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Division of labor in work shifts 
by leaf‑cutting ants
Pedro B. Constantino1*, Veronica S. Valentinuzzi2 & André F. Helene1

Foraging rhythms in eusocial insects are determined by the colony´s overall pattern. However, in 
leaf-cutting ant workers, individual rhythms are not fully synchronized with the colonies’ rhythm. The 
colony as a whole is nocturnal, since most worker activity takes place at night; however some workers 
forage during the day. Previous studies in individualized ants suggest nocturnal and diurnal workers 
coexistence. Here observations within the colony, in leaf-cutting ants, showed that workers have 
differential foraging time preference, which interestingly is associated to body size and differential 
leaf transportation engagement. Nocturnal ants are smaller and less engaged in leaf transportation 
whereas diurnal ants are bigger and more engaged in leaf carriage. Mechanisms underlying division of 
labor in work shifts in ants are still unknown but much can be extrapolated from honeybees; another 
social system bearing a similar pattern. A collective organization like this favors constant exploitation 
of food sources while preserving natural individual rhythm patterns, which arise from individual 
differences, and thermal tolerance, given by the size polymorphism presented by this species.

Eusocial insect behavior is commonly analyzed in two distinct but not independent biological levels; these are 
(1) individual and (2) collective1–6. The first concerns behavior of individuals as autonomous entities, owners 
of a nervous system, capable of information integration and responsiveness to environmental stimuli7–10. The 
second concerns the colony as a unit capable of complex collective behaviors that may or may not directly reflect 
the behaviors of each individual11–14.

Self-organization models settle as a powerful tool to explain how collective behaviors emerge from countless 
interactions between individuals within a colony15,16. Individual behaviors are treated as a simple response to 
the environment in these models17. However, such assumption does not allow a deeper evaluation of the physi-
ological and behavioral aspects of the individual.

Foraging is an example of a collective behavior displayed by colonies that involve individual behavioral 
components2,6,18,19. Colonies of social wasps, bees and ants have a preferential foraging phase that describes 
species as nocturnal or diurnal20–26. It is expected that the relationship between light–dark cycles and foraging 
rhythms to be given by the physiological system of endogenous oscillator27. These oscillators are typically based 
in self-regulated clock genes feedback loops28,29. Since genes are involved, the foraging rhythm would be expected 
to be inheritable, individual and common to all individuals, as workers are siblings and have a higher degree of 
kinship due to haplodiploid sexual determination30,31. However, this is not the case in leaf-cutting ants.

Leaf-cutting ants build long foraging trails between nests and food sources32–34. Previous studies described 
the foraging pattern of Atta cephalotes as nocturnal, since foraging trails had higher ant flows during the dark 
phase35,36. However a small, but not negligible number of ants were observed during the light phase. Either these 
ants are arrhythmic or the workers are able to divide labor in work shifts.

Chronobiological experiments showed evidence that Camponotus compressus ants have the endogenous 
mechanism required to divide labor in work shifts37. Despite the fact that these data was collected in isolated 
individuals, which can disrupt the natural behavior of a social organism38, it is important evidence of a complex 
mechanism that underlies individual behavior to collective synchronization.

In the present work another approach was used to identify if leaf-cutting ants are work shifters. To do so, 
groups of ants from laboratory kept colonies (12:12 LD cycle) were marked in four distinct 2-h shifts (two dur-
ing the light phase and two during dark phase). The distribution of these marked ants was then observed for the 
following five consecutive days after marking. Other variables measured were total ant flow, to characterize the 
colony’s foraging rhythm, and total leaf transportation to measure foraging efficiency during the different phases. 
Since leaf-cutting ants have a high degree of polymorphism39,40, ant size was also quantified and the relationship 
between size, physiology and behavior was proposed to explain the results.
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Materials and methods
Six Atta sexdens colonies kept in laboratory were used. Two weeks before the beginning of the experiment, 
each colony was moved to the test room for adaptation to a highly controlled environmental condition—tem-
perature: 25  ± 1 ºC; relative humidity: 70 ± 2%; photoperiod: 12:12 LD (lights on at 06:00 h). The colonies were 
kept in plastic trays (H × L × W: 65 × 45 × 25 cm) and the fungus garden was raised in a plastic cylinder (D × L: 
24 × 25 cm) inside the plastic tray. A 1.5 m wooden bridge connected the colony tray with a same size but empty 
tray, hereinafter referred as foraging tray. Fresh Acalipha sp. leaves were offered ad libitum as food source (Fig. 1). 
Experiments were 6 days long: one marking day and five observation days.

Marking.  Ant marking took place in what will be called day 0. Four, 2-h-long intervals (called “work shifts”) 
were selected within a 24 h cycle as follows—During the light phase: L1 (10:00–12:00) and L2 (14:00–16:00); 
and during the dark phase: D1 (22:00–00:00) and D2 (02:00–04:00). These shifts were chosen to avoid proximity 
to the dark–light and light–dark transitions. During each selected shift interval, loaded ants returning from the 
foraging tray were removed from the trail and manually marked with a SHARPIE oil-based ink41. Each group 
was marked with a unique pattern allowing identification in posterior observations.

Observation.  At the end of the foraging trail a LOGITECH c920 HD Pro Webcam connected to a computer 
running the surveillance software ISPY was placed (Fig. 1). The schedule function was used to record 2-h-long 
videos during the same work shifts when marking took place. Videos were recorded daily during the five con-
secutive days that followed marking. For night recording we used red LED lamps that only emit electromagnetic 
waves of > 650 nm, and less than 1 lx of intensity, which are invisible to ants, since they do not have photorecep-
tors to this wavelength42.

Videos were analyzed collecting the following data: (1) total number of marked ants from each group that 
crossed the bridge; (2) total number of leaves carried. These data allowed comparison of the number of marked 
ants in each shift within a day and between days. In each video, an (3) estimated value of the total flow was 
obtained by counting the total number of ants that crossed the bridge during 12 random minutes within the 
120 min video interval.

A correlation between ant flow and leaf transportation was made using data from total number of leaves 
carried and the total estimate ant flow for each light or dark condition. This correlation, here named foraging 
efficiency, allows analysis of the colony’s retrieving food effort and how it varies during the different phases.

Ant measurements.  During the observations it appeared that ants marked on light phase and night phase 
were from different sizes. Since leaf-cutting ants presents a high degree of polymorphism it seemed reasonable to 
assume that this difference could have a biological significance. Thus, ants were digitally measured on replica 5 
and 6 since a metric scale was placed in the webcam field view, to test the hypothesis of morphological difference 
among day ants and night ants. This metric scale was used to standardize pixel length obtained from IMAGEJ 
measure function taken from whole body of ants passing through. Body length from 705 ants distributed on the 
four shifts during the five testing days was measured using IMAGEJ software. Those 705 ants were selected from 
400 frames of videos from 2 out of 6 replicas.

Figure 1.   Experimental setup schematics. (a) Spatial disposition of colonies areas, highlighting nest tray, 
connective bridge and foraging tray. (b) Selected work shifts from 24 h period: L1 (10:00–12:00) and L2 
(14:00–16:00) and during the dark phase D1 (22:00–00:00) and D2 (02:00–04:00). Note that work shifts are far 
from crepuscular phase and are disposed 2 h apart in same lighting condition and 12 h apart in opposite light 
condition.
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Statistical analyses.  Collected data were from observed ants in different shifts and days. Since data were 
not normally distributed, to compare the number of ants observed in different shifts and days, a set of general-
ized linear mixed model (GLMM) were fitted using a Poisson distribution. Number of marked observed ants 
was the response variable and as fixed effects it was used ‘work shift’ (L1, L2, D1 and D2) and ‘observation day’ 
(1, 2, 3, 4 and 5); experimental colony was used as random factor. The model that accounted for interactions 
between fixed factors was used, since there was this kind of interactions (see results below). Following with the 
model analysis a post-hoc test was made to determine overall patterns within fixed factors. To analyze overall 
ant flow regardless of marked ants a Kruskall-Wallis (KW) test was performed with a Dunn post-hoc test for 
multiple comparisons between groups. Linear regression analyses were performed to compare the correlation 
between total estimated ant flow and total leaf transportation during the light or dark phase. Ant size data were 
normally distributed, so analysis of variance (ANOVA) was performed followed by a Tukey post-hoc analyses for 
multiple comparisons. All the graphs and analyses were performed in R version 3.5.1. Anova, Tukey’s post-hoc 
test, Kruskall–Wallis test and linear regression analyses were available in basic stats package. Dunn’s post-hoc 
test was available in ‘FSA’ package. GLMM analyses were performed using the ‘glmer’ function in ‘lme4’ package 
and ‘emmeans’ function in ‘emmeans’ package for post-hoc tests. Graphs were made using ‘ggplot2’ package.

Results
Collective foraging characterization.  The colony as a whole had a preferential phase with a strong noc-
turnal foraging activity: mean number of ant flow was 1659 individuals during the light phase (work shifts L1 
and L2) and 3271 during the dark phase (work shifts D1 and D2). It is also possible to observe that total ant flow 
varied among the selected work shift intervals. Colony activity was bigger during work shift D1 (mean number 
of ants: 3952) and smaller during work shift L1 (mean number of ants: 1509) (ant flow KW: χ2 = 33.324, df = 3, 
p < 0.001) (Fig. 2).

Number of marked ants.  A total number of 678 ants were marked throughout 6 replicas. The distribution 
of marked ants by replica and work shift can be found at Table 1. There were an uneven number of ants marked 
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Figure 2.   Total ant flow, regardless of marked ants, observed in each work shift for the 5 observation days. 
Boxplots represents the distribution of marked ants observed for the 5 day period and for the 6 colonies 
analyzed. Note that ant flow was bigger during night, especially for work shift D1, than day (ant flow KW: 
χ2 = 33.324, df = 3, p < 0.001). Letters above boxplots indicate statistically different distributions in a Dunn’s post-
hoc test of a Kruskal–Wallis test at p < 0.05.

Table 1.   Number of marked ants in each work shift of each replica.

L1 L2 D1 D2

Replica 1 30 46 48 19

Replica 2 21 17 14 9

Replica 3 49 29 61 29

Replica 4 23 31 25 23

Replica 5 31 12 15 15

Replica 6 35 39 28 29

Mean 31.5 29 31.8 20.7

SD 10.03 12.85 18.84 7.94
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in each replica. This is mostly due to foraging activity differences in different work shifts and also in different 
engagement in foraging activity for different lighting conditions (see “Discussion” below for a deeper evalua-
tion).

Temporal division of foraging behavior in work shifts.  In Fig.  3a–d, it is possible to observe the 
distribution of marked ants in each selected work shift interval. The results show that both work shift and obser-
vation day had an effect on reappearance of marked ants (see below). Ants that were marked foraging at any of 
the four intervals during day 0 tended to forage during the same interval at the following five days. It is worth 
pointing out that lighting condition, rather than the work shift, was more important to explain reappearance.

Ants marked on L1 tended to forage more often in the L2 phase (GLMM: z = 22.68, p < 0.001), as does the 
ants marked on L2 (GLMM: z = 14.11, p < 0.001). Post-hoc analysis showed that both of these groups foraged 
less frequently at phase D2. On the other hand ants marked on D1 tended to forage more often in the D1 phase 
(GLMM: z = 11.69, p < 0.001), as does the ants marked on D2 (GLMM: z = 10.37, p < 0.001). Post-hoc analysis 
showed that both of these groups foraged less frequently at phase L1. There was a preferential work shift for 
foraging and another that was rejected in antiphase, that is, 12 h apart from each other. While during the inter-
mediate work shifts, an intermediate foraging level was observed, as post-hoc analysis within fixed factor ‘work 
shift’ (letters above boxplots in Fig. 3).

GLMM analyses detected interactions between fixed factors ‘work shift’ and ‘observation day’. (Ants L1: work 
shift × observation day, z = − 6.085, p > 0.001; Ants L2: work shift x observation day, z = − 2.384, p = 0.017; Ants 
D1: work shift × observation day, z = 2.613, p = 0.008; Ants D2: work shift × observation day, z = 2.459, p = 0.013). 
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Figure 3.   Distribution of marked ants in each work shift for the 5 observation days. Boxplots represents the 
distribution of marked ants observed for the 5 day period and for the 6 colonies analyzed. (a) Ants marked on 
L1 tended to forage at L2 work shift; (b) ants marked on L2 tended to forage at L2 work shift; (c) ants marked 
on D1 tended to forage at D1 work shift; (d) ants marked on D2 tended to forage at D1 work shift. Letters above 
boxplots indicate statistically different distributions using Tukey method for comparing a family of 4 estimates.
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Posterior analyses showed that this interaction is due to an overall reduction in reappearance of marked ants 
in later observation days regardless of the work shift. Thus, the effect of work shift is still a strong predictor of 
reappearance of marked ants.

Foraging efficiency.  A mean of 4.4% of returning ants were carrying a leaf fragment. Although it is a small 
proportion, it is consistent with previous observations of foraging efficiency in leaf-cutting ants. However, forag-
ing efficiency, defined as proportional number of ants engaged in carrying (i.e., number of loaded returning ants 
as a function of total flow), changes with time of day. During daytime this proportion (5.4%) was consistently 
bigger than nighttime (3.4%) (Fig. 4) (lm: F(1, 116) = 18.926, p < 0.001) meaning that there was a higher propor-
tional engagement on food collection during the day relative to the night.

Ant size.  During the four work shifts of the five observation days, 705 unmarked ants were measured. Day 
ants (work shifts L1 and L2) were consistently bigger in size than night ants (work shifts D1 and D2) (ANOVA: 
F(3, 701) = 88.04, p < 0.001). As Fig. 5 shows there is no difference in size between work shifts in the same lighting 
condition. In other words, what seems to influence ant size is phase rather than the work shift.
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Figure 4.   Leaf transportation as a function of total ant flow for the two lighting conditions. Note that foraging 
efficiency, given by the slope of the curves, varies between day and night (lm: F(1, 116) = 18.926, p < 0.001). 
Foraging during day, although less frequent, is more efficient. Inserted boxplot indicates the amount of leaf 
transported during day and night.
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Figure 5.   Boxplots showing body size (cm) distribution of ants measured in each selected work shift (ANOVA: 
F(3, 701) = 88.04, p < 0.001). Letters above boxplots indicate statistically different distributions in a Tukey’s post-hoc 
test of an ANOVA.
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Discussion
Results clearly show two different colony activity states: (i) A high-flow nocturnal activity of smaller individuals 
but with a proportionally lower number of ants engaged in carrying leafs; and (ii) a diurnal low-flow activity of 
bigger ants but with a proportionally higher number of ants engaged in carrying. These results are in agreement 
with and expand data presented in previous work that show that Atta sp. colonies have a preferential nocturnal 
foraging behavior with a small but considerable number of ants foraging during the light phase35,36.

The observation of marked ants shows that night ants and day ants do not have the same foraging time pref-
erence. As Fig. 3A–D shows, marked ants have a preference to forage in the same lighting conditions as during 
the marking day 0. The lighting condition is the defining factor influencing foraging behavior, rather than work 
shift. L2 and D1 ants prefer to forage in the same work shift as in day 0, however L1 and D2 ants prefer to forage 
during work shifts L2 and D1, respectively.

There is a striking feature about these results that must be addressed. Although literature35,36 and our data 
show that the main activity for the whole colony takes place in night phase, there were a considerable number 
of marked ants wandering both in L1 and L2 phases. There were also more ants marked in L1 and L2 than in D1 
and D2. It seems contradictory, however, as Fig. 4 shows, there is a higher flow during night, but, fewer ants are 
engaged to foraging. Also, as Fig. 3 shows, although fewer ants were marked, night phases had higher reappear-
ance of D1 and D2 ants. Thus, these collective pattern may have biased the number of marked ants, but, it only 
sustain our hypothesis about two different colony states, since it is a measure of differential ants engagement to 
foraging in different day phases.

Since the observed colonies revealed these two activity states that clearly correlated with phase, and that ants 
appearing in each state were also different in size, it is reasonable to assume that the colonies activity expresses 
a natural temporal division of labor in work shifts. This organization is particularly interesting for a system that 
works around the clock. Assuming the biological need to rest, ants that work nonstop would have a lower life span 
and a reduced task performance43–45. Therefore, division of labor in work shifts in leaf-cutting ants allows for a 
continuous colony activity that respects natural individual biological rhythms but assures efficiency of the colony.

Data shows a substantial difference in day-night ratio of foraging activity from laboratory to environmental 
conditions36. It may be possible that such variations could happen in nature as a response to seasonal variations. 
However, our experiments were carried in controlled conditions of photoperiod, temperature and humidity. 
This means that our results present an unbiased, unmasked expression of colony activity rhythm27. Hence the 
differences observed in natural and laboratory conditions.

Moreover, division of labor in work shifts of leaf-cutting ants is possible because there are individuals with 
particular associations between activity and lighting conditions. This was demonstrated in previous studies. 
Different Camponotus workers show a naturally expressed diurnal, nocturnal or even arrhythmic activity pat-
terns, depending on the individual37. Also, they can adjust activity to address different feeding times and social 
contexts46. Similarly, Diacamma sp. nurses are able to change their activity pattern when paired to different brood 
types (i.e., eggs, larvae or pupae) 47. These data strongly suggest that activity rhythms in ants can be plastic and 
match either the internal state or environmental stimuli.

The mechanisms underlying division of labor in work shifts remain unknown, but some hypothesis can be 
extrapolated from other social insects. Honeybee nurses and foragers have a different relation between activity 
and environmental cycles: nurses are younger and work around the clock inside the beehives caring for the queen 
and juveniles, while foragers are older and diurnal, seeking and retrieving food outside the colony48. This pattern 
is closely related to worker’s physiology, for instance in nurses, clock genes are not expressed rhythmically49,50 
and they have lower levels of juvenile hormone compared to foragers. On the other hand, foragers have a strong 
diurnal activity pattern, clock genes that are rhythmically expressed and higher levels of juvenile hormone51. It is 
worth pointing out that biological rhythms arise in foragers only when workers begin to face the cyclic environ-
ment. A similar physiological pattern could rule division of labor in leaf-cutting ants.

The workers patriline is another aspect to be considered in this discussion. As in honeybees, queens of leaf-
cutting ants mate with several males before founding a colony (i.e. polyandry). This means that workers are 
offspring from the same mother but carry genes from different fathers. In honeybees this differential patriline 
influences in the workers’ time-foraging preference52.

Although the genetic aspects of behavior are promising, no gene was studied. The only difference detected 
between day (L1 and L2) and night ants (D1 and D2) is body size. Leaf-cutting ants have a high degree of poly-
morphism which implies differences in metabolism, physiology and behavior18,39,40,53,54. Day ants are bigger 
than night ants (Fig. 5). It is possible that this morphological difference reflects an adaptation to environmental 
conditions faced by workers during their foraging time. It is known that for insects, including ants, there is a 
relationship between body mass and thermal resistance: bigger bodies are more resistant to high temperatures 
and to dehydration than smaller bodies55–57. As Atta sexdens ants belong to a tropical environment and forage 
in long trails above the ground it is reasonable to hypothesize that bigger workers, whose thermal resistance is 
higher, were selected to forage during daytime while smaller workers, less tolerant to heat, were selected to for-
age during nighttime. Obviously, this hypothesis requires premises that natural selection acts on the individuals 
rather than on the colony itself, which is still an unsolved evolutionary challenge58–61.

Division of labor in work shifts allows a continuous exploitation of food sources. As Fig. 4 shows, despite 
small, there were always a number of ants returning to the nest carrying leaf fragments; this is compatible with 
field observations35,36. However, the colony’s foraging effort and efficiency were different at each time phase (3.4% 
during the dark phase; 5.4% during light phase). Even though more leaves were fetched during nighttime, the 
proportion of loaded ants returning to the nest was bigger during daytime (Fig. 5).

Moreover, previous studies show that foraging tasks are partitioned between two body size castes. Bigger 
ants frequently transport leaf fragments that were cut by other ants, while smaller ants cut and transport their 
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own fragments62. As discussed above, bigger ants are present in trails more frequently during the light phase, 
which implies more transport. Meanwhile, during the night smaller ants could cut leaf fragments leaving them 
to be transported by other ants. Since night flow is higher, total leaf transport is expected to be higher as well. 
However, day flow is made by bigger ants, whose engagement in transport is proportionally bigger. Hence the 
pattern observed in Fig. 4; ants proportionally carrying more leaf during day than night, although the absolute 
number of leaf transported is bigger during night.

Division of labor in work shifts were described only in higher social organizations such as bees43,49,52, ants37,47 
and humans63. There is a possibility that this pattern emerges only in social organizations due to an intrinsic need 
of nonstop activity (i.e. constant care of others). Therefore, it could be an adaptation to life in society.

Results presented here elucidate how leaf-cutting ants, whose foraging trails bear workers around the clock, 
are capable of dividing labor in work shifts. Such results were obtained observing workers foraging behavior 
within colonies in a controlled environment. It was possible to establish how workers with different activity pat-
terns organize themselves during collective foraging. These data agree with previous results in leaf-cutting ants as 
well as other eusocial species, such as bees and other ant species. Our results contribute to a better understand-
ing of how individuals within a colony can divide labor temporally opening possibilities for novel research in 
behavioral genetic and physiology of eusocial insects.

Received: 8 October 2019; Accepted: 31 August 2020
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