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SUMMARY

The support vector machine (SVM) algorithm is popular in chemistry and drug
discovery. SVM models have black box character. Their predictions can be int-
erpreted through feature weighting or the model-agnostic Shapley additive
explanations (SHAP) formalism that locally approximates Shapley values (SVs)
originating from game theory. We introduce an algorithm termed SV-expressed
Tanimoto similarity (SVETA) for the exact calculation of SVs to explain SVM
models employing the Tanimoto kernel, the gold standard for the assessment
of molecular similarity. For amodel system, the exact calculation of SVs is demon-
strated. In an SVM-based compound classification task from drug discovery, only
a limited correlation between exact SV and SHAP values is observed, prohibiting
the use of approximate values for rationalizing predictions. For exemplary test
compounds, atom-based mapping of prioritized features delineates coherent
substructures that closely resemble those obtained by analyzing independently
derived random forest models, thus providing consistent explanations.

INTRODUCTION

Machine learning (ML) methods are an important component of chemoinformatics and computer-aided

drug discovery, especially as the volumes of data available for learning continue to grow (Chen et al.,

2018; Varnek and Baskin, 2012). ML infers drug discovery-relevant properties of novel compounds by the

statistical assessment of structure-property patterns derived from known molecules (Lo et al., 2018) and

contributes to the prioritization of promising candidates (Lavecchia, 2015). For predictive modeling, key

properties include biological activities (Lo et al., 2018), pharmacokinetic and -dynamic characteristics (Ya-

mashita and Hashida, 2004), or physiochemical properties (Sellwood et al., 2018).

Most non-linear MLmethods have a black box character (Castelvecchi, 2016) meaning that their predictions

cannot be intuitively accessed and understood by humans. Although this is unsatisfactory from an intellec-

tual perspective, the black box of ML also limits the acceptance of predictions for experimental design,

which represents a serious issue in interdisciplinary research and drug discovery. Therefore, while achieving

accurate predictions continues to be the central challenge of ML, increasing emphasis is also put on meth-

odologies for explaining ML models and rationalizing predictions (Vamathevan et al., 2019), often referred

to as explainable ML (XML) (Belle and Papantonis, 2021). In most instances, additional algorithms are em-

ployed to elucidate decisions of ML models (�Strumbelj and Kononenko, 2014), which can be subdivided

into model-specific and model-agnostic approaches (Belle and Papantonis, 2021). Model explanations

assist in communicating key findings to non-experts, provide opportunities to gain knowledge of critically

important features, and increase confidence in predictions, especially when learned features responsible

for model decisions meet chemical intuition (Rodrı́guez-Pérez and Bajorath, 2021).

Model-agnostic XML approaches are especially thought after as they enable immediate comparisons of

different ML models and are also applicable to complex deep learning architectures (LeCun et al.,

2015). The Shapley value (SV) formalism from game theory (Shapley, 2016) is an increasingly popular

model-agnostic concept for quantifying feature importance for ML predictions (Rodrı́guez-Pérez and Ba-

jorath, 2021). As originally conceived, SVs provide unique solutions accounting for the contributions of in-

dividual players to the performance of a team (Shapley, 2016). In ML settings, players correspond to (rep-

resentation) features and team performance corresponds to a prediction. Here, SVs are calculated to
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quantify the contributions of features that are present or absent in test instances. The sum of all positive and

negative contributions gives the probability of a prediction. As SV calculations depend on the ordering of

players/features and are thus combinatorial in nature, the computational costs involved exponentially in-

crease with the number of features. Accordingly, the calculations become essentially infeasible for high-

dimensional feature sets typically used in ML. Therefore, for ML, a modification of the SV approach has

been introduced termed ‘‘Shapley additive explanations’’ (SHAP) that approximates the exhaustive calcu-

lation of SVs in high-dimensional feature spaces by deriving a simplified model in the vicinity of a test

instance (Lundberg and Lee, 2017). For this purpose, SHAP makes use of kernel functions and the resulting

kernel explainer can be perceived as an extension of the ‘‘locally interpretable model-agnostic explana-

tions’’ (LIME) methodology (Ribeiro et al., 2016). Although the SHAP approximation is generally applicable

in ML, another algorithmic variant has been introduced specifically for decision tree-based methods such

as random forests (RFs), enabling the calculation of exact SV values (Lundberg et al., 2020). Apart from

emerging deep neural networks, decision tree methods and support vector machines (SVMs) are the

most widely used ML approaches in bio- and chemoinformatics, drug discovery, and beyond.

In this work, we further extend the SV formalism for ML with another algorithm specifically designed to

obtain exact SV values for feature importance in SVM modeling (Cortes and Vapnik, 1995) with the Tani-

moto kernel (Ralaivola et al., 2005). In molecular ML, SVMs with Tanimoto kernel are preferentially used

(Heikamp and Bajorath, 2014), given the central relevance of the Tanimoto coefficient (Tanimoto, 1958)

for the assessment of molecular similarity. The SVM/Tanimoto kernel architecture is almost exclusively em-

ployed with binary structural fingerprints as amolecular representation (Willett, 2014), one of themost pop-

ular approaches for activity-based compound classification.

SVM solves a binary classification task by constructing a hyperplane in feature space that best separates

positive and negative training instances. By maximizing the distance between the hyperplane and learned in-

stances, the generalizability of an SVM model increases and enables the derivation of the separating hyper-

plane by a limited number of closets instances termed support vectors (Cortes and Vapnik, 1995). If a linearly

separating hyperplane cannot be constructed in a given feature space, SVMs project the data into a higher-

dimensional representation through the useof kernel functions where linear separationmight become feasible.

This so-called ‘‘kernel-trick’’ (Boser et al., 1992) does not require explicit mapping of objects from one feature

space into another and is thus computationally efficient. Given its characteristic operations, the SVM algorithm,

which can be readily adapted for regression tasks (support vector regression; SVR), has black box character. For

analyzing predictions using kernel-based ML methods including SVM and SVR, feature or variable weighting

and visualization techniques have been developed previously (Balfer and Bajorath, 2015; Sun et al., 2017; Üstün

et al., 2007), which are only applicable to features that are present in test instances.

Herein, we introduce the concept of SV-expressed Tanimoto similarity (SVETA) that enables the exact

calculation of feature importance values for SVMs with the Tanimoto kernel and the rationalization of their

predictions. In ML, the TreeExplainer approach (Lundberg et al., 2020) referred to above and SVETA

currently are the only methods available to calculate exact SVs for rationalizing predictions of RF and

SVM models, respectively.
RESULTS

Conceptual framework

Following the SV concept, the importance (4) of a feature (f ) is calculated by assessing the difference in

model output (v) for input data with or without the feature. This change is determined systematically for

each possible subset S (coalition) of remaining features (F\{f}), weighted by the inverse multinomial

coefficient. This coefficient is calculated as the number of permutations of the coalition multiplied by

the number of permutations of features not contained in the coalition and divided by the total number

of feature permutations (F), as defined by Equation 1:

4f ðvÞ =
X

S4F ffg

jSj!ðjFj � jSj � 1Þ!
jFj! ðvðSWff gÞ � vðSÞÞ (Equation 1)

As the model output must be evaluated for each possible coalition computational requirements scale

exponentially with the number of representation features. Thus, for high-dimensional feature spaces,

exhaustive SV calculations become infeasible and require the SHAP approximation.
2 iScience 25, 105023, September 16, 2022



ll
OPEN ACCESS

iScience
Article
Shapley value-expressed Tanimoto similarity

The SVETA approach has been devised to enable the calculation of exact SVs for SVM models with the Ta-

nimoto kernel (Ralaivola et al., 2005) and binary feature spaces of any dimensionality. It is based on SVs ac-

counting for Tanimoto similarity (Tanimoto, 1958; Flower, 1998) of a predicted instance and each support

vector. SVETA values are calculated efficiently by aggregating coalitions with the same numerical value and

omitting features having no impact on the similarity.

Tanimoto similarity SimTN) of two compounds represented by a set of features is defined as the number of

shared features, or intersection (I), divided by the count of features present in at least one of the compared

instances (union, U). For the following calculations, the union is expressed as the sum of the intersection

and symmetric difference (D), ensuring non-overlapping feature categories:

SimTN =
I

U
=

I

I+D
(Equation 2)

Equation 2 shows that only the counts of shared and distinct features of the compared instances determine

the similarity value. Features belonging to the same category make identical contributions to SimTN. As a

consequence, the corresponding SVs are equal. Accordingly, it is sufficient to calculate the SV for one

representative intersecting feature (f+) and the SV for a feature from the symmetric difference (f-). Notably,

features not present in either instance have no effect on the similarity value, resulting in an SV of 0.

The change in Tanimoto similarity that a feature causes when it is added to a coalition of i intersecting fea-

tures and d features from the symmetric difference must be calculated separately for both cases according

to Equations 3 and 4, respectively:

Dvf + ði;dÞ =
i + 1

i +d + 1
� i

i +d
(Equation 3)

i i

Dvf �ði;dÞ =

i +d + 1
�

i +d
(Equation 4)

Both equations are invalid for empty coalitions (i + d = 0) because Tanimoto similarity is undefined for in-

stances containing no feature. Therefore, the numerical value for an empty coalition (represented by the

subtracted term) is set to 0, conforming with the SV formalism. According to Equations 3 and 4, coalitions

are fully represented by the number of intersecting and distinct features. Hence, SVs can be efficiently

calculated only based upon unique combinations of i and d that are then multiplied by the count of their

occurrences. The number of possible combinations (C) of i and d also depends on the feature category:

Cf + ði;dÞ =
�
I � 1
i

��
D
d

�
(Equation 5)

� �� �

Cf �ði;dÞ = I

i
D � 1
d

(Equation 6)

The values of I and D are reduced by one in Equations 5 and 6, respectively, as an assessed feature (f + or f-)

is not a part of the coalitions.

Finally, the SVs for f+ and f-are calculated as the sum of the products of Dv, C, and the multinomial coef-

ficient over all unique combinations of i and d:

SVf + =
XI� 1

i = 0

XD
d = 0

�
i + 1

i +d + 1
� i

i +d

��
I � 1
i

��
D
d

��ði +dÞ!ðI+D � i � d � 1Þ!
ðI+DÞ!

�
(Equation 7)

XI XD� 1� �� �� �� �

SVf � =

i = 0 d = 0

i

i +d + 1
� i

i +d
I
i

D � 1
d

ði +dÞ!ðI+D � i � d � 1Þ!
ðI+DÞ! (Equation 8)

Exemplary calculation

We consider two binary vectors (comprising five pre-defined features) representing two instances that

share two features (set to 1), contain a unique feature each (set to 1 and 0, respectively), and lack a feature

(set to 0):

x = ð1 0 0 1 0Þ
y = ð1 0 1 1 1Þ (Equation 9)
iScience 25, 105023, September 16, 2022 3



Table 1. Unique combinations of i and d for the calculation of Shapley values for features from the intersection

i d v(S) v(SW f+) Dv

Number

of Coalitions

Inverse multinomial

factor

0 0 0 1 / 1 = 1.00 1 1 $ 1 = 1 0! $ 3! /4! = 0.25

0 1 0 / 1 = 0.00 1 / 2 = 0.50 0.5 1 $ 2 = 2 1! $ 2! / 4! = 0.08

0 2 0 / 2 = 0.00 1 / 3 = 0.33 0.33 1 $ 1 = 1 2! $ 1! / 4! = 0.08

1 0 1 / 1 = 1.00 2 / 2 = 1.00 0 1 $ 1 = 1 1! $ 2! / 4! = 0.08

1 1 1 / 2 = 0.50 2 / 3 = 0.66 0.16 1 $ 2 = 2 2! $ 1! / 4! = 0.08

1 2 1 / 3 = 0.33 2 / 4 = 0.50 0.16 1*1 = 1 3! $ 0! / 4! = 0.25

Also reported are the output values of the coalition with and without the feature, the output difference, the number of rele-

vant coalitions, and the inverse multinomial factor.
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These feature settings (with two common features and one unique feature per vector) result in a Tanimoto

similarity of 0.5. Table 1 lists all unique combinations of i and d for coalitions required for the calculation of

the SV of a feature that is present in both instances. In addition, the output values of the coalition with and

without the feature, the output difference, the number of represented coalitions, and the inverse multino-

mial factor are reported.

Multiplying the output change with the number of represented coalitions and the inverse multinomial fac-

tor for each row and calculating the sum of all values produces an SV of 0.4305 for features present in both

instances. Table 2 lists corresponding values for features from the symmetric difference.

The corresponding calculations yield and SV of �0.1805 for the features from the symmetric difference.

Given two intersecting, two unique, and one absent feature (SV = 0), the sum of SVs for all features is equal

to the similarity value of 0.5.

Feature contributions for support vector machines

The equations above define the calculation of SVs accounting for the Tanimoto similarity of two instances.

In the case of the SVM algorithm (Cortes and Vapnik, 1995), SVs for the distance to the separating hyper-

plane can be obtained by modifying the underlying equation:

distðxÞ = b +
XNV

n = 0

ynwnKðx;VnÞ (Equation 10)

In Equation 10, the class label (y, �1 or 1) of a support vector (V) is scaled by its weight (w) and multiplied

with the value of the kernel function (K) compared to the predicted instance. The sum of all support vector

evaluations is modified by a bias value (b) and gives the distance from the hyperplane for the predicted

instance.

SVs can be obtained by replacing the kernel value with the sum of SVETA values over each feature f (Equa-

tion 11). After rearranging the order of summation, the SV of a feature is calculated as the sum of SVETA

values for the instance and all support vectors, scaled by the support vector label and weight (Equation 12).

The bias is considered an additional feature and its numerical value represents the SV.

distðxÞ = b +
XNV

n = 0

yncn
XF
f

SVf ;n = b +
XF
f

XNV

n = 0

yncnSVf ;n = SVb +
XF
f

SVf (Equation 11)

NV
SVf =
X
n = 0

yncnSVf ;n (Equation 12)

Calculating contributions to log odds

Because the distance of an instance to the hyperplane is difficult to rationalize without a point of reference,

it is often transformed into a probability of class membership via Platt scaling (Platt, 1999):

pðxÞ =
1

1+ eA,distðxÞ+B
(Equation 13)
4 iScience 25, 105023, September 16, 2022



Table 2. Unique combinations of i and d for the calculation of Shapley values for features from the symmetric

difference

i D v(S) v(SW f+) Dv

Number

of coalitions

Inverse multinomial

factor

0 0 0 0 / 1 = 0.00 0 1 $ 1 = 1 0! $ 3! / 4! = 0.25

0 1 0 / 1 = 0.00 0 / 2 = 0.00 0 1 $ 1 = 1 1! $ 2! / 4! = 0.08

1 0 1 / 1 = 1.00 1 / 2 = 0.50 �0.5 2 $ 1 = 2 1! $ 2! / 4! = 0.08

1 1 1 / 2 = 0.50 1 /3 = 0.33 �0.16 2 $ 1 = 2 2! $ 1! / 4! = 0.08

2 0 2 / 2 = 1.00 2 / 3 = 0.66 �0.33 1 $ 1 = 1 2! $ 1! / 4! = 0.08

2 1 2 / 3 = 0.66 2 / 4 = 0.50 �0.16 1 $ 1 = 1 3! $ 0! / 4! = 0.25

Additional values are reported as in Table 1.
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Platt scaling derives the probability as a sigmoidal function of the distance, weighted by a factor A, and

shifted by the offset B (Equation 13). These data-dependent parameters are obtained from amaximum like-

lihood estimation. SVs for probability estimations cannot be directly calculated from SVs for the distance

from the hyperplane, as introduced above. However, instead of estimating the probability, it is possible

to calculate log odds (or logit) of class label membership.

logit
�
pðxÞ� = log

�
p
�
x
�

1 � p
�
x
�
�

= � A,distðxÞ � B (Equation 14)

F

logit
�
pðxÞ� = � ðA , SVb + BÞ �

X
f

A,SVf (Equation 15)

Accordingly, log odds are obtained as a linear transformation of the distances (Equation 14). Therefore, SVs

are also linearly transformed (Equation 15). With the offset, a new feature is introduced to conform with the

SV formalism, which can be combined with the bias of the SVM, as discussed above, to obtain a new single

feature, the contribution of which is determined as –(A,SVb +B). This feature contribution does not depend

on others in analogy to the ‘‘expected value’’ of the SHAP formalism and is thus here also referred to as an

expected value.
Proof-of-concept

To further validate SVETA calculations, we generated a model system comprising vectors of low dimen-

sionality (15 features), for which SVs can be calculated directly (Shapley, 2016). A random number generator

was used to obtain 20 such vectors, in which each feature had an independent probability of 50% to be pre-

sent (set to 1) or absent (set to 0). The vectors were systematically compared in a pairwise manner and SVs

were calculated directly to yield Tanimoto similarity values. Then, for each pair, SVs were re-calculated us-

ing SVETA. In all cases, the SVs were reproduced (differences were consistently smaller than 10�10).
Tanimoto similarity via support vector-expressed Tanimoto similarity vs. Shapley additive

explanations

For the low-dimensional model system, SHAP values were also calculated to explain Tanimoto similarities,

in each case using the 18 remaining vectors as a background sample. Here, larger deviations were

observed. Based on the Fisher transformation (Fisher, 1915), a mean Pearson’s correlation coefficient (Baldi

et al., 2000) of 0.82 G 0.25 was obtained for SVs of similarity values calculated using SHAP and SVs,

respectively.

Furthermore, pairwise similarity calculations were also carried out for 50 randomly selected dataset com-

pounds represented by Morgan fingerprint features. For this higher-dimensional feature space, SVs can no

longer be calculated directly. Compound similarity explanations using SVETA SV and SHAP values (with 48

remaining vectors as a background sample), respectively, yielded a mean correlation coefficient of 0.65 G

0.29, indicating that SHAP was not well-suited to express Tanimoto similarities. This observation could be

rationalized by considering details of the SHAP approach. Following SHAP, features not selected for a coa-

lition are masked by replacing their value with a value from the random background sample. As the fre-

quency of occurrence of features differs, different masking values are selected for a feature that is present
iScience 25, 105023, September 16, 2022 5



Table 3. Median Person’s correlation coefficient values of feature contributions from different models and

explanations

SVs SVM SHAP values SVM SVs RF SHAP values RF

SVs SVM 1 0.682 0.324 0.316

SHAP values SVM 0.682 1 0.634 0.630

SVs RF 0.324 0.634 1 0.996

SHAP values RF 0.316 0.630 0.996 1
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or absent. These masking values are expected to influence final values for coalitions in different ways than

omitting a non-contributing feature entirely from the evaluation, as in SVETA.

For the output of an SVMmodel, the similarity between a test instance and learned support vectors plays an

essential role. Hence, for an SVM model with Tanimoto kernel, SVETA should be a preferred approach.
Feature contributions

For an adenosine receptor ligand dataset, an SVM classifier was built. In addition, an RF model was derived

using the same data. The classification performance of both models was very high, reaching a balanced

accuracy of 93 and 92% for SVM and RF, respectively. For the SVM classifier, SHAP values and exact

SVETA SVs were calculated. Correspondingly, SHAP values and exact SVs from the TreeExplainer algo-

rithm were computed for the RF model. On the basis of these values, feature contributions to correct com-

pound activity predictions were determined and compared. Median Person’s correlation coefficient values

of feature contributions of the different models are reported in Table 3 and the value distributions are dis-

played in Figure 1. For SVM, feature contributions quantified on the basis of SVETA SVs and SHAP values

yielded a median correlation coefficient of 0.682, indicating significant differences between prioritized fea-

tures. Hence, SVM model interpretation on the basis of approximate SHAP values would be limited. By

contrast, for the RF model, SHAP and TreeExplainer SVs, a median Person’s correlation coefficient close

to 1 was obtained. Hence, for RF models, features prioritized on the basis of exact and approximate values

were very closely corresponding and model interpretation on the basis of SHAP values would be reliable.

Correlations of feature importance values from different explanatory approaches andmodels (for example,

SHAP values from SVM and SVs from RF) were lower, ranging from 0.316 to 0.634. Limited correlation was at

least partly owing to the calculation of different scores for SVM (log odds) and RF (probability). However,

the median correlation between SHAP values for SVM and RF reached 0.630, whereas the correlation be-

tween exact SVs calculated with SVETA and TreeExplainer, respectively, was much lower (0.324). Hence,

SVM and RF prioritized different features for predictions. In the case of RF, the SHAP value provided a high-

ly accurate approximation of exact SVs. By contrast, for SVM, SHAP values had limited accuracy. Taken

together, these findings clearly indicated the need for SVM model interpretation on the basis of SVETA

values.
Model explanations

For SVM and RF, model-specific explanations of predictions were further analyzed and complemented by

feature mapping on test compounds. Therefore, SVETA SVs and TreeExplainer SVs were considered. First,

cumulative SVs for present and absent features were calculated over all correctly predicted test com-

pounds. Figure 2 shows the value distributions for active and random test instances. For both SVM and

RF models, features present in active compounds determined their correct prediction, whereas the

absence of these features was largely responsible for the correct prediction of random instances by RF.

These results paralleled prior findings in multi-target activity predictions using RF and TreeExplainer (Feld-

mann et al., 2021; Feldmann and Bajorath, 2022). However, the comparison also revealed model-specific

differences between the highly accurate SVM and RF classifiers. Although features absent in active

compounds made only small contributions to RF predictions, they opposed correct SVM predictions.

Furthermore, for the SVM model, SVs for random compounds were comparably small for present and ab-

sent features. Present features made small negative contributions (supporting correct predictions) while

absent features made small positive contributions (opposing the prediction). By contrast, correct predic-

tions of random compounds by the RFmodel were clearly driven by feature absence, while present features
6 iScience 25, 105023, September 16, 2022



Figure 1. Feature contributions to explanations of predictions with different models

Boxplots report distributions of Pearson’s correlation coefficient for feature contributions to correct compound

predictions using the SVM and RFmodel. Depending on the approach, feature contributions were quantified using SHAP

values, SVETA SVs, and/or TreeExplainer SVs. For the SVM model, log-odds scores of predictions are explained and for

the RF model, class label probabilities.
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made essentially no contributions. Hence, while correct predictions of active compounds were similarly

determined by SVM and RF, prediction characteristics of random instances differed, despite comparably

high prediction accuracy. With respect to random test instances, RF was the more robust classifier, as re-

vealed by SV analysis. For the SVM model, the average sum of all SVs for random compounds was calcu-

lated as �0.36 G 0.90, indicating that correct predictions of these compounds were largely determined

by the feature-independent contribution of the expected value (�2.4). On the other hand, the expected

value of 0.56 for the class probability of the RF model revealed that this model, without any additional

feature information, would generally slightly favor the prediction of active compounds.

SVs of present features were then mapped to exemplary active test compounds (Figure 3). These test com-

pounds represented different chemical series, shown at the top and bottom, respectively. Features making

strong positive contributions to the correct prediction of activity prioritized by the SVM and RFmodel delin-

eated coherent and similar substructures in compounds from both series. Substructures responsible for

positive contributions to predicted activity included the core ring system in both compounds. These sub-

structures were reminiscent of adenosine, which represents the endogenous ligand of receptor. By

contrast, small negative contributions opposing the correct predictions were mostly centered on individual
Figure 2. Cumulative contributions of features present or absent in test compounds

Boxplots report SVs for feature contributions to log-odds scores of the SVM model and predicted class probabilities of

the RF model.

iScience 25, 105023, September 16, 2022 7



Figure 3. Mapping of feature contributions

SVs of features present in active compounds correctly predicted by the SVM (left) and RF (right) models are mapped on

atoms. The atom-based sum of feature contributions is color-coded, with red and blue indicating positive and negative

contributions to the prediction of activity, respectively.
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atoms distributed over the structures. Hence, the explanations of these exemplary test compounds on the

basis of exact SVs derived for the SVM model (SVETA) and RF model (TreeExplainer) were consistent and

chemically meaningful.
DISCUSSION

Given the extensive use of ML in many scientific fields and the black box nature of most algorithms, ap-

proaches for the explanation of models and their predictions experience increasing attention, especially

at interfaces between computation and experiment. A variety of approaches are being considered for

XML. Among these is the SV concept originating from game theory. Pioneering work by the Lundberg

et al has adapted and further extended this concept for XML. Key aspects of SV analysis include its

model-agnostic nature and the ability to quantify contributions of features that are present or absent in

test instances to predictions. This sets the approach apart from feature weighting techniques developed

earlier and renders it more informative. The SHAP and TreeExplainer framework developed by Lundberg

et al. has recently also been introduced in chemoinformatics and drug discovery, primarily focusing on

compound property predictions.

In this work, we have reported the development of a new methodology for calculating exact SVs for ex-

pressing Tanimoto similarity, which governs different facets of molecular similarity analysis and its appli-

cations in chemoinformatics. So far, the calculation of exact SVs has only been feasible for decision tree

methods via TreeExplainer. Given its characteristics, Tanimoto similarity is difficult to explain using the

local SHAP approximation, as shown herein. By contrast, the newly developed SVETA approach is

capable of exactly expressing Tanimoto similarity values. SVETA has been designed to explain predic-

tions of SVMs with Tanimoto kernel. This SVM architecture using binary structural fingerprints as molec-

ular descriptors is a mainstay for compound classification in computer-aided drug discovery, together

with decision tree methods. Hence, for molecular ML, SVETA fills a void as it enables an accurate assess-

ment of feature contributions to SVM predictions and the explanation of Tanimoto similarity relationships

in predictive modeling. In our proof-of-concept investigation, SVETA produced promising results. The

analysis also uncovered similarities and differences in the correct classification of active and random

compounds by SVM and RF classifiers, and mapping of contributing features identified based upon

SVs produced chemically intuitive results. As a part of our study, the SVETA approach is made freely

available. It is hoped that the methodology will spark the interest of many investigators in molecular

informatics and drug discovery.
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Limitations of the study

The SVETA methodology is currently limited to the use of binary molecular fingerprint descriptors for SVM

and the Tanimoto kernel.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Compound activity data ChEMBL 30 https://doi.org/10.6019/CHEMBL.database.30

Confirmed aggregators Aggregator advisor http://advisor.docking.org/faq/#Data

Data sets This paper https://doi.org/10.17632/hz3pjthz2t.1

Software and algorithms

RDKit Zenodo https://doi.org/10.5281/zenodo.6605135

Lilly Medchem rules GitHub https://github.com/IanAWatson/Lilly-Medchem-Rules

Scikit-learn GitHub https://github.com/scikit-learn/scikit-learn

Python code for SVETA calculations

and analysis workflows

This paper https://doi.org/10.5281/zenodo.6792073
RESOURCE AVAILABILITY

Lead contact

Further information and requests for code and resources should be directed to and will be fulfilled by the

lead contact, Jürgen Bajorath (bajorath@bit.uni-bonn.de).
Materials availability

This study did not generate new unique reagents.

Data and code availability

Compound data have been deposited at Mendeley Data and are publicly available as of the date of pub-

lication. Accession numbers are listed in the key resources table.

All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs

are listed in the key resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.
METHOD DETAILS

Compounds and activity data

Compounds from ChEMBL release 30 (Bento et al., 2014) with standard potency measurements (Ki, IC50, or

Kd) and numerically specified potency values (‘‘ = ’’) of at least 10 mMwere extracted (and recorded as nega-

tive decadic logarithmic values). Compounds with measurements flagged as ‘‘potential author error’’’ or

‘‘potential transcription error’’ were omitted. Furthermore, only activity annotations corresponding to

direct interactions (target relationship type: ‘‘D) with human wild-type proteins at the highest confidence

level (target confidence score: 9) were considered. Molecular mass was calculated using RDKit (Landrum

et al., 2022), discarding compounds with a mass of 1000 Da or more. The remaining compounds were

computationally screened for colloidal aggregators as identified by the aggregation advisor (Irwin et at.,

2015). Such aggregators non-specifically precipitate proteins in assays. In addition, compounds were

examined using a substructure-based filter for pan-assay interference compounds (PAINS) (Baell and Hol-

loway, 2010). PAINS are assay interference compounds potentially causing false-positive assay signals by a

variety of mechanisms such as absorption of light at probed wavelengths, reactivity, or covalent and unspe-

cific protein binding. Furthermore, the Lilly Medicinal Chemistry filter for potentially reactive and non-spe-

cific assay interference compounds was applied, which consists of 275 empirical detection rules derived

from screening campaigns and medicinal chemistry knowledge (Bruns and Watson, 2012). For our analysis,

a dataset containing 287 compounds with activity against the adenosine receptor A3 (UniProt ID: P0DMS8),
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representing active/positive instances, and an equal number of randomly selected ChEMBL compounds

(assumed inactive/negative) was generated. From this dataset, a random subset of 50 compounds was

taken for similarity control calculations.
Molecular representation and activity predictions

Compounds were represented as binary bit vectors, in which each element corresponded to a unique struc-

tural feature generated with the Morgan algorithm using a bond radius of 2 (Rogers and Hahn, 2010), as

implemented in RDKit.

An RF classifier comprising an ensemble of decision trees (Breiman, 2001; Pedregosa et al., 2011) and an

SVMmodel were generated based on a training set comprising 50% of the (positive/negative) compounds.

The remaining 50% were used as the test set. Optimal hyperparameters (SVM: C˛{0.1, 1, 10, 50, 100, 200,
400, 500, 750, 1000}; RF: n_estimators˛{10, 100, 250, 500}, min_samples_split˛{2, 3, 5, 7, 10}, min_

samples_leaf˛{1, 2, 5, 10}) were determined over 10 internal random training-validation splits (50/50)

and applied to derive final classifiers for the complete training set. Model performance on the test set

was quantified as balanced accuracy (BA) defined as:

BA =
1

2
$

�
TP

TP + FN
+

TN

TN+ FP

�
(Equation 16)

In Equation 16, TP, FP, TN, and FN represent the number of true positives, false positives (FP), true nega-

tives, and false negatives, respectively.
Model explanations

RF and SVM predictions were analyzed using the SHAP kernel explainer producing locally approximated

feature importance values. As a background sample for SHAP, 100 randomly selected training set

compounds were used. In addition, for RF, the TreeExplainer algorithm (Lundberg et al., 2020) with

interventional feature perturbation using the entire training set as a background sample was applied to

calculate exact importance values. Furthermore, SVM predictions were explained with the newly intro-

duced SVETA approach.
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