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Received: 30 December 2021

Accepted: 12 January 2022

Published: 16 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Multifractal Company Market: An Application to the Stock
Market Indices

Michał Chorowski * and Ryszard Kutner

Faculty of Physics, University of Warsaw, Pasteur Str. 5, PL-02093 Warsaw, Poland; ryszard.kutner@fuw.edu.pl
* Correspondence: ma.chorowski@student.uw.edu.pl

Abstract: Using the multiscale normalized partition function, we exploit the multifractal analysis
based on directly measurable shares of companies in the market. We present evidence that markets of
competing firms are multifractal/multiscale. We verified this by (i) using our model that described
the critical properties of the company market and (ii) analyzing a real company market defined by
the S&P 500 index. As the valuable reference case, we considered a four-group market model that
skillfully reconstructs this index’s empirical data. We point out that a four-group company market
organization is universal because it can perfectly describe the essential features of the spectrum of
dimensions, regardless of the analyzed series of shares. The apparent differences from the empirical
data appear only at the level of subtle effects.
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1. Introduction

In the last two decades, multifractal properties have been the subject of intense re-
search in very different areas of science [1–13]. The fashion for searching for new areas of
multifractality is still ongoing. The shape, location, and spread of the spectrum of dimen-
sions (singularities)—the leading multifractality indicator—provide invaluable information
about the layout. We use the formalism [14] that describes not only systems in the state of
statistical equilibrium but also stationary states. Furthermore, we indicate that formalism
can easily be extended to transient states.

Our approach is complementary to the commonly used multifractal detrended fluc-
tuation analysis (MF-DFA) [1,2]. More precisely, in the presence of state intervention, our
concept of using (normalized) market shares for multifractal analysis of the market of
competing firms is new. It starts with a partition function expressed directly by shares.
Thanks to this, it bypasses the onerous preparation of traditional MF-DFA, based on a
fluctuation function built with the help of time series.

We demonstrate how our method works with the example of a competing company
market model published previously [15]. In this model, we assume that companies can
merge, create spin-offs, and go bankrupt in the presence of state intervention. This tendency
for firms to disappear from the market can counterbalance the tendency to design firms,
leading to critical phenomena. We examined these phenomena in our previous work [15].
In this work, we explore a different aspect of the market model of competing companies,
namely, multifractality.

Moreover, we show that the actual market of S&P 500 companies is multifractal. Finally,
we indicate that this market can be (roughly) described by the multifractal formalism, in
which companies are divided into four groups differing significantly in market shares.

The paper consists of two parts. The first part consists of Section 1 (Introduction)
together with Section 2 (Theory), which on the example of our critical company market
model [15] presents the multifractal approach. The second part presents this multifractal
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approach to the real market of the S&P 500 index. Moreover, this part compares the obtained
results for the actual market with the four-group market model.

2. Theory
2.1. Definition of Partition Function

The multifractal behavior of the market of competing firms is a new concept. We
based this concept on the characteristic for this market, the partition function given by the
formula [14]

Z(β) =
N

∑
n=1

ω
β
n , (1)

where ωn is the (normalized) market share of firm n, while N is the number of firms in
the market; both a priori given quantities we can obtain, at a given time, from simulations,
empirical data, or from theory.

We characterize the market shares of companies using the Quetelet ranking (see
Figure 1), i.e., we build a plot of cumulative distribution function (CDF) versus company
share value taken from simulation within our model.

Figure 1. Quetelet curve: the dependence of the standardized rank of companies generated within
our model, i.e., CDF, on their shares ω. It is precisely to analyze this simulation data that we use
multifractal formalism.

The partition function in the form given by Equation (1) is ready to study the multiscale
nature of the ω distribution. This multiscale nature comes from the hierarchical distribution
of firms’ sizes.

In this section, we limit ourselves to systems in steady states; therefore, we assume
that N = Nst. Recall that in our model Nst is clearly related to the level of intervention
0 ≤ q ≤ 1, its effectiveness 0 ≤ η ≤ 1, and the company’s activity 0 ≤ λ ≤ 1 [15]. Figure 2
shows a typical relationship Nst vs. q with η (=0.5) and λ (=0.9) fixed. The location of the qc
criticality threshold is clearly visible, signaling a continuous phase transition.

The partition function, Z(β), obeys two basic properties,

Z(β = 0) = N, (2)

and

Z(β = 1) = 1. (3)

Of course, Equation (2) describes the size of the multifractal substrate or company market,
while Equation (3) comes from the normalization condition of shares.
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Figure 2. The typical dependence of Λ (=Nst) vs. interventionism level q at fixed η (=0.5) and λ (=0.9).
It is a flat phase diagram where a continuous phase transition is clearly visible at qc (=0.734). All other
plots in this section have the same η and λ parameters as this plot.

Moreover, using the share limitation from below and above, we get

Z(β→ ∓∞) ≈
{ (

ωmin)β, β < 0
(ωmax)β, β > 0

(4)

where ωmin and ωmax determine the marginal values of the companies’ market shares.

2.2. Scaling Relations

We continue to show that the partition function Z(β) takes the form of a power law,

Z(β) = Λ−τ(β) ⇔ τ(β) = − lnZ(β)

ln Λ
, (5)

where τ(β) is the scaling exponent, while the base/scale Λ we define below. Having the
partition function at our disposal, we can build a thermodynamic formalism on this basis.
We talk more about it in Section 2.5, where we calculate a specific heat.

To prove the correctness of the first equality Equation (5), we use two crucial scaling
exponent properties,

τ(β) = (β− 1)D(β) (6)

where D(β) ≥ 0 is the Rényi dimensions and

τ(β) = βh(β)− D(β = 0), (7)

here h(β) is a generalized Hurst exponent and D(β = 0) is the Hausdorff dimension of the
substrate/market, which for our case we can put to 1.

For β → 1 the Rényi information approaches the Shannon information that is, it
becomes the information dimension,

D(β = 1) = − 1
ln N

N

∑
n=1

ωn ln ωn. (8)

For β → 2 the partition function (1) reduces to the well-known correlation integral
C(N) of Grassbereger and Procaccia [16], i.e.,

D(β = 2) = − ln C(N)

ln N
. (9)
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Furthermore, let us also note that always D(β′) ≤ D(β) for β < β′.
Now, we can define basis Λ. We use Equation (5) for this purpose, in which we put

β = 0 followed by Equations (2) and (7). Therefore, we get Λ = N.
The above result, in combination with the scaling Equation (5), allow us to present the

scaling exponent in an explicit asymptotic form,

τ(β→ ∓∞) ≈
{
−β ln ωmin

ln N , β < 0
−β ln ωmax

ln N , β > 0.
(10)

With the above results, we can now present a plot of τ(β) vs. β—this plot and its
enlarged version limited to the central values of β (from the range of [−1.5, 1.5]), are
presented in Figure 3. As one can see, τ(β) is bounded by two diagonal asymptotes defined
by Equation (10).

Figure 3. Scaling exponent τ(β) vs. exponent β (the order of scale). Its nonlinear/multifractal behavior
in the range of β ∈ [−1.0, 2.0] for interventionism level 0 < q < 1 is clearly seen (especially on the
zoomed plot). On the other hand, the plot on the right shows the existence of oblique asymptotes.
Multifractality is present if and only if they are different from each other. For example, we have
selected ten characteristic levels of interventionism here (see the legend). The sharp decrease in the
slope difference of the asymptotes for q ≈ 1 (blue dashed curves) is visible. We use the same set of q
values in all plots in Section 2.

We consider the next two extreme cases. The first, is when all but one of the company
shares disappear (the case of a monopolized market). Then, with Equations (1), (3) and (5),
we get immediately that τ(β) is undefined.

The second case is when all shares are equal (the case of the egalitarian market), i.e.,
ωn = 1

N , n = 1, 2, . . . , N. Then, with Equations (1), (3) and (5), we get

τ(β) = β− 1, (11)

i.e., the scaling exponent is a linear function of β. We continue to deal mainly with cases
distant from both of the above extreme cases.

We assume that company shares, ωn, create the nonuniform/multiscale function ωn
vs. n, a multifractal structure. In other words, we are dealing here with multifractality, the
source of which is the heterogeneous distribution of company shares.
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2.3. Rényi Dimensions and Generalized Hurst Exponent

In Figures 4 and 5, we present the Rényi dimensions, D(β), generalized Hurst expo-
nent, h(β), and their spans ∆D(β) = D(−β)− D(β) and ∆h(β) = h(−β)− h(β), respec-
tively. The former two quantities are limited by identical horizontal asymptotes:

D(β→ ∓∞) = h(β→ ∓∞)

=

{
Dmax = hmax = − ln ωmin

ln N , β < 0,
Dmin = hmin = − ln ωmax

ln N , β > 0,
(12)

while

∆D(β→ ∞) = Dmax − Dmin

= ∆h(β→ ∞) = hmax − hmin

= ln
(

ωmax

ωmin

)
. (13)

Equations (12) and (13) are a direct result of the asymptotic scaling exponent properties
given by Equation (10) and by Equations (6) and (7), respectively.

Figure 4. Dependence of Rényi dimensions D on β. A sharp drop in the ∆D(β) span is clearly visible
on the right plot for large values of |β| and q ≈ 1 (blue dashed curve). This is the result of the behavior
of the τ(β) vs. β curve shown in Figure 3.

Figure 5. The dependence of the generalized Hurst exponent h and its span ∆h on β. A sharp drop in
the ∆h(β) span is clearly visible for large values of |β| and q ≈ 1 (blue dashed curve). It is the result
of the behavior of the τ(β) vs. β curve shown in Figure 3.
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2.4. Spectrum of Dimensions

We now designate the most crucial multifractality signature, i.e., the spectrum of
dimensions (singularities), f , given by the Legendre transformation,

f (α) = β(α)α− τ(β(α)), (14)

where the local dimension (singularity or Hölder exponent) is

α(β) =
dτ(β)

dβ
= − 1

ln N
∑n ω

β
n ln ωn

∑n ω
β
n

. (15)

Therefore, we obtain a helpful equality locating the maximum spectrum of dimensions
f (α(β = 0)),

α(β = 0) = − 1
N ln N ∑

n
ln ωn. (16)

and we get, analogously as in Equation (12),

α(β→ ∓∞) ≈
{

αmax = − ln ωmin

ln N ,
αmin = − ln ωmax

ln N .
(17)

As one can see from Equation (12), the quantities D, h, and α have the same lower and
upper bounds.

Furthermore, from Equations (14) and (15) we get

β =
d f (α)

dα
. (18)

In Figure 6, we present the dependence of local exponent α and its span ∆α on β.

Figure 6. Dependence of the local singularity α on β. A sharp drop in the ∆α(β) span is clearly visible
on the right plot for large values of |β| and q ≈ 1 (blue dashed curve). This is the result of the behavior
of the τ(β) vs. β curve shown in Figure 3.

In Figure 7, we present the dependence of the local singularity span ∆α on q at fixed
β = 5.0.
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Figure 7. Dependence of the local singularity span ∆α on q at fixed β = 5. A slight but distinct peak
locates near qc = 0.735, which defines the criticality threshold used by us at earlier work [15]. We also
included a magnification of this peak.

Figure 8 shows he dependencies of f on α and on β. The α(β) vs. β plot (like D(β) and
h(β) vs. β ones) is limited by two horizontal asymptotes given by Equation (17). This is a
direct result of the asymptotic properties of Equation (10).

Figure 8. Dependence of spectrum of dimensions, f , from α (left plot) and β (right plot). There is a
visible nonlinear dependence of the shape f on the level of interventionism q. Moreover, there is a
wide spread in the spectrum of singularities ∆α. As expected, the same applies to the dependence of
f on β. In addition, there is a slight asymmetry of f , i.e., γ > 0, herein.

We present below useful quantities, which characterize the spectrum of singularities:

(i) f 0 = f (α(β = 0) = α0) = D0 = D(β = 0), which results from Equations (7), (14) and

(18), and moreover we get d f (α)
dα |β=0 = 0;

(ii) for β = 1 we immediately get from Equation (18) d f (α)
dα |β=1 = 1, therefore f 1 =

f (α(β = 1)) = α(β = 1) = α1;
(iii) for β→ −∞ we get from Equations (14) and (15), that f max = f

(
α = αmax = − ln ωmin

ln N

)
= 0 and d f (α)

dα |β→−∞ = −∞; similarly for β→ ∞ we get f min = f
(

α = αmin = − ln ωmax

ln N

)
= 0 and d f (α)

dα |β→∞ = ∞;
(iv) the maximum span of f we determine as follows, ∆α||β|→∞ = αmax − αmin = 1

ln N

ln
(

ωmax

ωmin

)
. We continue to use the simplified designation ∆α = ∆α||β|→∞;
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(v) the following asymmetry factor can be used to determine the degree of asymmetry f ,

γ||β|→∞ = α(β=0)−αmin

αmax−α(β=0) , where α(β = 0) is given by Equation (16). We continue to use
the simplified designation γ = γ||β|→∞.

It should be emphasized that in general f (α = αmin, αmax) 6= 0. This happens when at
least one of the boundary values ωmin, ωmax is degenerated. This is discussed in Section 3.2
for a four-group company market model.

The large span ∆α visible in Figure 8 indicates a great volatility of competing firms on
the market. At the same time, we deal with a wide variety of companies only when it also
occurs that N � 1. However, the shift of the spectrum of dimensions to higher values of α
signals the dominance of smaller companies on the market. Let us note that we would deal
with a weak multifractality if and only if the span ∆α� 1.

One can also analyze asymmetry of f using the coefficient γ. If γ > 1, then we are
talking about the advantage on the market of large companies, as opposed to the situation
of γ < 1. The marginal case γ = 1 corresponds to the balanced situation.

2.5. Specific Heat

We can now define the specific heat c of the system/market on the reciprocal of the
temperature β, as follows [4,14,17]:

c(β) = −β2
(

∂2(βF/V)

∂β2

)
V

=
1

ln N
β2
(

∂2 lnZ
∂β2

)
N

,

(19)

where 1
V βF = − 1

ln N lnZ , while F is the free energy of a company market, and V = ln N here.
The dependence of c(β) on β is presented in Figure 9. Apparently, this dependence

is anomalous (both for positive and negative values of β) because it has a local peak,
analogous to the Schottky peak for the specific heat of the solid [18,19] related to its internal
degrees of freedom. Let us add that the disappearance of c(β = 0) in β = 0 results directly
from the second formula (19). Such clear peaks are the result of highly differentiated values
of the shares, ωi, that define partition function Z . They play the role of internal degrees
of freedom here. We proof that Z composed of only two different shares ωmax and ωmin

already leads to the anomalous peaks of specific heat.

Figure 9. Dependence of specific heat, c, for a constant volume (V = ln Nst) on β. The anomalous
behavior of c is apparent due to the presence of Schottky peaks for both the positive and negative
values of β.
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3. Discussion and Concluding Remarks
3.1. Multifractality of Real Company Market

As an example of the method’s application, we exploit the ‘S&P 500 Companies
by Weight’ page (from the day 12 November 2021). (The data was taken from the page
https://www.slickcharts.com/sp500. Accessing to this page is common and unlimited all
the time). The available empirical data covers approximately 70–80% of the total US stock
market capitalization. These empirical data directly provide the market daily share values
of individual companies, i.e., the data we need.

Let us characterize the market shares of companies using the Quetelet ranking (see
Figure 10), i.e., we build a cumulative distribution function (CDF) versus company share
value plot. The market structure is visible:

• the market segmentation into the overwhelming majority of companies with a small
market share (around 0.01 or less)

• five companies with a market share between 0.02 and 0.03
• three companies with the highest market share between 0.04 and 0.065.

Figure 10. Quetelet curve: the empirical dependence of the standardized rank of companies, belonging
to the S&P 500 index, i.e., CDF, on their shares ω. It is precisely to analyze this data that we use
multifractal formalism.

In such a situation, the question of the actual dominance of companies on the market
is justified: will small companies dominate large ones, or is the opposite case. For this
purpose, we use the multifractal analysis described in Section 2.

It is worth realizing that if the CDF was built on a power, exponential, or Gaussian
distribution, we would not be dealing with multifractality. In the first case, the scaling
exponent τ(β) would be a linear function of β, in the second case it would be logarithmic,
and in the third case, it would be a linear combination of logarithmic and linear functions.

We continue to investigate the empirical relationship shown in Figure 10 with the
multifractality approach shown in Section 2. When using Equations (1) and (5), we find the
relationship τ(β) vs. β, but we do not go into whether the market is in a steady-state or not,
i.e., the number of firms in the index N = N(t) 6= Nst may fluctuate around 500 and shares
may depend on time. We can use it here because the above considered method applies to
both stationary and non-stationary states.

The above-mentioned relationship, τ(β) vs. β, is shown in Figure 11. The presented
dependence is a nonlinear function of β, which allows us to carry out the next steps of
the method.

https://www.slickcharts.com/sp500
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Figure 11. Dependence of τ(β) vs. β for the company market from the S&P 500 index. The left plot is
a magnification of the β range belonging to the [−1.5, 2.0] interval. The right plot shows the one in
the full β range, i.e., belonging to the [−10, 10] interval. In the assumed plot’s resolution of the whole
(right) graph, it is impossible to distinguish the results of the four-group company market model (red
curve) from the empirical (black) curve.

In Figure 12, we presented the dependence of the generalized Hurst exponent on the
β exponent. Its span is sufficient for the one of the spectra of singularities presented in
Figure 13 (cf. the black curve) to define a solid multifractality.

Figure 12. Dependence of the generalized Hurst exponent h(β) on the β exponent. Its span is sufficient
for one of the spectra of dimensions presented in Figure 13 (both curves have there a common span)
to define a solid multifractality. There are slight/subtle local differences between the two curves in
both figures (black: the empirical one; red: the four-group company market).

In Figure 14, we show the specific heat c(β) vs. β. As in Section 2.5, we see peaks
analogous to the Schottky peak—for both positive and negative values of β. There are
differences in the predictions of the approach described below in Section 3.2 (in red) from
the empirical curve (in black). These are hyper-fine deviations, as they appear at the level
of the second order derivative of the scaling exponent τ.

We remind that subtle deviations (of the first order, i.e., at the level of the first deriva-
tive) are observed for the Hurst exponent as well as spectral dimension f (Figures 12 and 13,
respectively). Deviations regarding the τ curve itself are imperceptible (on the scale of the
right plot in Figure 11).
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Figure 13. Dependence of the spectrum of dimensions f (α) vs. α for the company market from the
S&P 500 index (black curve). The f asymmetry favoring large firms is visible. For comparison, we
have included the spectra of dimensions for the four-group company market represented by the
red curve.

Figure 14. Anomalous dependence of specific heat c(β) vs. β for the company market, for example,
from S&P 500 index. As can be seen, the model of four-group company market shows apparent
differences from the empirical data only at the level of the second τ derivative, i.e., at the level of
hyper-fine effects.

3.2. Real Market vs. Four-Group Company Market

Now, we answer the question: how should the market of companies be grouped/
organized in order not to violate its diversity, i.e., to recreate its empirical spectrum of
dimensions presented in Figure 13 (black curve). It is about its location and the basic shape
defined by (αmin, f min), (α1, f 1), (α0, D0), and (αmax, f max) (see Figure 15 for details).

We use for this purpose the following expression for the scaling exponent (based on
the multifractal formalism presented in Section 2),

τ(β) = − lnZ4(β)

ln N
= − 1

ln N

× ln
(

M
(

ωmin
)β

+ K1ω
β
1 + K2ω

β
2 + L(ωmax)β

)
, (20)

where Z4(β) means the partition function obtained from Equation (1) for the four-group
company market. This section shows that such a division is enough to recreate the localiza-
tion and shape of the spectrum of dimensions and other multifractality characteristics such
as the scaling exponent, Hurst exponent, local exponent, and specific heat. We can show that
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two- and three-group company markets are not suitable for describing the multifractality
of real company markets. For example, they cannot reproduce a location or a span of the
spectrum of dimensions correctly.

Our specific goal is to clearly determine eight unknowns: the size of each of the four
groups of companies M, K1, K2, L and their shares ωmin, ω1, ω2, ωmax. At least for the four-
group company market, we can unambiguously determine the eight wanted unknowns.

Figure 15 shows an example schematic image of spectrum of dimensions—reading
the coordinates of some of these points from this spectrum of dimensions allows us to
determine the variables we are looking for. We show how to practically do this below.

Figure 15. An example plot of the spectrum of dimensions f vs. α for the company market con-
sisting of the four groups. Characteristic coordinates that we read from the graph, define the con-
ditions (considered in the main text), which help us to determine the unknowns M, K1, K2, L and
ωmin, ω1, ω2, ωmax.

The normalization condition takes the form

Z4(β = 1) = Mωmin + K1ω1 + K2ω2 + Lωmax = 1, (21)

while the size of the market is fixed,

Z4(β = 0) = M + K1 + K2 + L = N. (22)

The point is that N is fixed either as a stationary value or an instantaneous value of the
number of firms in the market. Therefore, we take it from empirical data.

We emphasize that Equations (21) and (22) are the first two equations from the system
of equations that allow us to find the above-mentioned unknowns we are looking for.
Because the shares of ωmin and ωmax are read directly from the empirical data, in order to
find the remaining unknowns, we need four more equations, which we consider below.

From Equation (20), and Definitions (5) and (15), we get

α(β) =
dτ(β)

dβ
= − 1

ln N
1

Z4(β)

× [M
(

ωmin
)β

ln ωmin + K1ω
β
1 ln ω1

+ K2ω
β
2 ln ω2 + L(ωmax)β ln ωmax] (23)
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From the definition of the spectrum of dimensions (14), we obtain its boundary values
for our case,

f min = f (αmin = α(β→ ∞)) =
ln L
ln N

,

f max = f (αmax = α(β→ −∞)) =
ln M
ln N

, (24)

which can also be read (to good approximation) from the empirical f shown in Figure 13
(black curve). Thus, the number of unknowns is reduced to two, namely, to ω1 and ω2. It
should be emphasized that only in the special case, when M or L are equal to 1, i.e., when
the marginal values of companies’ market shares are non-degenerate, do the boundary
values of the spectrum of dimensions (24) disappear. It happens precisely in the case of the
empirical data we use here.

Another needed quantity, which we read from the empirical f shown in Figure 13
(black curve), is the location of the center of the peak f given by the formula,

α(β = 0) = − 1
N ln N

×
(

M ln ωmin + K1 ln ω1 + K2 ln ω2 + L ln ωmax
)

. (25)

The same applies to the point of contact f (α(β = 1)) = α(β = 1). Therefore,

α(β = 1) = − 1
ln N

× [Mωmin ln ωmin + K1ω1 ln ω1

+ K2ω2 ln ω2 + Lωmax ln ωmax]. (26)

Both of the above equations have been obtained from Equation (20) and definition (15).
Now we calculate unknowns K1 and K2 from Equations (21) and (22) as the function

of ω1 and ω2. We substitute the obtained quantities into Equations (25) and (26). Thus,
we reduce our problem to two transcendental equations. For our case, M = L = 1, these
equations can be converted to the form

α(β = 0)N ln N + ln
(

ωminωmax
)

= (N − 2)
ω1 ln ω2 −ω2 ln ω1

ω2 −ω1
+ Ω

ln
(

ω1
ω2

)
ω2 −ω1

, (27)

and

α(β = 1) ln N + ωmin ln ωmin + ωmax ln ωmax

= (N − 2)
ω1ω2

ω2 −ω1
ln
(

ω2

ω1

)
+ Ω

ω1 ln ω1 −ω2 ln ω2

ω2 −ω1
, (28)

(where Ω = 1−ωmin −ωmax), which are more convenient for a numerical solution. Thus
we have reduced our problem to the above two transcendental equations.

Table 1 presents the empirical data needed here regarding the first and last components
of the S&P 500 index of 12 November 2021, consisting (on this day) of N = 505 companies.

Based on these empirical data, we solve numerically Equations (27) and (28) and
obtain ω1 = 0.00065 and ω2 = 0.0101. Therefore, we have K1 = 439 and K2 = 64. Thus, in
our case, we obtain non-degenerate share margins and strongly degenerate (though very
different) intrinsic share values. The resulting spectrum of dimensions we presented in
Figure 13 by means of a red curve. Likewise, we have presented the remaining results in
Figures 11, 12 and 14 by means of red curves.



Entropy 2022, 24, 130 14 of 16

Table 1. Empirical data on the first and last components of the S&P 500 index as of 12 November 2021.

No. Company ωmin ωmax M L

1 AAPL (Apple Inc., Cupertino, CA, USA) − 0.06866056 − 1

505 NWS (New Corporation Class B, New York, NY, USA) 0.00006948 − 1 −

We emphasize that the obtained result is universal in the sense that, starting from the
four-group market of companies, we obtain enough equations to describe the location and
shape of the multifractality characteristics.

3.3. Conclusions

It is worth realizing how distributions induce common multifractal structures. There-
fore, it is not so much about searching for such structures, but about the possibility of
comparing them with each other, i.e., answering the question of which structures are more
multifractal and which are less. For this, they must first be classified according to their
symmetry and degeneration. The larger the logarithm of these steps, the higher these
elevations are.

The degree of asymmetry in the multifractal structure is determined by the γ asymme-
try coefficient. If γ = 1, we have a symmetric multifractal structure. If γ > 1, we have left
asymmetry, while for γ < 1, we have right asymmetry.

The degree of degeneration of the marginal shares determines the elevation of the
edges of the spectral dimensions: the left one depends on the degree of degeneration
of the maximum share, and the right one depends on the degree of degeneration of the
minimum share.

In this way, we have divided multifractal structures into nine groups, where both
asymmetries and degenerations match themselves like the symmetry of the left and right
hands (see Figure 16 for illustration, there, for example, the first plot in the first column
and the last plot in the third column). Only within each group can we introduce a measure
that allows us to organize the multifractal structure. The above classification is possible
due to the fact that asymmetry and degeneration are independent of each other.

Figure 16. Schematic classification of spectrum of dimensions due to asymmetry γ and degeneration
(M, L).
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Suppose two multifractal structures have the same span of the spectrum of dimensions
and location. One is more multifractal than the other if its degeneration levels are less than
the corresponding other.

Another special case is when both multifractal structures’ degeneracy levels are equal,
while the structures differ in span. Then the more multifractal structure is for, the larger
span structure plus f 1.

We introduce a precise definition of the linear multifractal capacity,M, utilizing a
definition based on Figure 15 and Equation (24),

M = ∆α + f 1 + M−1 + L−1. (29)

Notably, there is no differentiation of multifractality due to location α0. The proposed
phenomenological measure of multifractal capacity,M, is a partial in the sense that it does
not take into account the entire fine structure of the spectrum of dimension f .

In conclusion, in this paper, we examine the multifractality/multiscaling coming from
shares and not from correlations. In this sense, this work is complementary to our previous
one [15]. As a reference case, we have discussed the instructive example of the four-group
company market. We have shown that (within the zero-order approximation) each market
can be reduced to a four-group company market, which should facilitate market analysis.

Finally, we can say that this is the first time such a multifractal analysis of the market
of competing companies has been performed.

Notably, we can apply the approach to any series of shares, e.g., shares of turnover vol-
umes on the stock exchange and shares of companies’ quotations on the stock exchange. In
short, the approach can be applied to any normalized series of positively defined elements.
Moreover, our approach makes it possible to examine the evolution of multifractality of
company market especially in the vicinity of crash regions. That is why it is so important to
study in the near future the relationship between multifractality and criticality suggested
by Figure 7.
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