 
nization of ER export com- 
plexes in vivo (A) and in 
vitro (B). (A) An individual 
ER cisterna contains a col- 
lection of closely opposed 
buds that define a local tran- 
sitional region (light zone 
with buds on the ER). This 
specialized region is domi- 
nated by the presence of 
COPII coats and is referred 
to as tier 1 (box outlined with 
dotted line). Tier II (cylindri- 
cal region outlined by dashed 
lines) includes buds on dis- 
tantly connected ER strands 
that face a central VTC con- 
sisting of a collection of dis- 
tinct vesicular-tubular ele- 
ments that have COPI coats. 
Tier III includes the entire 
export complex and is out- 
lined by the box with the 

solid line that encompasses both ER buds and a central VTC. The possible elevated concentration of COPII and COPI coat compo- 
nents within the local cytoplasm of export complexes is depicted by small dots and lines. (B) In semi-intact cells, there appears to be a 
more limited number of ER buds associated with the local transitional region defined by tier I (box outlined with dotted lines). The tier 
iI level of organization is completely missing in semi-intact cells, as the association of distantly connected ER strands appears to be lost 
during cell permeabilization. However, tier III (box outlined with solid line) is maintained, highlighting the juxtaposition of VTCs to 
buds on one ER strand. 
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gests that VSV-G is concentrated five- to sixfold during 
budding from the ER. The fold-concentration detected 
here is very consistent with that observed previously using 
serial thin-sections (Balch et al., 1994; Pind et al., 1994a) or 
in the present studies in the presence of the Sarl-GTP re- 
stricted mutant (Table III). These results confirm the va- 
lidity of our previous technical advancements (Balch et al., 
1994; Balch and Farquhar, 1995) and now firmly establish 
that cargo is concentrated during ER export (Balch et al., 
1994). 

The Third Tier: Budding Sites Surround VTCs 

A third tier of organization of export sites was found in the 
striking relationship between flanking ER-connected bud- 
ding profiles and VTCs to form the functional morpholog- 
ical unit we refer to as export complexes (Fig. 11 A, area 
enclosed by box with solid line). Images reconstructed 
from conventional TEM and those observed in replicas 
yielded identical results. The distinctive morphological 
characteristics of the export complexes reconstructed in 
the present studies are consistent with previous qualitative 
morphological descriptions (Saraste and Kuismanen, 1984; 
Schweizer et al., 1988, 1990; Saraste and Svensson, 1991) 
and a recent study in which a HRP-tagged reporter protein 
was used to characterize the organization of the ER/Golgi 
region using immunocytochemistry (Stinchcombe et al., 
1995). The replicas were particularly striking in that they 
allowed us to visualize for first time the overall compact 
composition of VTCs and their localization to specific foci 
found on the ER surface. 

The overall topological organization of export com- 
plexes fits well with the proposed function of the ER in the 
sorting and concentration of cargo during budding via 
COPII coats, and the subsequent coupled recycling of pro- 
teins from VTCs via COPI coats (Aridor et al., 1995). The 
close association of these two sorting stations (ER and 
VTCs) may provide for increased efficiency in ER to 
Golgi transport and/or promote more rapid exchange of 
coats within the confines of the complex where a higher lo- 
cal coat concentration may be found. Consistent with this 
proposal, incubation of pancreatic acinar cells in the ab- 
sence of ATP (Merisko et al., 1986) or in the presence of 
brefeldin A (Hendricks et al., 1993; Orci et al., 1993b) 
leads to the accumulation of COPI- and COPII-containing 
aggregates in transitional regions. The basic morphologi- 
cal organization of export complexes may be more or less 
extensive in different cell types depending on the relative 
rates of formation and consumption of vesicles and tu- 
bules comprising central VTCs. The extensively fenes- 
trated network found at the cis face of the Golgi stack, re- 
ferred to as the CGN (Mellman and Simon, 1992), is also 
considered to be a site of membrane recycling. It may be 
an enlarged variation of the more compact VTCs, reflect- 
ing the intensity of vesicular traffic in this region of the cell. 

In general, our studies have provided insight into the 
fundamental morphological organization of the first steps 
in the secretory pathway that promote the movement of 
cargo from the ER to the Golgi complex. There has been 
considerable controversy regarding the morphological or- 
ganization of this stage of secretory pathway, given the 
complexity of the pre-Golgi region and the frequent use of 

reduced temperature to augment the visibility of interme- 
diates (VTCs). Our ability to provide a description of the 
three-dimensional organization of export complexes at 
sites distant from the Golgi apparatus under normal incu- 
bation conditions now illustrates their basic organization 
in living cells and their essential role in ER to Golgi transport. 

We thank Dr. G. Palade, Dr. M.G. Farquhar, and Michael McCaffery for 
their many helpful comments concerning the EM. 

This work was supported by grants from the National Institutes of 
Health (GM 42336; CA 586689) (to W.E. Balch), and postdoctoral fellow- 
ships from The Human Frontier Science Program Organization, Muscular 

Dystrophy Association (to T. Rowe), and the Cystic Fibrosis Foundation 
(to S. Bannykh). This study made extensive use of Core B (Immunoelec- 
tron Microscopy) in CA 586689. 

Received for publication 22 April 1996 and in revised form 11 June 1996. 

References 

Aridor, M., 83. Bannykh, T. Rowe, and W.E. Balch. 1995. Sequential coupling 
between COPII and COPI vesicle coats in endoplasmic reticulum to Golgi 
transport. J. Cell Biol. 131:875-893. 

Baddeley, AJ., H,J.G. Gundersen, and L.M. Cruz-Orive. 1985. Estimation of 
surface area from vertical sections. J. Microse. 142:259-276. 

Baker, D., L. Hicke, M. Rexaeh, M, Schleyer, and R. Schekman. 1988. Recon- 
stitution of SEC gene product-dependent intercompartmental protein trans- 
port. Cell. 54:335-344. 

Balch, W.E., and M.F. Farquhar. 1995. Beyond bulk flow. Trends Cell Biol. 5: 
16-19. 

Balch, W.E., M.M. Elliott, and D.S. Keller. 1986. ATP-coupled transport of ve- 
sicular stomatitis virus G protein between the endoplasmie reticulum and 
the Golgi. J. Biol. Chem. 261:14681-14689. 

Balch, W.E., J.M. MeCaffery, H. Plutner, and M.G. Farquhar. 1994. Vesicular 
stomatitis virus glycoprotein is sorted and concentrated during export from 
the endoplasmic reticulum. Cell. 76:841-852. 

Barlowe, C. 1995. COPII: a membrane coat that forms endoplasmic reticulum- 
derived vesicles. FEBS Lett. 369:93-96, 

Barlowe, C., L. Orci, T. Yeung, M. Hosobuchi, S. Hamamoto. N, Salama, M.F. 
Rexach, M. Ravazzola, M. Amherdt, and R. Schekman. 1994. COPII: a 
membrane coat formed by sec proteins that drive vesicle budding from the 
endoplasmic reticulum. Cell. 77:895-907. 

Beckers, C.J.M., D.S. Keller, and W.E. Balch. 1987. Semi-intact cells perme- 
able to macromolecules: use in reconstitution of protein transport from the 
endoplasmic reticulum to the Golgi complex. Cell. 50:523-534, 

Buccione, R., S. Bannykh, I. Santone, M. Baldassarre, F. Facchiamo, Y. Bozzi, 
G. Di Tullio, A. Mironov, A. Luini, and M.A. De Matteis. 1996. Regulation 
of constitutive exocytic transport by membrane receptors: a biochemical and 
morphological study. J. Biol. Chem. 271:3523-3533. 

Chavrier, P,, R.G. Parton, H,P. Hauri, K. Simons, and M. Zerial. 1990. Local- 
ization of low molecular weight GTP binding proteins to exocytic and en- 
docytic compartments. Cell. 62:317-329. 

Connolly, C.N., C.E. Futter, A. Gibson, C.R. Hopkins, and D.F. Cutler. 1994. 
Transport into and out of the Golgi complex studied by transfecting cells 
with cDNAs encoding horseradish peroxidase. J. Cell Biol. 127:641-652. 

Davidson, H.W.. and W.E. Balch. 1993. Differential inhibition of multiple ve- 
sicular transport steps between the endoplasmic reticulum and trans-Golgi 
network. J. Biol. Chem. 268:4216~226. 

Griffiths, G., G. Warren, P, Quinn, O. Mathieu-Costelo, and H. Hoppeler. 
1984. Density of newly synthesized plasma membrane proteins in intracellu- 
lar membranes. I. Stereological studies. J. Cell Biol. 98:2133-2141. 

Griffiths, G., S.D. Fuller, M. Back, M. Hollinshead, S. Pfeiffer, and K. Simons. 
1989. The dynamic nature of the Golgi complex. J. Cell Biol. 108:277-297. 

Griffiths, G., R.W. Doms, T. Mayhew, and J. Lucoeq. 1995a. The bulk-flow hy- 
pothesis: not quite the end. Trends Cell Biol. 5:15-18. 

Griffiths, G., R. Pepperkok, J. Krijnse-Locker, and T.E. Kreis. 1995b. Immuno- 
cytochemical localization of [3-COP to the ER-Golgi boundary and the 
TGN. J. Cell Sci. 108:2839-2856. 

Hendricks, L.C.. M. McCaffery, G.E. Palade, and M.G. Farquhar. 1993. Disrup- 
tion of endoplasmic reticulum to Golgi transport leads to the accumulation 
of large aggregates containing 13-COP in pancreatic acinar cells. Mol. Biol. 
Cell. 4:413-424. 

Heuser, J. 1980. Three-dimensional visualization of coated vesicle formation in 
fibroblasts. J. Cell Biol. 84:560-583. 

Kreis, T.E. 1986. Microinjected antibodies against the cytoplasmic domain of 
vesicular stomatitis virus glycoprotein block its transport to the cell surface. 
E M B O  (Eur. Mol. BioL Organ.) J. 5:931-941. 

Krijnse-Locker, J., M. Ericsson, PJ.M. Rottier, and G. Griffiths. 1994. Charac- 
terization of the budding compartment of mouse hepatitis virus: evidence 
that transport from the RER to the Golgi complex requires only one vesicu- 
lar transport step. J. Cell Biol. 124:55-70. 

The Journal of Cell Biology, Volume 135, 1996 34 



Kuge, O., C. Dascher, L. Orci, T. Rowe, M. Amherdt, H. Plutner, M. Ravaz- 
zola, G. Tanigawa, J.E. Rothman, and W.E. Balch. 1994. Sarl promotes ves- 
icle budding from the endoplasmic reticulum but not Golgi compartments. J. 
Cell Biol. 125:51-65. 

Lafay, F. 1974. Envelope viruses of vesicular stomatitis virus: effect of tempera- 
ture-sensitive mutations in complementation groups III and V.J. ViroL 14: 
1220-1228. 

Letourneur, F., E.C. Gaynor, S. Hennecke, C. Demolliere, R. Duden, S.D. 
Emr, H. Riezman, and P. Cosson. 1995. Coatomer is essential for retrieval of 
dilysine-tagged proteins to the endoplasmic reticulum. Cell 79:1199-1207. 

Lippincott-Schwartz, J. 1993. Bi-directional membrane traffic between the en- 
doplasmic reticulum and Golgi apparatus. Trends Cell Biol. 3:81-87. 

Lippincott-Schwartz, J., N.B. Cole, A. Marotta, and P.A. Conrad. 1995. Kinesin 
is the motor for microtubule-mediated Golgi-to-ER membrane traffic. J. 
Cell Biol. 128:293-306. 

Lotti, L.V., M.R. Torrisi, M.C. Pascale, and S. Bonatti. 1992. Immunocy- 
tochemical analysis of the transfer of vesicular stomatitis virus G glycopro- 
tein from the intermediate compartment to the Golgi complex. J. Cell Biol. 
118:43-50. 

Lucocq, J.M., E.G. Berger, and G. Warren. 1989. Mitotic Golgi fragments in 
HeLa cells and their role in the reassembly pathway. J. Cell BioL 109:463-474. 

Melancon, P., B.S. Glick, V, Malhotra, P.J. Weidman, T. Serafini, M.L. Glea- 
son, L. Orci, and J.E. Rothman. 1987. Involvement of GTP-binding "G" pro- 
teins in transport through the Golgi stack, Ceil, 51:1053-1062. 

Mellman, I., and K. Simon. I992. The Gotgi complex: in vitro veritas? Celt. 68: 
829-840. 

Merisko, E.M., M. Fletcher, and G.E. Palade. 1986. The reorganization of the 
Golgi complex in anoxic pancreatic acinar ceils. Pancreas. 1:95-109. 

Oprins, A., R. Duden, T.E, Kreis, H.J. Geuze, and J.W. Slot. 1993. 13-COP lo- 
calizes mainly to the cis-Golgi side in exocrine pancreas. J. Cell Biol. 121:4%59, 

Orci, L., M. Ravazzola, P. Meda, C. Holcomb, H.-P. Moore, L. Hicke, and R. 
Schekman. 1991. Mammalian Sec23p homologue is restricted to the endo- 
plasmic reticulum transitional cytoplasm. Proc. Natl. Acad. Sci. USA. 88: 
8611-8615. 

Orci, L., D.J. Palmer, M. Amherdt, and J.E. Rothman. 1993a. Coated vesicle as- 
sembly in the Golgi requires only coatomer and ARF proteins from the cy- 
tosol, Nature (Lond.). 364:732-734. 

Orci, L., A. Perrelet, M. Ravazzola, F. Wieland, R. Schekman, and J. Rothman. 
1993b. BFA bodies: a subcompartment of the endoplasmic reticulum. Proc. 
Natl. Acad. Sci. USA. 90:11089-11093. 

Palade, G.E. 1975. lntracellular aspects of the process of protein transport. Sci- 
ence (Wash. DC). 189:347-354. 

Pelham~ H.R.B. 1988. Evidence that luminal ER proteins are sorted from se- 
creted proteins in a post-ER compartment, E M B O  (Eur Mol, Biol. Organ,) 
J. 7:9 I3-918. 

Pepperkok, R,, J. Scheel, H. Horstmann, H.P. Hauri, G. Griffiths, and T.E. 
Kreis. 1993. 13-COP is essential for biosynthetic membrane transport from 
the endoplasmic reticulum to the Golgi complex in vivo. Ceil. 74:71-82. 

Peter, F., H, Plutner, T. Kreis, and W.E. Balch. 1993. 13-COP is essential for 
transport of protein from the endoplasmic reticulum to the Golgi in vitro. J. 
Cell Biol. 122:1155-t 168. 

Pind, S., C. Nuoffer, J.M. McCaffery, H. Plutner, H.W. Davidson, M.G. Far- 
quhar, and W.E. Balch. 1994a. Rabl and Ca 2+ are required for the fusion of 
carrier vesicles mediating endoplasmic reticulum to Golgi transport. J. Cell 
Biol. 125:239-252. 

Pind, S., J.R. Riordan, and D,B. Williams. 1994b. Participation of the endoplas- 

mic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic 
fibrosis transmembrane conductance regulator. J. Biol. Chem. 269:12784- 
12788. 

Plutner, H., H,W, Davidson, J. Saraste, and W.E, Balch. 1992. Morphological 
analysis of protein transport from the endoplasmic reticulum to Golgi mem- 
branes in digitonin-permeabilized cells: role of the p58 containing compart- 
ment. J. Cell Biol. 119:1097-1116. 

Rizzolo, L.I., J, Finidori, A. Gonzales, M. Arpin, I.E. Ivanov, M. Adesnic, and 
D.D. Sabatini. 1985. Biosynthesis and intracellular sorting of growth hor- 
mone-viral envelope glycoprotein hybrids. J, Cell Biol. 101:1351-1362. 

Saraste, J., and E. Kuismanen. 1984. Pre- and post-Golgi vacuoles operate in 
the transport of Semliki Forest virus membrane glycoproteins to the ceil sur- 
face. Cell. 38:535-549. 

Saraste, J., and K. Svensson. 1991. Distribution of the intermediate elements 
operating in ER to Golgi transport. J. Cell Sci, 100:415-430. 

Schweizer, A., J.A.M. Fransen, T. Bachi, L. Ginsel, and H.-P, Hauri. 1988. 
Identification, by a monoclonal antibody, of a 53-kD protein associated with 
a tubulo-vesicular compartment at the cis-side of the Golgi apparatus. J. Cell 
Biol. 107:1643-1653. 

Schweizer, A., J.A.M. Fransen, K. Matter, T.E. Kreis, L. Ginsel, and H. Hauri. 
1990, Identification of an intermediate compartment involved in protein 
transport from endoplasmic reticulum to Golgi apparatus. Euro. J. Cell BioL 
53:185-196. 

Sesso, A., F.P. de Faria, E.S.M. Iwanumra, and H. Correa. 1994. A three- 
dimensional reconstruction study of the rough ER-Golgi interface in serial 
thin sections of the pancreatic acinar cell of the rat. J. Cell Sci. 107:515-528. 

Shaywitz, D.A., L. Orci, M. Ravazzola, A. Swaroop, and C.A. Kaiser. 1995. Hu- 
man SEC13Rp functions in yeast and is located on transport vesicles bud- 
ding from the endoplasmic reticulum. J. Cell Biol. 128:769-777. 

Sterio, D.C. 1984, Estimating number, mean sizes and variations in size of parti- 
cles in 3-D specimens using disectors. J. Microsc. 134:127-136. 

Stinchcombe, J.C., H. Nomoto. D.F. Cutler, and C.R. Hopkins. 1995. Antero- 
grade and retrograde traffic between the rough endoplasmic reticulum and 
the Golgi complex. J. Cell Biol. 131:1387-1401. 

Tang, B.L., S.H. Low, H.-P. Hauri, and W. Hong. 1995. Segregation of 
ERGIC53 and the mammalian KDEL receptor upon exit from the 15°C 
compartment. Eur. J. Cell Biol. 68:398-410. 

Tooze, J., S, Tooze, and G. Warren. 1984. Replication of coronavirus MHV- 
A59 in sac cells: determination of the first site of budding of progeny virions. 
Ettr. J. Cell Biol. 33:281-293. 

Tooze, S.A., J. Tooze, and G. Warren. 1988. Site of addition of N-acetyl-galac- 
tosamine to the E1 glycoprotein of mouse hepatitis virus-A59. J. Cell Biol. 
106:1475-1487. 

Weibel, E.R. 1979. Stereoiogical Methods. 1. Practical Methods for Biological 
Morphometry. Academic Press, New York. 415 pp. 

Weibel, E.R., and D.M, Gomez. 1962. A principle for counting tissue structures 
on random sections. J. AppL Physiol. 17:343-348. 

Weibel, E.R., and D. Paumgartner. 1978. Integrated stereological and biochem- 
ical studies on hepatocytic membranes. II. Correction of section thickness ef- 
fect on volume and surface density estimates. J. Cell Biol. 77:585-597. 

Weidman, P., R. Roth, and J. Heuser. 1993, Golgi membrane dynamics imaged 
by freeze-etch electron microscopy: views of different membrane coatings 
involved in tubulation versus vesiculation. Cell. 75:123-133. 

Ziegel, R.F., and A.J. Dalton. 1962. Speculations based on the morphology of 
the Golgi system in several types of protein secreting cells. J. Cell Biol. 15: 
45-54. 

Bannykh et al, Organization o f  ER Export Complexes 35 


