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Abstract: The detection and quantification of glucose concentrations in human blood or in the ocular
fluid gain importance due to the increasing number of diabetes patients. A reliable determination
of these low concentrations is hindered by the complex aqueous environments in which various
biomolecules are present. In this study, we push the detection limit as well as the discriminative
power of plasmonic nanoantenna-based sensors towards the physiological limit. We utilize plasmonic
surface-enhanced infrared absorption spectroscopy (SEIRA) to study aqueous solutions of mixtures
of up to five different physiologically relevant saccharides, namely the monosaccharides glucose,
fructose, and galactose, as well as the disaccharides maltose and lactose. Resonantly tuned plasmonic
nanoantennas in a reflection flow cell geometry allow us to enhance the specific vibrational finger-
prints of the mono- and disaccharides. The obtained spectra are analyzed via principal component
analysis (PCA) using a machine learning algorithm. The high performance of the sensor together with
the strength of PCA allows us to detect concentrations of aqueous mono- and disaccharides solutions
down to the physiological levels of 1 g/L. Furthermore, we demonstrate the reliable discrimination
of the saccharide concentrations, as well as compositions in mixed solutions, which contain all five
mono- and disaccharides simultaneously. These results underline the excellent discriminative power
of plasmonic SEIRA spectroscopy in combination with the PCA. This unique combination and the
insights gained will improve the detection of biomolecules in different complex environments.

Keywords: glucose; fructose; galactose; lactose; maltose; glucose sensor; biosensing; surface-enhanced
infrared absorption; principal component analysis; optical and noninvasive sensing; machine learning

1. Introduction

Carbohydrates are essential constituents in the human diet [1], especially the sugar
molecule glucose [2]. Reliable quantification of the glucose concentration in the human
body is crucial for diabetes mellitus [3]. To treat the disease, continuous glucose monitoring
is needed [4]. This concentration is also correlated with the interstitial fluid, human blood,
or ocular fluid [5].

The detection of glucose in these complex environments is possible with infrared
spectroscopy [6], which enables label-free identification and differentiation of biomolecules
such as carbohydrates. Intramolecular vibrations have characteristic resonance frequencies,
which lead to a distinct molecular fingerprint [7]. The problem is the small molecular
absorption cross-section of mid-infrared vibrations [8]. Consequently, the glucose quantifi-
cation in these complex environments is particularly challenging for low concentrations,
severely limiting the applicability of standard mid-infrared spectroscopy.

One approach to overcome the limitations of infrared spectroscopy is the use of
surface-enhanced infrared absorption (SEIRA) [9–14]. Plasmonic sensors are known for
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their high sensitivity due to the nanoscale localization of light, making them highly effi-
cient nanoscale probes. Combining this feature with infrared spectroscopy combines the
sensitivity of plasmonic sensing with the specificity of infrared spectroscopy. In SEIRA,
the resonant coupling of a plasmonic and a molecular system leads to a strong vibrational
signal enhancement [15,16]. Infrared light directly excites a localized surface plasmon
resonance [17,18] of a metal nanostructure and thus strongly enhanced electromagnetic
near-fields are generated [19,20]. When the molecules are located in these near-fields
and the plasmonic resonance is resonantly matched with the molecular vibrations, the
enhanced molecular vibration is seen as a modulation on top of the plasmon resonance at
the characteristic resonance frequency of the molecule [21]. Plasmonic sensors are widely
used in optical sensing applications such as gas sensing [22,23], biomedical sensing [24,25],
and refractive index sensing [26,27] due to their high performance. As a result, optical
sensors such as glucose sensors [28–30] can be scaled down to tens of nanometer sizes,
which opens new perspectives for SEIRA applications. The use of plasmonic sensors on
contact lenses as a sensing platform could provide real-time continuous and noninvasive
glucose monitoring [31].

SEIRA is thus an ideal platform for the discrimination of different analytes in complex
environments. The plasmonic structures offer the highest sensitivity, while the vibrational
information imprinted on the far-field response allows for specificity. Combining these
measurements with principal component analysis allows for an assumption-free evaluation
of the data.

In this article, the detection limit, as well as the discriminative power of plasmonic
nanoantenna-based sensors, is pushed towards the ultimate limit, both in terms of absolute
concentrations as well as complex sensing environments. Resonant plasmonic SEIRA, in
combination with machine learning, namely principal component analysis (PCA) [32], is
used to predict the concentration and composition of various aqueous sugar solutions. Here,
the five essential carbohydrates glucose, fructose, galactose, lactose, and maltose are probed.
Our plasmonic sensor combines refractive index sensing as well as vibrational information,
which is a promising tool for optical and noninvasive sensing. The excellent performance
of our ansatz allows a deeper understanding of the different complex environments for
future work.

2. Experimental Scheme
2.1. Vibrational Spectroscopy

Our experimental setup uses the three monosaccharides glucose, fructose, and galac-
tose with the molecular formula C6H12O6, as well as the two disaccharides lactose and
maltose with the molecular formula C12H22O11. Disaccharides consist of two monosaccha-
rides linked by a glycosidic bond. The lactose molecule consists of a glucose and a galactose
molecule, which are interlinked via a chemical bond. In contrast, a chemical bond between
two glucose molecules leads to the maltose molecule. The structures of the five sugars are
visualized in Figure 1a. With the aid of infrared spectroscopy, the five sugar molecules
can be differentiated despite the extremely high similarity, especially between the glucose
and the maltose molecule. To illustrate the distinct molecular fingerprint of the five sugar
molecules in the mid-infrared region, a uniform sugar layer is applied to a bare silicon
substrate by spin coating of an aqueous solution with a concentration of 100 g/L. For the
five different sugar layers, Fourier Transform Infrared (FTIR) spectra are taken in trans-
mittance, referenced to a bare silicon substrate, and depicted in Figure 1b. For each sugar
molecule, an infrared spectrum is obtained. The five sugar molecules have strong vibra-
tional bands in the wavenumber range between 1200 cm−1 and 800 cm−1. These vibrations
can be assigned to the stretching modes of C-C and C-O groups of the carbohydrates [1].
The strength of the vibrational modes differs for the various sugars. Possible reasons are
different film thicknesses of the sugar layer or the different magnitude of the change of the
electric dipole moment during the vibration. Furthermore, the vibrational modes of the
glucose and the maltose molecule are nearly at the same wavenumber, which could hamper
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the differentiation between these two molecules. However, the five sugar molecules exhibit
many modes at different wavenumbers in the fingerprint region, and thus, identification of
these remarkably similar molecules is possible via infrared spectroscopy. We would like to
stress that these measurements serve as an illustration of our concept. The dried sugar films
cannot be compared directly and straightforwardly in terms of sensitivity and enhancement
factors to the SEIRA-based measurements in the following. The “volume concentration”
in aqueous solution and in the dried film will be vastly different; additionally, dried films
show generally slight spectral differences in the vibrational modes.
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Figure 1. (a) Artistic sketch of the structures of the three monosaccharides glucose, fructose, and
galactose, as well as the two disaccharides lactose and maltose. The lactose molecule is composed of a
glucose and a galactose sub-unit, while maltose consists of two glucose sub-units. The disaccharides
are thus expected to have similar vibrational spectra when compared to the individual sub-units,
rendering their discrimination challenging. (b) Relative transmittance spectra of five sugar layers.
The layers are spin coated from an aqueous sugar solution with a concentration of 100 g/L on a silicon
substrate. The spectra are referenced to a bare silicon substrate to show the individual vibrational
modes of glucose, fructose, galactose, lactose, and maltose, where the lines emphasize the most
prominent vibrational modes.
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Due to the low molecular absorption cross-section of mid-infrared vibrations, SEIRA
is utilized to investigate aqueous sugar solutions down to physiological levels. A gold
nanoantenna array is used as a plasmonic sensor, which is resonantly matched with the
molecular vibrations in the spectral region of interest ωvib ≈ ωres. Here, the vibrational
band of glucose at the wavenumber 1032 cm−1 is used as a marker band for the detection
and quantification of glucose in aqueous solutions. The plasmon resonance is slightly
blue-detuned to gain a higher vibrational signal enhancement [33,34]. The nanoantennas
are fabricated on top of a CaF2 substrate via electron beam lithography.

2.2. Vibrational Spectroscopy—Experimental Setup

Our experimental setup is illustrated in Figure 2a. A reflection flow-cell in inverse
geometry enables in-situ probing of various aqueous solutions and avoids the high absorp-
tion of water. PDMS (polydimethylsiloxane) masks provide the sealing of the flow cell.
To perform spectral measurements, a commercial FTIR spectrometer (Bruker VERTEX 80,
Bruker, Karlsruhe, Germany) coupled to an optical microscope (Bruker Hyperion 2000,
Schwarzschild objective with 15-fold magnification, NA = 0.4) is used. Infrared light, which
is polarized along the long antenna axis, excites the localized surface plasmon resonance
(LSPR) of the gold nanoantenna array. Thus, enhanced and confined electromagnetic near-
fields are induced. Afterward, the reflected light is measured with a liquid-nitrogen-cooled
mercury cadmium telluride (MCT) detector. To tune the LSPR in the spectral region of
interest, the nanoantenna has 3400 nm length, 100 nm width, and 100 nm thickness with
a 2 nm chromium adhesion layer. The periodicity is adjusted to 4400 nm along the long
antenna axis and to 3000 nm along the short antenna axis [35–37]. The corresponding
SEM image of the nanoantenna array (200 µm × 200 µm) is depicted in Figure 2b. As a
result, the resonant coupling between the plasmonic system and the molecule leads to an
enhanced molecular vibration on top of the plasmon resonance, where the molecules have
to be located inside the near-fields. A sketch of the SEIRA spectra with an aqueous glucose
solution as a surrounding medium is shown in Figure 2c, and thus, the modulation appears
near the characteristic resonance frequency of the glucose molecule. Moreover, the SEIRA
spectra are referenced to a gold mirror.
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Figure 2. (a) Reflection flow-cell for FTIR spectroscopy in aqueous environments. Tubing allows to
flush the desired aqueous solution through the flow cell. The nanoantennas are fabricated on top
of an infrared transparent CaF2 substrate and are immersed in the aqueous environment. Incident
infrared light excites the plasmonic resonances of the nanoantennas, which are resonantly matched
with the vibrational modes of the five sugar molecules. The SEIRA spectra are obtained by the
detection of the reflected light. (b) SEM image of the gold nanoantenna array (200 µm × 200 µm).
The nanoantenna length is 3400 nm with a period of 4400 nm in x- and 3000 nm in y-direction. The
x-direction (y-direction) is along the long (short) antenna axis. The width and thickness are adjusted
to 100 nm. Additionally, a 2 nm chromium adhesion layer is on top of the CaF2 substrate. (c) Sketch
of the enhanced molecular vibration of the glucose molecule on top of the plasmon resonance in
relative reflectance.
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As mentioned above, the measured SEIRA spectra are evaluated with PCA. The SEIRA
spectra hold information about the concentration and composition of our probed aqueous
solutions. A higher concentration of an aqueous solution leads to a higher refractive index
of the surrounding medium [38]. Consequently, the plasmon resonance is red-shifted [39].
The resonance shift of the plasmon resonance enables the estimation of the concentration of
the probed solution. Furthermore, the modulation on top of the plasmon resonance appears
at the characteristic resonance frequency of the probed molecule. The composition of the
aqueous sugar solution can be determined due to the vibrational information contained in
the SEIRA spectra. Additionally, the modulation depth also depends on the concentration.
A higher concentration of the aqueous solution results in a larger modulation depth because
more molecules contribute to the SEIRA signal. Consequently, the desired goal is to extract
these two most important pieces of information from our measured data set. One promising
method to achieve this goal is the PCA, which was already successful in the identification
and differentiation of pure and mixed aqueous glucose and fructose solutions [40] as
well as the detection and discrimination of conformational changes of polypeptides [41].
The PCA subtracts the average A of all collected spectra with the total number N from
each measured spectrum i ∈ [1, N]. Afterward, the PCA simplifies the description of the
data set by decomposing the data. Each measured spectrum i can be described with the
following equation:

Spectrumi = A +
N

∑
j=1

(
SCi,j·PCj

)
The raw data set is now represented as a linear combination of an uncorrelated,

orthogonal, and limited set of eigenfunctions and eigenvalues. The principal components
(PCs) are the eigenfunctions and are the same for all measured spectra. The eigenvalues are
termed scores (SCs), which are specific for each measured spectrum i. The integer j indicates
the order of the PC and SCs. Furthermore, the first PC has the largest possible variance, the
second PC has the second largest possible variance, and so on. The second PC is calculated
under the condition to be orthogonal to the first PC. This is also the case for the other
PCs. The PCs and the corresponding SCs have no a priori physical interpretation but are
expected to express the concentration and the composition of aqueous sugar solutions. The
physical interpretation of each PC, therefore, needs to be assisted by the spectral features
which are observed. The stronger the correlation within the data set, the fewer PCs are
required to express the full data set.

3. Experimental Section
3.1. Glucose—Low Concentrations

Our experimental setup and the utilized evaluation method were introduced. The
aim is to detect the glucose concentration of diabetic patients in the ocular fluid, which is
ultra-low (as low as 16.6 mg/L) [31,42]. As a first step towards this goal, the sensitivity
of our sensor is investigated by detecting pure aqueous glucose solutions down to 1 g/L.
The following measurement cycle is performed, which is depicted in Figure 3a. Initially,
the reflection cell is filled with water. Subsequently, pure aqueous glucose solutions are
probed with a concentration of 1 g/L, 5 g/L, and 20 g/L. Afterward, more aqueous
glucose solutions with concentrations of 5 g/L, 1 g/L, and pure water in order to prove
the reproducibility of the measurement are investigated. The reflection flow cell is rinsed
with deionized water to remove any residues before it is filled with a new aqueous solution.
Here, 85 spectra are taken for each step, and thus, the data set has 595 spectra in total.
The PCA is applied to analyze our raw data set. As a reminder, the PCs are the same for
all spectra, whereas the SCs are specific for each spectrum. Consequently, 595 SCs are
obtained for each order and 85 SCs for each step. First, one has to find the PC which holds
the vibrational information of our measured spectra. The PCs of the second and fourth
order are plotted against the wavenumber and are depicted in Figure 3b. By inspecting the
second PC, maxima are present at the characteristic resonance frequencies of the glucose
molecule at 1034 cm−1 and 1078 cm−1. The position of the vibrational modes varies from
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the previously measured FTIR spectrum in Figure 1a due to the coupling of the plasmon
resonance with the molecular vibration. The second PC holds the vibrational information
of our measured SEIRA spectra and hence the SCs of the second order too. In contrast, the
PC of the fourth order is assumed to be noise because no physical interpretation can be
found. Please note that PCA is typically used in a machine learning algorithm to reduce
the dimension of a multi-dimensional problem. Yet, this typically does not imply that the
PCs contain any “useful” information. It turns out for our multi-dimensional data set of
glucose SEIRA spectra that the reduction of the dimensions and the data separation works
best when utilizing the second and fourth order scores. Hereby, only the second PC seems
to contain physically useful spectral information, whereas we cannot interpret all the other
PCs. A 2D plot is generated by plotting the SCs of the fourth order against the second
order, which is depicted in Figure 3c. Clusters can be observed for each measured aqueous
solution. For all clusters, the mean value of the fourth order SCs is around zero and affirms
the assumption that the fourth order PC is just noise. The cluster of water has the highest
positive mean value of the second order SCs. By tuning the glucose concentration upwards
to 20 g/L (purple), a lower mean value of the second order SCs is observed for higher
concentrations. Conversely, when the glucose concentration is lowered, again, a larger
mean value of the second order SCs is observed for lower concentrations. Moreover, the
cluster of the same solutions, which are the aqueous glucose solutions with a concentration
of 5 g/L (green and dark green) and 1 g/L (orange and yellow) as well as water (blue and
dark blue), have approximately the same second order SC mean value and additionally
are overlapping with each other. Hence, the reproducibility of this measurement is proven.
In particular, this result implies that no sugar is sticking to the sensor. The overlap of the
cluster is observed for the choice of the fourth order SCs as y-values in the 2D plot, but not
for the first and third order SCs. One possible reason is the very low impact of the fourth
order when compared to the first and third order. Therefore, one could just consider the
mean value of the second order SCs to estimate the concentration of the different probed
aqueous solutions. A one-dimensional plot works only for pure aqueous sugar solutions
but not for mixed ones with two or more sugar types. This will be shown in the following.
The higher the concentration of the solution, the lower the mean value of the second order
SCs. Furthermore, a linear behavior is found between the mean value of the second order
SCs and the concentration of the solution (see Figure 3d). The weight of the second order
SCs results from the vibrational information contained in the SEIRA spectra, which was
already discussed before. The linear relationship suggests that the modulation depth on
the plasmon resonance scales linearly with the concentration of the solution. Here, the
information about the red-shift of the plasmon resonance due to the increasing refractive
index of the surrounding medium is not included in a certain order. One possibility is
that the information about the resonance shift of the plasmon resonance as well as the
vibrational information is included in the second order. Due to resonant SEIRA and the
PCA, aqueous glucose solutions down to physiological levels can be detected. However,
the limit of our sensor is already reached because the clusters of water and the aqueous
glucose solution with a concentration of 1 g/L are strongly overlapping. The differentiation
between the two solutions can only be conducted by the second order SC mean value of
them. As a result, the sensitivity of the sensor is possibly not high enough to estimate the
glucose concentration of diabetic patients in the ocular fluid. The detection of glucose is
more difficult for concentrations down to physiological levels. One reason is the smaller
modulation depth on top of the plasmon resonance at the characteristic resonance frequency
of the probed glucose molecules because fewer glucose molecules contribute to the signal.
Another reason is the small resonance shift of the plasmon resonance because of the very
small concentration. Accordingly, a sensitivity down to 1 g/L is achieved by the use of
a plasmonic sensor as a glucose sensor. Utilizing quantum cascade lasers sensitivities
down to impressive 0.032 g/L have been demonstrated [43], which is beyond the current
capabilities of our sensor. Compared to this ansatz or method allows for better localization
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of the sensing volume and does not require several independent laser sources. Moreover,
depending on the application, one has to assess which sensitivities are required.
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Figure 3. (a) Measurement cycle of very low concentration aqueous glucose solutions and water.
The red bars indicate the glucose concentration of the solution; 85 spectra are taken for the aqueous
glucose solutions as well as for water in the first and eleventh step. (b) The principal components
of the 2nd (brown) and 4th (sandy brown) order are plotted against the wavenumber. The red lines
indicate the vibrational modes of glucose at 1034 cm−1 and 1078 cm−1. As can be seen from the
spectral behavior, the 2nd PC contains vibrational information. (c) The 4th order scores are plotted
against the 2nd order scores. The measurement cycle is depicted on the right and runs from top to
bottom. All measurement steps are color-coded. The mean value of the 2nd order scores enables
the concentration estimation of the aqueous glucose solution down to a concentration of c = 1 g/L.
(d) Mean 2nd order scores as a function of glucose concentration, extracted from (c) demonstrating
the linearity of the measurement. The color code matches the color code in (c). A linear fit is plotted
in red. The error bar represents the standard deviation.

3.2. Mixed Solutions: Glucose and Fructose

So far, pure aqueous sugar solutions were investigated, but the aim is to develop
a sensor that can detect the glucose concentration in the ocular fluid. In this biological
aqueous environment, a multitude of different molecules are present, which complicates
the glucose quantification. Hence, mixed aqueous sugar solutions are probed to predict
the glucose concentration in more complex environments. From the previous results, a
linear behavior of the clusters is observed when the total concentration of the pure aqueous
solution is increased. Consequently, the cluster behavior of mixtures containing up to
two sugars is explored by tuning the concentration of one sugar in the aqueous sugar
solution. Here, glucose and fructose are utilized. The measurement cycle in Figure 4a is
performed, in which 30 spectra are measured for each step. The first measured mixture is
an equal mixed aqueous sugar solution with the mixture ratio G:F = 10:10. With regard
to this mixture, the absolute concentration value is increased by 10 g/L of the following
mixtures with only the sugar concentration tuned. First, the glucose content is increased,
and afterward, the fructose content is raised. Accordingly, aqueous sugar solutions with
the mixture ratio G:F = 20:10, G:F = 30:10, and G:F = 40:10 are measured as well as solutions
with the inverted mixture ratio. Afterward, pure aqueous glucose solution and fructose
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solution with a 50 g/L concentration and an equal mixed solution with the mixture ratio
G:F = 25:25 are measured for calibration. Selected raw reflectance spectra showing the
plasmonic resonance as well as the imprinted vibrational features are shown in Figure S6
in the Supporting Information. The raw data set is analyzed with the PCA, and thus, the
obtained eigenvectors of the first, second, and third order are depicted in Figure 4b, as well
as the corresponding eigenvalues in Figure 4c. The first PC looks like a plasmon resonance,
and so it holds the information about the resonance shift of the plasmon resonance, which
is determined by the concentration of the mixed aqueous solutions. Contrarily, the third
PC contains the vibrational information of our measured SEIRA spectra because it exhibits
three extrema at the vibrational modes of glucose and fructose. A maximum with a positive
sign at the vibrational mode of glucose at 1034 cm−1 and a minimum with a negative sign
at the vibrational mode of fructose at 1062 cm−1 is found. Additionally, a maximum with a
negative sign is located at the vibrational mode of the glucose and the fructose molecule
around 1079 cm−1. As a result, the third order SCs are plotted against the first order SCs.
The total number of spectra is 630, and thus, 630 SCs are received for each order, with
each measurement step containing 30 SCs of each order. The first order SCs should give
information about the concentration of the aqueous solutions, and the third order SCs about
the composition. The cluster of water has the highest first order SC values and a mean third
order SC value around zero except for two clusters. A third order SC mean value around
zero is also observed for the equally mixed aqueous sugar solutions. Furthermore, a shift
of the water clusters is observed in the x-direction. This shift is not constant during the
measurement. The reason could be stability problems of the experimental setup during the
measurement. The higher the difference between the glucose and fructose content in the
mixture, the smaller the third order SC value. The opposite behavior is observed for the
reversed case. Therefore, the composition of the aqueous sugar solutions can be estimated.
Furthermore, a linear behavior of the cluster is observed by tuning the concentration of one
sugar. This enables better quantification of the composition of various mixtures. Based on
the obtained results, one can assume that the modulation depth depends linearly on the
concentration of the solution. In contrast, a prediction of the concentration of an aqueous
solution is not possible for all probed solutions with the first order SCs. In general, the
first order score value is getting lower when the concentration of the solution is increased.
Moreover, the mixtures with the same concentration should have approximately an equal
first order SC value. This is not the case for the equal mixed solution G:F = 10:10 (green),
G:F = 25:25 (dark green), and the aqueous solution with the mixture ratio G:F = 20:10
(yellow). To achieve an accurate prediction of the concentration of the aqueous solutions,
the second order will also be taken into account. The second PC has a higher impact than
the third PC and minima with a negative sign are present at the vibrational modes of the
glucose and fructose molecule. Therefore, the second PC can also hold information about
the concentration as well as the composition of the aqueous sugar solutions. One possible
reason is that the position of the modulation on top of the plasmon resonance depends
on the probed molecule and the corresponding modulation depth on the concentration
of the aqueous sugar solution. Consequently, the SCs of the first, second, and third order
are plotted against each other. The view of the 3D plot is chosen such that no shift of the
water cluster is present. As a result, eleven well-separated clusters are observed. One big
cluster for all water measurements and an individual cluster for each solution are present.
The cluster of water is most right-shifted. The higher the concentration of the solution,
the more left-shifted the cluster of this solution. Using this fact, the concentration and
the composition of the aqueous solutions can be predicted. Especially, the equally mixed
solution G:F = 10:10 and the aqueous solution with the mixture ratio G:F = 20:10 can be
identified. Moreover, a linear behavior is observed in this view when the total concentration
of the solution is tuned. We would like to stress that there is definite potential for a better
and more distinct separation for the individual measurements, possibly by utilizing higher
dimensional plots. However, currently we want to demonstrate the feasibility of our
method rather than its optimization. Our measurements show that several different sugar
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species can be discriminated, and the signals are not strongly influencing each other. Thus,
we are convinced that the measurement for the small concentrations shown in Figure 3 is
representative for the lower detection limit also in the case of multi-sugar sensing, which
is on the order of 1 g/L. The clusters are clearly separated in this measurement, and thus,
also mixtures with much lower concentrations down to G:F = 5:5 are investigated. This is
depicted in Figure S2. In recent work, an adaptive method for quantitative estimation of
glucose and fructose concentrations in aqueous solutions by preprocessing the data with
baseline correction was developed by Schuler et al. [44]. The same method is applied for
the three cases glucose and galactose, glucose, and lactose, as well as glucose and maltose.
The results are depicted in Figures S3–S5.
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Figure 4. (a) Measurement cycle of pure and mixed aqueous sugar solutions of glucose and fructose
as well as water, where 30 spectra are taken for each step. The red bars indicate the concentration of
glucose in the solution, the blue bars of fructose, and the cyan bars of water. (b,c) PCA of the measured
spectra from (a). (b) The PCs of the 1st, 2nd, and 3rd order are plotted against the wavenumber. The
3rd PC (gray) contains the vibrational information. The red lines indicate the vibration mode of glucose
at 1034 cm−1 and 1078 cm−1 and the blue lines of fructose at 1062 cm−1 and 1080 cm−1. (c) A 3D plot
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of the 1st, 2nd, and 3rd order scores is generated as well as the corresponding 2D plots. Each
measurement step is color-coded, where water has the same color and the other solutions have an
individual color that is indicated at the bottom of the measurement cycle in (a).

3.3. Mixed Solutions: Complex Mixtures of Five Sugars

The previous measurement has proven that accurate identification and differentiation
of mixtures containing up to two sugars is possible. As a next step, the discriminative power
of resonant SEIRA in combination with PCA will be investigated by probing mixtures
of up to five different sugar molecules. Hence, more vibrational modes near the same
wavenumber are present. One additional challenge is the differentiation between the
glucose and the maltose molecule because of the extremely high similarity. The following
measurement cycle in Figure 5a is performed. For all measurement steps, 30 spectra are
taken. First, pure aqueous solutions with a concentration of 50 g/L are measured for the
glucose (red), fructose (blue), galactose (purple), lactose (orange), and maltose (green)
molecules. Afterward, mixtures of the five molecules are measured. In these mixtures, one
sugar has a concentration of 50 g/L, whereas the other four sugars have a concentration of
25 g/L. Accordingly, five different mixtures are created. Selected raw reflectance spectra
showing the plasmonic resonance as well as the imprinted vibrational features are shown
in Figure S7 in the Supporting Information. PCA is applied to analyze the raw data
set, with 600 SEIRA spectra in total. As a result, 600 SCs are obtained for each order
and 30 SCs for each step. In Figure 5b, the PCs of the first, second, and third order are
depicted; the corresponding SCs are shown in Figure 5c. The first PC again illustrates the
resonance shift of the plasmon resonance, which results from the different concentrations
of the probed solutions. The third PC probably holds the vibrational information of the
measured spectra, judging from the previous measurements. It exhibits three extrema
in the considered wavenumber range, where also the most prominent vibrational modes
of the five molecules are present. The first extremum is a minimum approximately at
1034 cm−1 with a negative sign and is very broad. Additionally, the vibrational modes of
all the five sugar molecules are present there except the fructose molecule. The second
extremum is a maximum at 1064 cm−1 with a positive sign, and the vibrational modes of
the glucose and fructose molecule are around this wavenumber. The third extremum is
a minimum, which has a positive sign and is located near the wavenumber 1077 cm−1.
Here, the vibrational modes of the five sugar molecules are present. By inspecting the
eigenvalues, the weight of the third order SCs does not enable the identification of the
mixtures. Moreover, the aqueous solution with the same concentration does not have the
same first order SC value. Consequently, a 3D plot of the first, second, and third order is
generated like in the previous measurement. The view of the 3D plot is chosen such that
all clusters of the water are overlapping. The clusters of water are most right-shifted. The
higher the concentration of the solution, the more left-shifted the corresponding cluster
appears. The clusters of the pure aqueous sugar solutions are well-separated from each
other in the sequence fructose, galactose, lactose, glucose, and maltose. Therefore, the five
sugar molecules can be differentiated, in particular the glucose and the maltose molecule,
which have their vibrational modes near the same wavenumber. In contrast, the clusters of
the five mixtures are not well-separated in this view. The mixture with the highest fructose
content is at the top, then the positions of the cluster move downwards in the sequence
of galactose, lactose, glucose, and maltose. The same sequence was also obtained for the
pure aqueous sugar solutions. Despite the large number of vibrational modes near the
same wavenumber range, resonant SEIRA in combination with PCA enables the estimation
of the concentration as well as the identification of composition in the aqueous solutions.
It should be remarked that the identification and differentiation of the solutions strongly
depend on the chosen view. As a general remark, the measurements with mixtures are not
reproducible because the clusters of water do not have the same SCs values. Moreover,
the measurement cycle in Figure S1 was performed to illustrate that also mixtures with
the same concentration do not have the same SC values. Possible reasons can be stability
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problems during the measurement or the complexity of the data set with regard to the total
number of taken SEIRA spectra and many various probed aqueous solutions. As a result,
the PCA cannot recognize similar mixed aqueous solutions. In contrast, the measurement
with the pure aqueous glucose solutions is reproducible. The clusters of aqueous solutions
have approximately equal weight according to the mean value of the SCs. Additionally, the
aqueous solutions are measured from low up to high concentrations and from high down
to low concentrations. However, the mixture measurements lead to a better understanding
of the working principle of the machine learning algorithm PCA in complex environments.

1 
 

 
 
 
 
 

 

Figure 5. (a) Measurement cycle of pure and mixed aqueous sugar solutions of glucose, fructose,
galactose, lactose, and maltose as well as water, whereas 30 spectra are taken for each step. The bars
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indicate the concentrations of glucose (red), fructose (blue), galactose (purple), lactose (orange), and
maltose (green). The cyan bars indicate a pure water solution. (b,c) PCA analysis of the measured
spectra of (a). (b) The PCs of the 1st, 2nd, and 3rd order are plotted against the wavenumber. The 3rd
PC (gray) contains the vibrational information of the molecules. The red lines indicate the vibration
mode of glucose at 1034 cm−1 and 1078 cm−1, the blue lines of fructose at 1062 cm−1 and 1080 cm−1,
the purple lines of galactose at 1043 cm−1, 1061 cm−1, and 1076 cm−1, the green lines of maltose at
1039 cm−1 and 1076 cm−1, the orange lines of lactose at 1043 cm−1 and 1072 cm−1. (c) The SCs of the
1st, 2nd, and 3rd order are plotted against each other to create a 3D plot. Moreover, the corresponding
2D plots are generated. For each solution, a cluster is obtained, which has an individual color depicted
at the bottom of the measurement cycle in (a). The measurements with water have the same color.

4. Conclusions

In conclusion, we have demonstrated in-situ detection and quantification of five var-
ious sugars in aqueous solutions via resonant plasmonic SEIRA in combination with
principal component analysis. The five essential carbohydrates glucose, fructose, galactose,
lactose, and maltose are probed. The plasmonic sensor proved to be an appropriate glucose
sensor with very high performance. Here, a sensitivity down to 1 g/L could be demon-
strated. Further improvements may allow the detection of the glucose concentration in
the ocular fluid. To reach a higher sensitivity, a brilliant broadband mid-IR laser [43,45–47]
can be utilized, or different sensing materials such as graphene [48,49] or silicon [50,51]
can be tried out. In addition, PCA enables the estimate of concentration as well as the
composition of various aqueous sugar solutions. We observe that for complex mixtures,
more than two PCs are needed for a detailed analysis. In future work, an adaptive method
for quantitative estimation of the glucose, fructose, galactose, lactose, and maltose concen-
tration in aqueous solutions by preprocessing the data with the PCA instead of the BC
will be developed. Moreover, a better understanding of the PCA working principle will
improve the detection of molecules in other complex environments.

5. Materials and Methods Section
5.1. Nanostructure Fabrication

The nanoantenna fabrication starts by cleaning the CaF2 substrate. The substrate,
which is immersed in acetone, is in an ultrasonic bath at 50 ◦C. Afterward, the substrate is
rinsed again with acetone and then with isopropanol (IPA). An O2 plasma clean is used
to remove any small residual amount on the nitrogen-dried CaF2 substrate for 10 s with
a power of 250 W. Moreover, the sample is spin-coated with poly(methyl methacrylate)
(PMMA) as a positive tone resist. First, a 200 K PMMA with a 200 nm thick layer is used. The
bottom side of the substrate is cleaned with acetone. The resist is subjected to a hard bake
on a hot plate at 150 ◦C for 180 s. Second, a 950 K PMMA with a 50 nm thick layer is used,
and the aforementioned steps are performed again. Third, an E-Spacer, is used and then the
bottom side of the substrate is cleaned with water. Furthermore, the desired array of the
nanoantennas (200 µm by 200 µm) is formed via electron beam lithography in the PMMA.
Afterward, the sample is rinsed with water and then nitrogen-dried. Sample development
is carried out due to immersion in a 1:3 methyl-iso-butylketone (MIBK) to IPA mixture for
90 s, next quenched with IPA for 60 s, and again nitrogen-dried. Accordingly, a 2 nm thick
chromium adhesion layer followed by a 100 nm thick Au film is deposited with electron
beam evaporation on the infrared transparent CaF2 substrate. Moreover, the nanoparticles
are formed by a standard lift-off process. Lift-off was performed by immersing the sample
in N-Ethylpyrrolidone (NEP) in connection with an ultrasound sonication at 85 ◦C. After
a while, the sample is rinsed with acetone and then with IPA. Finally, the desired Au
nanoantenna array is obtained, which is deposited on the CaF2 substrate.

5.2. Spectroscopy

All data were captured using an infrared microscope (Bruker Hyperion 2000, Schwarzschild-
objective with 15-fold magnification, NA = 0.4) coupled to a commercial FTIR spectrometer
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(Bruker Vertex 80, Karlsruhe, Germany) with an optical path purged with nitrogen. The
Globar light source emits light, which passes through a Michelson interferometer to the
sample before reaching a mercury cadmium telluride (MCT) detector. An infrared wire
grid polarizer was utilized to polarize the incident E-field parallel to the nanoantenna
length. The sample is in a flow cell in inverse reflection geometry. An aperture size up to
50 µm by 50 µm is utilized. All infrared spectra were taken with an MCT detector under
identical acquisition settings, especially 50 scans and 4 cm−1 resolution. The detector has
to be cooled to liquid nitrogen temperatures of 77 K.

5.3. Flow Cell

A tailored reflection flow cell is used for probing aqueous solutions in-situ and mea-
suring SEIRA spectra in reflection. The nanostructures are in an aqueous environment such
as water or an aqueous sugar solution. All chemicals used were purchased from Sigma
Aldrich. The sugar solutions were prepared by dissolving the desired amounts of glucose,
fructose (F0127, Sigma Aldrich, Taufkirchen, Germany), galactose (G0750, Sigma Aldrich,
Taufkirchen, Germany), lactose (61339, Sigma Aldrich, Taufkirchen, Germany), and maltose
(M5885, Sigma Aldrich, Taufkirchen, Germany) in deionized water.

5.4. Principal Component Analysis

The measured SEIRA spectra need to be analyzed with a certain data analysis method,
whereas different aqueous sugar solutions are measured. Here, it is crucial to extract
both the absolute concentration value and the composition of the probed solutions. The
identification and differentiation of various sugar sorts are more difficult for ultra-low
concentrations down to physiological levels. One reason is the smaller modulation depth
on top of the plasmon resonance at the characteristic resonance frequency of the probed
molecule because fewer molecules contribute to the SEIRA signal. Another reason is the
shorter resonance shift of the plasmon resonance due to smaller concentrations. The higher
the concentration of the solution, the higher the refractive index of the surrounding medium.
This leads to a red-shift of the plasmon resonance. The desired goal is to extract the most
important information from our measured data set, which are the concentration and the
composition of the solution. One promising method is the machine learning algorithm
Principal Component Analysis (PCA), which was already used for the differentiation
between various sugar sorts and the detection of conformational changes of polypeptides.
The observations, which are contained in the data set, are characterized by certain inter-
correlated quantitative dependent variables. PCA simplifies the description of the data set
by representing the most important information as a set of new orthogonal variables termed
principal components (PCs). The principal components are the eigenfunctions and are
received as a linear combination of the original variables. The first principal component has
the largest possible variance, the second principal component the second largest possible
variance, and so on. The second principal component is calculated under the condition to
be orthogonal to the first principal component. This is also the case for the other principal
components. The values of these new variables for the observations are the factor scores
(SCs), which are the eigenvalues. The factor scores are geometrically the projections of the
observations onto the principal components. After applying PCA, each measured spectrum
i can be described as follows

Spectrumi = A +
N

∑
j=1

SCi,j PCj

where A is the average of all measured spectra with the total number N. PCA subtracts the
average from each measured spectra and decomposes the data. The data set is represented
as a linear combination of an uncorrelated, orthogonal, and limited set of eigenfunctions
and eigenvalues. The principal components are the same for all measured spectra, and the
scores are specific for each measured spectrum i. The correlation of the data set is more
notable when fewer principal components are required in order to describe the data set.
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Hence, the pattern of similarity of the observations and of the variables are displayed as
points in maps. Moreover, the principal components and the corresponding scores have
no a priori physical interpretation but are expected to express the concentration and the
composition of aqueous sugar solutions due to PCA.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22155567/s1. Refs. [44,52] are cited in supporting information.

Author Contributions: All authors have contributed extensively to the manuscript. Conceptualiza-
tion, resources, and funding acquisition, H.G.; experiment, D.P., J.K. and M.H.; data analysis, D.P.
and J.K., data interpretation and manuscript writing, D.P., J.K., M.H. and H.G. All authors have read
and agreed to the published version of the manuscript.

Funding: We thank ERC Advanced Grant (COMPLEXPLAS), Baden-Württemberg Stiftung (PRO-
TEINSENS), Carl-Zeiss-Stiftung, Deutsche Forschungsgemeinschaft (SPP1839, GRK2642) and MWK
Baden-Württemberg (IQST, ZAQuant) for funding. We also acknowledge funding by the Open
Access Fund of the University of Stuttgart.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank R. Semenyshyn for expert advice. We thank Cristina Tarin, Benjamin
Schönemann, and Hannah Zweigart for discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wiercigroch, E.; Szafraniec, E.; Czamara, K.; Pacia, M.Z.; Majzner, K.; Kochan, K.; Kaczor, A.; Baranska, M.; Malek, K. Raman and

Infrared Spectroscopy of Carbohydrates: A Review. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2017, 185, 317–335. [CrossRef]
[PubMed]

2. Berg, J.M.; Tymoczko, J.L.; Stryer, L. Biochemistry; W. H. Freeman: New York, NY, USA, 2012.
3. Edelman, S.V. Importance of Glucose Control. Med. Clin. N. Am. 1998, 82, 665–687. [CrossRef]
4. Rodbard, D. Continuous Glucose Monitoring: A Review of Recent Studies Demonstrating Improved Glycemic Outcomes.

Diabetes Technol. Ther. 2017, 19, S25–S37. [CrossRef]
5. Bruen, D.; Delaney, C.; Florea, L.; Diamond, D. Glucose Sensing for Diabetes Monitoring: Recent Developments. Sensors 2017, 17, 1866.

[CrossRef] [PubMed]
6. Stuart, B.H. Spectral Analysis; John Wiley & Sons Ltd.: Chichester, UK, 2005.
7. Griffiths, P.R.; de Haseth, J.A. Fourier Transform Infrared Spectrometry; John Wiley & Sons: Hoboken, NJ, USA, 2007.
8. Neubrech, F.; Huck, C.; Weber, K.; Pucci, A.; Giessen, H. Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas.

Chem. Rev. 2017, 117, 5110–5145. [CrossRef] [PubMed]
9. Neubrech, F.; Pucci, A.; Cornelius, T.; Karim, S.; García-Etxarri, A.; Aizpurua, J. Resonant Plasmonic and Vibrational Coupling in

a Tailored Nanoantenna for Infrared Detection. Phys. Rev. Lett. 2008, 101, 157403. [CrossRef]
10. Liu, N.; Tang, M.L.; Hentschel, M.; Giessen, H.; Alivisatos, A.P. Nanoantenna-Enhanced Gas Sensing in a Single Tailored

Nanofocus. Nat. Mater. 2011, 10, 631–636. [CrossRef]
11. Wang, T.; Nguyen, V.H.; Buchenauer, A.; Schnakenberg, U.; Taubner, T. Enhanced Infrared Spectroscopy with Gold Strip Gratings.

Opt. Express 2013, 21, 9005. [CrossRef]
12. Hoffmann, J.M.; Yin, X.; Richter, J.; Hartung, A.; Maß, T.W.W.; Taubner, T. Low-Cost Infrared Resonant Structures for Surface-

Enhanced Infrared Absorption Spectroscopy in the Fingerprint Region from 3 to 13 Mm. J. Phys. Chem. C 2013, 117, 11311–11316.
[CrossRef]

13. Adato, R.; Altug, H. In-Situ Ultra-Sensitive Infrared Absorption Spectroscopy of Biomolecule Interactions in Real Time with
Plasmonic Nanoantennas. Nat. Commun. 2013, 4, 2154. [CrossRef]

14. Kühner, L.; Hentschel, M.; Zschieschang, U.; Klauk, H.; Vogt, J.; Huck, C.; Giessen, H.; Neubrech, F. Nanoantenna-Enhanced
Infrared Spectroscopic Chemical Imaging. ACS Sens. 2017, 2, 655–662. [CrossRef] [PubMed]

15. Adato, R.; Artar, A.; Erramilli, S.; Altug, H. Engineered Absorption Enhancement and Induced Transparency in Coupled
Molecular and Plasmonic Resonator Systems. Nano Lett. 2013, 13, 2584–2591. [CrossRef] [PubMed]

16. Giannini, V.; Francescato, Y.; Amrania, H.; Phillips, C.C.; Maier, S.A. Fano Resonances in Nanoscale Plasmonic Systems:
A Parameter-Free Modeling Approach. Nano Lett. 2011, 11, 2835–2840. [CrossRef] [PubMed]

17. Maier, S.A. Plasmonics: Fundamentals and Applications; Springer Science & Business Media: New York, NY, USA, 2007.

https://www.mdpi.com/article/10.3390/s22155567/s1
https://www.mdpi.com/article/10.3390/s22155567/s1
http://doi.org/10.1016/j.saa.2017.05.045
http://www.ncbi.nlm.nih.gov/pubmed/28599236
http://doi.org/10.1016/S0025-7125(05)70019-5
http://doi.org/10.1089/dia.2017.0035
http://doi.org/10.3390/s17081866
http://www.ncbi.nlm.nih.gov/pubmed/28805693
http://doi.org/10.1021/acs.chemrev.6b00743
http://www.ncbi.nlm.nih.gov/pubmed/28358482
http://doi.org/10.1103/PhysRevLett.101.157403
http://doi.org/10.1038/nmat3029
http://doi.org/10.1364/OE.21.009005
http://doi.org/10.1021/jp402383h
http://doi.org/10.1038/ncomms3154
http://doi.org/10.1021/acssensors.7b00063
http://www.ncbi.nlm.nih.gov/pubmed/28723169
http://doi.org/10.1021/nl400689q
http://www.ncbi.nlm.nih.gov/pubmed/23647070
http://doi.org/10.1021/nl201207n
http://www.ncbi.nlm.nih.gov/pubmed/21635012


Sensors 2022, 22, 5567 15 of 16

18. Masson, J.F. Portable and Field-Deployed Surface Plasmon Resonance and Plasmonic Sensors. Analyst 2020, 145, 3776–3800.
[CrossRef] [PubMed]

19. Neubrech, F.; Beck, S.; Glaser, T.; Hentschel, M.; Giessen, H.; Pucci, A. Spatial Extent of Plasmonic Enhancement of Vibrational
Signals in the Infrared. ACS Nano 2014, 8, 6250–6258. [CrossRef] [PubMed]

20. Giannini, V.; Fernández-Domínguez, A.I.; Heck, S.C.; Maier, S.A. Plasmonic Nanoantennas: Fundamentals and Their Use in
Controlling the Radiative Properties of Nanoemitters. Chem. Rev. 2011, 111, 3888–3912. [CrossRef]

21. Vogt, J.; Huck, C.; Neubrech, F.; Toma, A.; Gerbert, D.; Pucci, A. Impact of the Plasmonic Near- and Far-Field Resonance-Energy
Shift on the Enhancement of Infrared Vibrational Signals. Phys. Chem. Chem. Phys. 2014, 17, 21169–21175. [CrossRef]

22. Tittl, A.; Mai, P.; Taubert, R.; Dregely, D.; Liu, N.; Giessen, H. Palladium-Based Plasmonic Perfect Absorber in the Visible
Wavelength Range and Its Application to Hydrogen Sensing. Nano Lett. 2011, 11, 4366–4369. [CrossRef]

23. Bareza, N.J.; Gopalan, K.K.; Alani, R.; Paulillo, B.; Pruneri, V. Mid-Infrared Gas Sensing Using Graphene Plasmons Tuned by
Reversible Chemical Doping. ACS Photonics 2020, 7, 879–884. [CrossRef]

24. Wu, C.; Khanikaev, A.B.; Adato, R.; Arju, N.; Yanik, A.A.; Altug, H.; Shvets, G. Fano-Resonant Asymmetric Metamaterials for
Ultrasensitive Spectroscopy and Identification of Molecular Monolayers. Nat. Mater. 2012, 11, 69–75. [CrossRef]

25. Brolo, A.G. Plasmonics for Future Biosensors. Nat. Photonics 2012, 6, 709–713. [CrossRef]
26. Shih, W.C.; Santos, G.M.; Zhao, F.; Zenasni, O.; Arnob, M.M.P. Simultaneous Chemical and Refractive Index Sensing in the 1-2.5

Mm near-Infrared Wavelength Range on Nanoporous Gold Disks. Nano Lett. 2016, 16, 4641–4647. [CrossRef] [PubMed]
27. Pryce, I.M.; Kelaita, Y.A.; Aydin, K.; Atwater, H.A. Compliant Metamaterials for Resonantly Enhanced Infrared Absorption

Spectroscopy and Refractive Index Sensing. ACS Nano 2011, 5, 8167–8174. [CrossRef] [PubMed]
28. Aslan, K.; Lakowicz, J.R.; Geddes, C.D. Nanogold-Plasmon-Resonance-Based Glucose Sensing. Anal. Biochem. 2004, 330, 145–155.

[CrossRef]
29. Mesch, M.; Zhang, C.; Braun, P.V.; Giessen, H. Functionalized Hydrogel on Plasmonic Nanoantennas for Noninvasive Glucose

Sensing. ACS Photonics 2015, 2, 475–480. [CrossRef]
30. Wang, P.; Ionescu, R.E. Glucose Sensing on Reproducible and Tunable Plasmonic Nanostructures Formed on Annealed Coverslips

Coated with Thin Layers of Gold and Indium Tin Oxide. Sens. Actuators A Phys. 2021, 318, 112510. [CrossRef]
31. Badugu, R.; Lakowicz, J.R.; Geddes, C.R. Ophthalmic Glucose Monitoring Using Disposable Contact Lenses—A Review. J. Fluoresc.

2004, 14, 617–633. [CrossRef]
32. Abdi, H.; Williams, L.J. Principal Component Analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [CrossRef]
33. Alonso-González, P.; Albella, P.; Neubrech, F.; Huck, C.; Chen, J.; Golmar, F.; Casanova, F.; Hueso, L.; Pucci, A.; Aizpurua, J.; et al.

Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas.
Phys. Rev. Lett. 2013, 110, 203902. [CrossRef]

34. Zuloaga, J.; Nordlander, P. On the Energy Shift between Near-Field and Far-Field Peak Intensities in Localized Plasmon Systems.
Nano Lett. 2011, 11, 1280–1283. [CrossRef]

35. Adato, R.; Yanik, A.A.; Amsden, J.J.; Kaplan, D.L.; Omenetto, F.G.; Hong, M.K.; Erramilli, S.; Altug, H. Ultra-Sensitive Vibrational
Spectroscopy of Protein Monolayers with Plasmonic Nanoantenna Arrays. Proc. Natl. Acad. Sci. USA 2009, 106, 19227–19232.
[CrossRef] [PubMed]

36. Adato, R.; Yanik, A.A.; Wu, C.-H.; Shvets, G.; Altug, H. Radiative Engineering of Plasmon Lifetimes in Embedded Nanoantenna
Arrays. Opt. Express 2010, 18, 4526. [CrossRef] [PubMed]

37. Bagheri, S.; Weber, K.; Gissibl, T.; Weiss, T.; Neubrech, F.; Giessen, H. Fabrication of Square-Centimeter Plasmonic Nanoantenna
Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement. ACS Photonics
2015, 2, 779–786. [CrossRef]

38. Yeh, Y.L. Real-Time Measurement of Glucose Concentration and Average Refractive Index Using a Laser Interferometer. Opt. Lasers
Eng. 2008, 46, 666–670. [CrossRef]

39. Novotny, L. Effective Wavelength Scaling for Optical Antennas. Phys. Rev. Lett. 2007, 98, 266802. [CrossRef]
40. Kühner, L.; Semenyshyn, R.; Hentschel, M.; Neubrech, F.; Tarín, C.; Giessen, H. Vibrational Sensing Using Infrared Nanoantennas:

Toward the Noninvasive Quantitation of Physiological Levels of Glucose and Fructose. ACS Sens. 2019, 4, 1973–1979. [CrossRef]
41. Semenyshyn, R.; Hentschel, M.; Stanglmair, C.; Teutsch, T.; Tarin, C.; Pacholski, C.; Giessen, H.; Neubrech, F. In Vitro Monitoring

Conformational Changes of Polypeptide Monolayers Using Infrared Plasmonic Nanoantennas. Nano Lett. 2019, 19, 1–7. [CrossRef]
42. Badugu, R.; Lakowicz, J.R.; Geddes, C.D. Fluorescence Sensors for Monosaccharides Based on the 6-Methylquinolinium Nucleus

and Boronic Acid Moiety: Potential Application to Ophthalmic Diagnostics. Talanta 2005, 65, 762–768. [CrossRef]
43. Isensee, K.; Müller, N.; Pucci, A.; Petrich, W. Towards a Quantum Cascade Laser-Based Implant for the Continuous Monitoring of

Glucose. Analyst 2018, 143, 6025–6036. [CrossRef]
44. Schuler, B.; Kühner, L.; Hentschel, M.; Giessen, H.; Tarín, C. Adaptive Method for Quantitative Estimation of Glucose and

Fructose Concentrations in Aqueous Solutions Based on Infrared Nanoantenna Optics. Sensors 2019, 19, 3053. [CrossRef]
45. Semenyshyn, R.; Mörz, F.; Steinle, T.; Ubl, M.; Hentschel, M.; Neubrech, F.; Giessen, H. Pushing Down the Limit: In Vitro

Detection of a Polypeptide Monolayer on a Single Infrared Resonant Nanoantenna. ACS Photonics 2019, 6, 2636–2642. [CrossRef]
46. Bensmann, S.; Gaußmann, F.; Lewin, M.; Wüppen, J.; Nyga, S.; Janzen, C.; Jungbluth, B.; Taubner, T. Near-Field Imaging and

Spectroscopy of Locally Strained GaN Using an IR Broadband Laser. Opt. Express 2014, 22, 22369. [CrossRef] [PubMed]

http://doi.org/10.1039/D0AN00316F
http://www.ncbi.nlm.nih.gov/pubmed/32374303
http://doi.org/10.1021/nn5017204
http://www.ncbi.nlm.nih.gov/pubmed/24811345
http://doi.org/10.1021/cr1002672
http://doi.org/10.1039/C4CP04851B
http://doi.org/10.1021/nl202489g
http://doi.org/10.1021/acsphotonics.9b01714
http://doi.org/10.1038/nmat3161
http://doi.org/10.1038/nphoton.2012.266
http://doi.org/10.1021/acs.nanolett.6b01959
http://www.ncbi.nlm.nih.gov/pubmed/27294888
http://doi.org/10.1021/nn202815k
http://www.ncbi.nlm.nih.gov/pubmed/21928788
http://doi.org/10.1016/j.ab.2004.03.032
http://doi.org/10.1021/acsphotonics.5b00004
http://doi.org/10.1016/j.sna.2020.112510
http://doi.org/10.1023/B:JOFL.0000039349.89929.da
http://doi.org/10.1002/wics.101
http://doi.org/10.1103/PhysRevLett.110.203902
http://doi.org/10.1021/nl1043242
http://doi.org/10.1073/pnas.0907459106
http://www.ncbi.nlm.nih.gov/pubmed/19880744
http://doi.org/10.1364/OE.18.004526
http://www.ncbi.nlm.nih.gov/pubmed/20389465
http://doi.org/10.1021/acsphotonics.5b00141
http://doi.org/10.1016/j.optlaseng.2008.04.008
http://doi.org/10.1103/PhysRevLett.98.266802
http://doi.org/10.1021/acssensors.9b00488
http://doi.org/10.1021/acs.nanolett.8b02372
http://doi.org/10.1016/j.talanta.2004.08.003
http://doi.org/10.1039/C8AN01382A
http://doi.org/10.3390/s19143053
http://doi.org/10.1021/acsphotonics.9b01125
http://doi.org/10.1364/OE.22.022369
http://www.ncbi.nlm.nih.gov/pubmed/25321708


Sensors 2022, 22, 5567 16 of 16

47. Schönhals, A.; Tholl, H.; Glasmacher, M.; Kröger-Lui, N.; Pucci, A.; Petrich, W. Optical Properties of Porcine Dermis in the
Mid-Infrared Absorption Band of Glucose. Analyst 2017, 142, 1235–1243. [CrossRef] [PubMed]

48. Rodrigo, D.; Limaj, O.; Janner, D.; Etezadi, D.; Garcia de Abajo, F.J.; Pruneri, V.; Altug, H. Mid-Infrared Plasmonic Biosensing
with Graphene. Science 2015, 349, 165–168. [CrossRef] [PubMed]

49. Hu, Y.; López-Lorente, Á.I.; Mizaikoff, B. Graphene-Based Surface Enhanced Vibrational Spectroscopy: Recent Developments,
Challenges, and Applications. ACS Photonics 2019, 6, 2182–2197. [CrossRef]

50. Tittl, A.; Leitis, A.; Liu, M.; Yesilkoy, F.; Choi, D.Y.; Neshev, D.N.; Kivshar, Y.S.; Altug, H. Imaging-Based Molecular Barcoding
with Pixelated Dielectric Metasurfaces. Science 2018, 360, 1105–1109. [CrossRef]

51. Tittl, A.; John-Herpin, A.; Leitis, A.; Arvelo, E.R.; Altug, H. Metasurface-Based Molecular Biosensing Aided by Artificial
Intelligence. Angew. Chemie-Int. Ed. 2019, 58, 14810–14822. [CrossRef]

52. Eilers, P.H.C.; Boelens, H.F.M. Baseline Correction with Asymmetric Least Squares Smoothing. Leiden Univ. Med. Cent. Rep. 2005, 1, 5.

http://doi.org/10.1039/C6AN01757F
http://www.ncbi.nlm.nih.gov/pubmed/27918009
http://doi.org/10.1126/science.aab2051
http://www.ncbi.nlm.nih.gov/pubmed/26160941
http://doi.org/10.1021/acsphotonics.9b00645
http://doi.org/10.1126/science.aas9768
http://doi.org/10.1002/anie.201901443

	Introduction 
	Experimental Scheme 
	Vibrational Spectroscopy 
	Vibrational Spectroscopy—Experimental Setup 

	Experimental Section 
	Glucose—Low Concentrations 
	Mixed Solutions: Glucose and Fructose 
	Mixed Solutions: Complex Mixtures of Five Sugars 

	Conclusions 
	Materials and Methods Section 
	Nanostructure Fabrication 
	Spectroscopy 
	Flow Cell 
	Principal Component Analysis 

	References

