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Anticardiolipin antibody (aCL), an important characterization of antiphospholipid
syndrome, shows an intense association with vascular endothelial injury. Hyperoside is
a flavonoid extracted from medicinal plants traditionally used in Chinese medicines,
displaying anti-inflammatory, anti-cancer, and anti-oxidative properties in various
diseases. Recent studies have shifted the focus on the protective effects of hyperoside
on vascular endothelial injury. However, little is known about the mechanisms involved. In
the present study, we investigated the effect of hyperoside on aCL-induced injury of
human umbilical vein endothelial cells (HUVECs) in vitro. Our data illustrated that aCL
induced HUVEC injury via inhibiting autophagy. Hyperoside reduced aCL-induced
secretion of proinflammatory cytokines IL-1b and IL-8 and endothelial adhesion
cytokines TF, ICAM1, and VCAM1 in HUVECs. Additionally, hyperoside activated
autophagy and suppressed the mTOR/S6K and TLR4/Myd88/NF-kB signaling
transduction pathways in aCL-induced HUVECs. To the best of our knowledge, this is
the first study to investigate the effect of hyperoside on aCL-induced injury, as well as offer
insights into the involved mechanisms, which is of great significance for the treatment of
antiphospholipid syndrome.

Keywords: hyperoside, human umbilical vein endothelial cells, anticardiolipin antibody, injury, autophagy
INTRODUCTION

Antiphospholipid syndrome (APS) is a rare systemic autoimmune disorder clinically characterized
by recurrent thrombosis or pregnancy morbidity in combination with the persistent presence of
circulating antiphospholipid antibody (aPL), including anticardiolipin antibody (aCL), anti-b2-
glycoprotein I (anti-b2GPI), and lupus anticoagulant (LA) (Woo et al., 2010; Gomez-Puerta and
Cervera, 2014; Linnemann, 2018). Various mechanisms have been speculated to contribute to the
disease progression regarding to inflammation (Becarevic, 2016), adhesion receptors (Lopez-
Pedrera et al., 2017), oxidative stress (Benhamou et al., 2015), and neutrophil extracellular traps
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(Meng et al., 2017) in APS patients. Usually, APS patients have a
greater predisposition to cardiovascular disorders, involving
coronary artery disease, myocardial infarction, and stroke
(Kolitz et al., 2019). Previous studies have confirmed that aPL
isolated from APS patients accelerate thrombosis progression in
animal models (Manukyan et al., 2016; Papalardo et al., 2017;
Sacharidou et al., 2018), but the involved mechanisms are not yet
clearly understood.

Vascular endothelial cells play a pivotal role in maintaining
normal physiological functions of the cardiovascular system,
which secrete a series of vasoactive substances through
autocrine, endocrine, or paracrine pathways to regulate blood
flow, vascular wall tension, angiogenesis, and inflammation (Li
and Shah, 2004; Feigerlova and Battaglia-Hsu, 2017; Montezano
et al., 2017). Due to their barrier functions, vascular endothelial
cells are more vulnerable to injury induced by physical or
chemical risk factors (Awad et al., 2013). Vascular endothelial
cell injury occurs in many clinical events, including angiogenesis,
atherosclerosis, thrombosis, hypertension, and heart failure
(Cheng et al., 2016; Yang et al., 2018; Yang et al., 2019; Yao
et al., 2019; Yi and Gao, 2019). Confirmed evidence has validated
that vascular endothelial cell injury induced by aPL plays a
cardinal role in APS pathogenesis (Corban et al., 2017).
Notably, aCL, an important composition of aPL, is closely
associated with numerous thromboembolic phenomena
(Cappell, 1994), including esophageal necrosis and perforation.
The accumulation of aCL may be a vital threat for endothelial cell
injury (Westerman et al., 1992). However, until now, the
involving mechanisms are still elusive. Therefore, exploration
of underlying mechanisms involved in endothelial injury
induced aCL, are urgently needed for the treatment of APS.

Autophagy is an evolutionarily conserved process for
eliminating nonessential or dysfunctional organelles in living
cells (Rajawat and Bossis, 2008; Dokladny et al., 2015). It is well
known that autophagic dysfunction companied by the changes in
light chain 3 I/II (LC3 I/II), Beclin 1, and p62 is associated with
the pathogenesis of many diseases (Li et al., 2018; Uddin et al.,
2019). LC3-II, a lipidated form of LC3, has been indicated as an
autophagosomal marker in mammals, and has been applied to
study autophagy in multiple inflammatory conditions (Tanida
et al., 2004). Beclin 1, a key component of the autophagosome
nucleation complex, promotes LC3 conversion and the
formation of LC3 puncta (Wu et al., 2018). p62, a classical
receptor of autophagy, is a multifunctional protein involved in
the autophagosomal degradation (Liu W. J. et al., 2016). When
autophagy is disrupted, it usually happens that the expressions of
LC3 II and Beclin 1 are decreased but p62 is increased. Some
lines of evidence have demonstrated that the autophagic
dysfunction in vascular endothelial cells causes endothelial
dysfunction and vascular homeostasis disruption, further
resulting in the pathogenesis of cardiovascular diseases (Nixon,
2013; Guo et al., 2016; Xu et al., 2018). Additionally, mammalian
target of rapamycin (mTOR), a master regulator of cellular
metabolism, is a crucial molecule in regulating autophagy (Kim
and Guan, 2015). However, there have been no available studies
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on the effect of autophagy or mTOR on aCL-induced injury, as
far as we know.

Hyperoside is a flavonoid glycoside compound mainly found
in medicinal herbs, which is a promising agent for disease
prevention (Liu Y. H. et al., 2016; Xie et al., 2016; Chen et al.,
2018). Previous studies have shown that hyperoside displays
anti-oxidative, anti-cancer, and anti-inflammatory properties in
many molecular events (Yang et al., 2016; Kong et al., 2020).
Importantly, hyperoside has been demonstrated to protect
human umbilical vein endothelial cells (HUVECs) against
hydrogen peroxide-induced injury (Li et al., 2012). Besides,
hyperoside has been verified to mediate autophagy in some
cancer cell lines (Fu et al., 2016; Zhu et al., 2017). Thus, it is
possible that hyperoside prevents endothelial cells against injury
by mediating autophagy.

In this study, we sought to investigate whether hyperoside
could protect HUVECs from aCL-induced injury and identify
the possible mechanism involved. Our data demonstrated the
involvement of hyperoside-induced autophagy in aCL-induced
injury of HUVECs and suggested that hyperoside might act as a
potential pharmacological strategy for aCL-induced endothelial
injury in APS patients.
MATERIALS AND METHODS

Clinical Specimens
All studies were approved by the ethics committee of First
Affiliated Hospital of Henan University of Chinese Medicine.
Sixteen patients diagnosed as aCL-positive (aCL > 140 GPL)
fulfilled the informed consents before sample collection in
accordance with the declaration of Helsinki. Blood was
collected by phlebotomist venipuncture, and serum was
collected by standard methods and stored at –80°C until ready
for use. All the sera was pooled together before aCL-IgG
extraction was carried out. aCL-IgG fractions were extracted
following the following steps: Serum was slowly added with
saturated ammonium sulfate to a final mass fraction of 33%,
and placed at 4°C overnight for protein precipitation. The
supernatant was collected, added with saturated ammonium
sulfate to a final mass fraction of 50%, and placed at 4°C
overnight. Then the supernatant was discarded and the
precipitate was retained, dissolved in PBS, and dialyzed for 2
days. The removal of ammonium sulfate was confirmed by
addition of 1% BaCl2. The proteins were then concentrated
with polyethylene glycol solution for further experiments.

HUVEC Culture and Treatment
Human umbilical vein endothelial cells (Zhong Qiao Xin Zhou
Biotechnology, Shanghai, China) were used throughout this
study and maintained in endothelial cell culture medium
(Zhong Qiao Xin Zhou) supplemented with 10% fetal bovine
serum (Sigma-Aldrich, St Louis, MO, USA) in a humidified
atmosphere with the presence of 5% CO2. Hyperoside (HPLC
grade) was purchased from Chengdu Purechem-Standard Co.,
May 2020 | Volume 11 | Article 762
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Ltd., China. Rapamycin and 3-MA were purchased from
MedChemExpress, NJ, USA (Purity of all ≥ 98%). Rapamycin
is a specific inhibitor of mTOR (Li et al., 2014) and 3-MA is a
widely used autophagy inhibitor (Wu et al., 2013).

For the HUVEC injury assay, HUVECs were treated with
aCL-IgG in an adjusted dose and duration as previously
described (Simantov et al., 1995). In this study, HUVECs were
treated with aCL (200 mg/ml) for 30 min, 1 h, 2 h, and 4 h. To
evaluate the effect of hyperoside on aCL-induced injury of
HUVECs, cells were pre-treated with hyperoside (10, 20, 50
mM) for 24 h and then treated with aCL (200 mg/ml) for 4 h. 3-
MA (10 mM) was added at the same time as hyperoside, while
rapamycin (100 nM) was added at the same time as aCL.

Cell Transfection
HUVECs in the logarithmic growth phase were transfected with
2.5 µg LC3B-red fluorescent protein (RFP)-green fluorescent
protein (GFP) plasmids using lipofectamine 2000 (Invitrogen,
California, USA) according to the manufacturer's instructions.
At 48 h after transfection, the cells were photographed with a
fluorescence microscope (BX53, Olympus, Tokyo, Japan).

Immunofluorescence
Cells were seeded on glass slides, fixed with 4% paraformaldehyde
(Sinopharm Chemical Reagent, Beijing, China) for 15 min, and
permeabilized with 0.1% TritonX‐100 (Beyotime, Shanghai, China)
for 30 min. Then cells were blocked with goat serum (Solarbio,
Beijing, China) for 15 min, followed by incubation with anti‐NF‐kB
p65 (Proteintech Group, IL, USA) at 1:200 dilution in PBS at 4°C
overnight. After three times washed with PBS, cells were incubated
with Cy3-labeled fluorescent secondary antibody (Beyotime) at
1:200 dilution in PBS and DAPI (Aladdin Regents, Shanghai,
China) was used to stain the nucleus. A fluorescence microscope
(BX53, Olympus) was then applied to capture images at
400× magnifications.

Western Blot
For western blot analysis, cells were lysed in RIPA buffer
(Beyotime) containing 1 mM PMSF (Beyotime). The
supernatants were collected and protein concentration was
detected by the BCA protein assay kit (Beyotime). Proteins
were loaded and separated on an 8–15% gradient SDS-PAGE
gel and transferred to PVDF membranes (Millipore, MA, USA).
After blocking nonspecific binding sites with non-fat milk for 1
h, the membranes were incubated with antibodies against mTOR
(Proteintech, 1:500), phospho-mTORSer2448 (p-mTORSer2448,
ABclonal Biotechnology, Wuhan, China, 1:1,000), p70 S6
Kinase (S6K, ABclonal, 1:3,000), phospho-S6KThr389 (p-
S6KThr389, ABclonal, 1:1,000), p62 (ABclonal, 1:2,000), Beclin 1
(Proteintech, 1:400), tissue factor (TF, ABclonal, 1:1,000),
intercellular cell adhesion molecule-1 (ICAM1, ABclonal,
1:1,000), vascular cell adhesion molecule-1 (VCAM1, ABclonal,
1:2,000), toll like receptor-4 (TLR4, Proteintech, 1:1,000),
myeloid differential protein-88 (MyD88, Proteintech, 1:2,000),
nuclear factor kappa-B p65 (NF-kB-p65, 1:1,000), phospho-
p65Ser276 (p-p65Ser276, ABclonal, 1:1,000), phospho-p65Ser536

(p-p65Ser536, ABclonal, 1:1,000), or b-actin (Santa Cruz, CA,
Frontiers in Pharmacology | www.frontiersin.org 3
USA, 1:1000). Membranes were then incubated with horseradish
peroxidase-labeled secondary antibody at 1:5,000 dilution for 1 h
at room temperature. The bands were detected with an imaging
system (WD-9413B, Liuyi Biotechnology, Beijing, China).
ImageJ software (version 1.51a) was used to analyze band
density. The experiment was performed in triplicate.

Quantitative Real-Time Polymerase Chain
Reaction (RT-PCR)
Total RNA was extracted from HUVECs using TRIpure
(BioTeke Corporation, Beijing, China) reagent. cDNA was
synthesized with Super M-MLV Reverse transcriptase
(BioTeke). Real-time PCR was performed using Power SYBR
Green PCRMaster Mix (BioTeke) on ExicyclerTM96

fluorometer
(Bioneer Corporation, Daejeon, Korea). mRNA levels were
calculated using the 2−DDCT method and normalized to the
value of b-actin. The primer sequences were presented in
Table 1. The experiment was performed in triplicate.

Enzyme-Linked Immunosorbent
Assay (ELISA)
Concentrations of E-selectin, interleukin-1b (IL-1b) and
interleukin-8 (IL-8) in the culture medium were determined
using corresponding ELISA kits (USCN Life Science, Wuhan,
China) according to the manufactures' protocols. Briefly,
samples or standards were added to triplicate microplate wells
precoated with corresponding monoclonal antibodies, and
incubated for 1 h. The plates were washed three times and
incubated with the enzyme-linked polyclonal antibodies for 2 h.
Then the wells were washed five times to remove the unbound
antibodies, and added with substrate solution. After incubation
for 20 min, the enzyme reaction was stopped with stop solution.
Optical density values were determined by a microplate reader
(ELX-800, BioTek Instruments, VT, USA) and concentrations
were calculated according to the standard curve. The experiment
was performed in triplicate.

Data Analysis
Statistical analysis was conducted using GraphPad Prism 8.0.2
Software (Version X, CA, USA). Data were analyzed by one-way
TABLE 1 | Primer sequences for qRT-PCR.

Primer Sequence

IL-1b F: GAATCTCCGACCACCACTAC
R: CACATAAGCCTCGTTATCCC

IL-8 F: CACAAACTTTCAGAGACAGCAG
R: GTGGAAAGGTTTGGAGTATGTC

TF F: TGTCTACATAGCGGGCAAGT
R: GTTCCAGCCAGCGGTTCT

ICAM1 F: GCAAGAAGATAGCCAACCAAT
R: TGCCAGTTCCACCCGTTC

VCAM1 F: GAAATGACCTTCATCCCTAC
R: GCTGACCAAGACGGTTGTAT

b-actin F: CTTAGTTGCGTTACACCCTTTCTTG
R: CTGTCACCTTCACCGTTCCAGTTT
IL-1b, interleukin-1b; IL-8, interleukin-8; TF, tissue factor; ICAM1, intercellular cell adhesion
molecule-1; VCAM1, vascular cell adhesion molecule-1.
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analysis of variance (ANOVA) followed by Turkey's post hoc
tests and presented as mean ± SD. Values of P < 0.05 were
considered as statistically significant.
RESULTS

Autophagy Was Inhibited in aCL-Induced
Injury of HUVECs
First of all, to evaluate the injury effect of aCL on HUVECs, cells
were treated with 200 mg/ml aCL for 0, 30 min, 1 h, 2 h, and 4 h,
respectively. The results of ELISA showed that the level of E-
selectin was significantly elevated after aCL treatment for 4 h in
Frontiers in Pharmacology | www.frontiersin.org 4
HUVECs (Figure 1A). Moreover, real-time PCR results showed
that the mRNA levels of IL-1b, IL-8, TF, VCAM-1, and ICAM-1
were significantly elevated after aCL treatment (Figure 1B),
implying that HUVECs were markedly injured by aCL.

Next, in order to verify whether autophagy is involved in aCL-
induced cell injury, HUVECs were transfected with LC3B- RFP-
GFP plasmids and then treated with aCL. The results indicated
that in control cells, both red LC3-RFP and green LC3-GFP
signals were mostly diffused, leading to yellow staining that is
indicative of autophagosomes. In comparison, numerous LC3-
RFP and LC3-GFP puncta disappeared following aCL treatment
(Figure 1C). The results showed that aCL treatment significantly
decreased the expressions of LC3 II/I and Beclin 1 and increased
A B

C D

E

FIGURE 1 | HUVECs were injured by aCL treatment and autophagy was inhibited. HUVECs were treated with aCL (200 mg/ml) for 0, 30 min, 1 h, 2h, and 4 h,
respectively. (A) ELISA analysis of E-selectin. (B) Real-time PCR analysis of IL-1b, IL-8, TF, ICAM1, and VCAM1. (C) Fluorescence results in cells transfected with
LC3B-RFP-GFP plasmid. (D) Western blot analysis of LC3, p62, and Beclin 1 and corresponding gray values of protein bands. (E) Western blot analysis of mTOR,
p-mTORSer2448, S6K, and p-S6KThr389 and corresponding gray values of protein bands. Data were presented as mean ± SD, n = 3. #P < 0.05, ##P < 0.01, ###P <
0.001, ####P < 0.0001 vs. Ctrl. Ctrl represented Control.
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p62 (Figure 1D), indicating that autophagy was markedly
suppressed by aCL treatment.

Besides, we detected the expressions of signal molecules in
mTOR/S6K pathway. The results showed that the protein
expressions of p-mTORSer2448 and p-S6KThr389 were significantly
increased following aCL treatment (Figure 1E), suggesting that the
mTOR/S6K pathway was activated by aCL in HUVECs.

Hyperoside Attenuated aCL-Induced
Inflammatory Response in HUVECs
To investigate the effect of hyperoside on aCL-induced injury,
aCL-treated HUVECs were administrated with different
concentrations of hyperoside. ELISA, real-time PCR, and
western blot were performed to detect the expression of
inflammatory response-related molecules. It turned out that
hyperoside significantly decreased the expression levels of E-
selectin, IL-1b, IL-8, TF, VCAM-1, and ICAM-1 in a dose-
dependent manner, indicating that hyperoside effectively
attenuated aCL-induced inflammatory response in HUVECs
(Figure 2).

Hyperoside Attenuated aCL-Induced
Autophagy Inhibition in HUVECs
Next, we explored the effect of hyperoside on autophagy in aCL-
treated HUVECs. The fluorescence results showed that
hyperoside promoted the formation of autophagosomes
(Figure 3A). The results of western blot showed that
Frontiers in Pharmacology | www.frontiersin.org 5
hyperoside significantly up-regulated the expressions of LC3 II/
I, Beclin1 and down-regulated the expressions of p62 in aCL-
treated HUVECs, indicating that hyperoside activated autophagy
in aCL-treated HUVECs (Figure 3B). Besides, hyperoside
treatment down-regulated the secretion of p-mTORSer2448 and
p-S6KThr389, illustrating that hyperoside inhibited the activation
of mTOR/S6K signaling (Figure 3C).

Hyperoside Inhibited TLR4/MyD88/NF-kB
Signaling in aCL-Induced HUVECs
To uncover the potential pathways by which aCL-induced mTOR
activation and autophagy suppression in HUVECs, we focused on
toll-like receptor-4 (TLR4), which activates inflammatory response
by inducing secretion of proinflammatory cytokines (Wu et al.,
2020). Notably, treatment with aCL significantly increased the
protein levels of TLR4, MyD88, and p-p65Ser536 (Figure 4A),
which were dose-dependently decreased by hyperoside. Moreover,
aCL obviously induced the translocation of NF-kB p65 into the
nucleus in HUVECs, while hyperoside blocked the effect
remarkably (Figure 4B).
Hyperoside Inhibited aCL-Induced
Inflammatory Response in HUVECs by
Activating Autophagy
Furthermore, to verify whether autophagy contributes to the
protection of hyperoside against aCL-induced injury, we treated
A B

C

D

FIGURE 2 | Hyperoside reduced the secretion of proinflammatory cytokines and endothelial adhesion cytokines in aCL-treated HUVECs. HUVECs were treated with
10, 20, or 50 mM of hyperoside for 24 h followed by aCL (200 mg/ml) induction for 4 h. (A) ELISA analysis of E-selectin. (B) Real-time PCR analysis of IL-1b, IL-8, TF,
ICAM1, and VCAM1. (C) ELISA analysis of IL-1b and IL-8. (D) Western blot analysis of TF, ICAM1, and VCAM1 and corresponding gray values of protein bands.
Data were presented as mean ± SD, n = 3. ###P < 0.0001, ####P < 0.0001 vs. Ctrl; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs. aCL. Ctrl represented
Control, Hyp represented hyperoside, L represented low dose (10 mM), M represented medium dose (20 mM), H represented high dose (40 mM).
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aCL-induced HUVECs with rapamycin or 3-MA. It turned out
that both rapamycin and hyperoside significantly attenuated
aCL-induced autophagosome degradation, which was abolished
by 3-MA (Figures 5A, B). We further detected the protein
expression of p-p65 and mapped p65 translocation, and found
that rapamycin and hyperoside obviously inhibited p65 nuclear
translocation and its phosphorylation in aCL-treated HUVECs,
while 3-MA reversed the effect (Figures 5C, D) partially. In
addition, we detected the expressions of inflammatory cytokines
IL-1b and IL-6 and endothelial adhesion molecules TF, VCAM-
1, and ICAM-1 (Figures 5E, F). Consistently, both rapamycin
and hyperoside showed therapeutic effect on aCL-induced injury
of HUVECs and 3-MA reversed the inhibitory effect of
hyperoside on inflammation. Collectively, the above results
indicated that hyperoside attenuated aCL-induced injury of
HUVECs by activating autophagy.
Frontiers in Pharmacology | www.frontiersin.org 6
DISCUSSION

Antiphospholipid antibodies (aCL) are considered to be the
cause of APS by activating endothelial cells and inducing
oxidant-mediated injury (Yadalam et al., 2016). Previous
studies have shown that aCL could be stimulated in an
inflammatory context, leading to activation of vascular
endothelial cells, monocytes, and platelets and thus thrombotic
events in APS patients (Tsuchimoto et al., 2019). Thus, aCL may
act as a possible cause of vascular endothelial cell injury in
thrombotic events, especially in APS patients with positive aCL.
However, to the best of our knowledge, little is known about the
pathogenesis as well as therapeutic strategies in aCL-induced
endothelial cell injury. Therefore, it is of great significance to
investigate the underlying mechanisms and develop new
therapeutic strategies for antiphospholipid syndrome.
A

B

C

FIGURE 3 | Hyperoside activated autophagy in aCL-induced HUVECs. HUVECs were transfected with LC3B-RFP-GFP plasmid, treated with 10, 20, or 50 mM of
hyperoside for 24 h and then induced with aCL (200 mg/ml) for 4 h. (A) Fluorescence results. (B) Western blot analysis of LC3, p62, and Beclin 1 and corresponding
gray values of protein bands. (C) Western blot analysis of mTOR, p-mTORSer2448, S6K, and p-S6KThr389 and corresponding gray values of protein bands. Data were
presented as mean ± SD, n = 3. #P < 0.05, ###P < 0.001, ####P < 0.0001 vs. Ctrl; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs. aCL. Ctrl represented
Control, Hyp represented hyperoside, L represented low dose (10 mM), M represented medium dose (20 mM), H represented high dose (40 mM).
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Hyperoside, a major active ingredient in various Chinese
traditional medicinal plants, is widely used in certain diseases due
to its antioxidative and anti-inflammatory effects. Hyperoside has
been proved to exert protective effects against H2O2-induced
apoptosis in HUVECs (Hao et al., 2016), implying that hyperoside
may be an effective compound for treating aCL-induced HUVEC
injury. In this study, we confirmed that hyperoside protected
HUVECs against aCL-induced injury via activating autophagy. We
alsodemonstrated that the inhibitionofmTORsignaling is crucial for
hyperoside-mediated autophagy activation.

It has been confirmed that stimulation of monocytes and
endothelial cells by aPL leads to a prothrombotic and
proinflammatory state (Xia et al., 2017). To confirm the effect
of aCL on cell injury, HUVECs were stimulated by aCL for
different periods. E-selectin is a critical molecular marker of cell
injury (Lawson, 2000). Proinflammatory cytokines IL-1b and
IL-8 are two important molecules in inflammatory response
(Lappas, 2017). Moreover, TF, VCAM-1, and ICAM-1 are
major endothelial adhesion molecules whose levels are
increased during endothelial injury (Hamilton et al., 2004). It
turned out that HUVECs were markedly injured by aCL
treatment, as assessed by significant decreased expressions of
E-selectin, IL-1b, IL-6, TF, VCAM-1, and ICAM-1.

Autophagy, as a metabolic, cytoplasmic quality control and
general homeostatic process, is primarily cytoprotective, tissue
protective, and anti-inflammatory (Deretic and Levine, 2018).
Many lines of evidence have demonstrated that autophagy
protects against endomembrane damage triggered by various
agents of endogenous or infectious origin, and prevents
unnecessary or excessive inflammation (Deretic and Levine,
2018). Notably, in this study, we found that autophagy was
obviously disrupted in HUVECs stimulated with aCL, as
Frontiers in Pharmacology | www.frontiersin.org 7
evidenced by abnormal expressions of autophagy-related
molecules LC3, Beclin 1, and p62. Moreover, mTOR, an
atypical serine/threonine kinase, has been confirmed to
promote endogenous metabolism and suppress autophagy
induction under physiological conditions (Kim and Guan,
2015). Targeting mTOR via regulating autophagy has become
an important therapeutic strategy for inhibiting inflammation.
Our data showed that aCL promoted the phosphorylation of
mTOR and downstream S6K, implying the mTOR/S6K signaling
pathway was abnormally activated by aCL stimulation.

To evaluate the therapeutic effect of hyperoside on aCL-induced
injury, we pre-treated HUVECs with gradient concentrations of
hyperoside and then with aCL for injury. Hyperoside markedly
reduced the expressions of proinflammatory cytokines IL-1b and
IL-6 and endothelial adhesion molecules E-selectin, TF, VCAM-1,
and ICAM-1 in HUVECs in a dose-dependent manner, indicating
that hyperoside exerted superior therapeutic activity in aCL-induced
inflammatory response in HUVECs. In addition, hyperoside
activated autophagy and suppressed mTOR/S6K pathway in aCL-
induced HUVECs. Notably, we revealed the potential mechanisms
underlying the association between mTOR activation and
autophagy suppression. TLR4/MyD88/NF-kB pathway has been
confirmed to quench intestinal inflammation and oxidative stress
injury by boosting mTOR-dependent autophagy (Zhou et al., 2018).
In line with the previous researches, hyperoside dose-dependently
inhibited the TLR4/MyD88/NF-kB signaling pathway in aCL-
induced injury of HUVECs, thereby reducing the secretion of
proinflammatory and adhesion molecules.

To verify whether hyperoside exerts its anti-inflammatory
effects against aCL induced injury through activating autophagy,
we used 3-MA, a specific mTOR inhibitor, to block the effect of
hyperoside. Meanwhile, rapamycin, a classic mTOR activator,
A B

FIGURE 4 | Hyperoside inhibited TLR4/MyD88/NF-kB signaling in aCL-induced HUVECs. HUVECs were treated with 10, 20, or 50 mM of hyperoside for 24 h and
then induced with aCL (200 mg/ml) for 4 h. (A) Western blot analysis of TLR4, MyD88, p65, and p-p65Ser536 and corresponding gray values of protein band. (B) NF-
kB nuclear translocation detected by immunofluorescence. Data were presented as mean ± SD, n = 3. ###P < 0.001, ####P < 0.0001 vs. Ctrl; *P < 0.05, ***P <
0.001, ****P < 0.0001 vs. aCL. Ctrl represented Control, Hyp represented hyperoside, L represented low dose (10 mM), M represented medium dose (20 mM), H
represented high dose (40 mM).
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was used as a positive control. Similar to the influence of
rapamycin, hyperoside promoted autophagy activation,
inhibited the phosphorylation and nuclear translocation of NF-
kB p65, as well as decreased the secretion of proinflammatory
and endothelial adhesion cytokines. On the contrary, 3-MA
reversed the inhibitory effects of hyperoside on aCL-induced
inflammation. These results demonstrated that hyperoside
exerted its therapeutic effect against aCL-induced injury by
specifically activating mTOR signaling-mediated autophagy.

In summary, this is the first study to link autophagy and aCL-
induced injury together. This study not only newly documented
Frontiers in Pharmacology | www.frontiersin.org 8
mTOR-mediated autophagy as a cause of the pathogenesis of
aCL-induced injury, but also offered insights into a candidate
therapeutic strategy for APS treatment. It is conceivable that
hyperoside may be developed as a potential therapeutic for
attenuating aCL-induced vascular endothelial injury, thereby
preventing the vessels from thrombosis in APS patients.
Regrettably, the present study has several limitations, such as
preliminary and incomprehensive data and lack of extensive
preclinical experiments. Given the functional importance of
autophagy in aCL-induced injury, more data and further
explorations are needed to support our conclusion.
A

C D

B

E

F

FIGURE 5 | Hyperoside inhibited aCL-induced inflammatory response by activating autophagy in HUVECs. HUVECs were transfected with LC3B-RFP-GFP plasmid,
treated with 10 mM of 3-MA, 50 mM of hyperoside for 24 h and then induced with aCL (200 mg/l) or 100 nM of rapamycin. (A) Fluorescence results. (B) Western blot
analysis of LC3 and corresponding gray values of protein band (C) NF-kB nuclear translocation detected by immunofluorescence. (D) Western blot analysis of p65, p-
p65Ser276, and p-p65Ser536 and corresponding gray values of protein band. (E) ELISA analysis of IL-1b and IL-8. (F) Western blot analysis of TF, ICAM1, and VCAM1 and
corresponding gray values of protein band. Data were presented as mean ± SD, n = 3. ###P < 0.001, ####P < 0.0001 vs. Ctrl; *P < 0.05, **P < 0.01, ***P < 0.001, ****P <
0.0001 vs. aCL; &P < 0.05, &&P < 0.01, &&&P < 0.001 vs. aCL-Hyp. Ctrl represented Control, Hyp represented hyperoside, Rap represented Rapamycin.
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CONCLUSION

Hyperoside protects HUVECs from aCL-induced injury by
reducing the secretion of proinflammatory cytokines IL-1b and
IL-6 and endothelial adhesion molecules E-selectin, TF, VCAM-
1, and ICAM-1 via activating mTOR-mediated autophagy.
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