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Abstract: Multi-scale permutation entropy (MPE) is an effective nonlinear dynamic approach for
complexity measurement of time series and it has been widely applied to fault feature representation
of rolling bearing. However, the coarse-grained time series in MPE becomes shorter and shorter
with the increase of the scale factor, which causes an imprecise estimation of permutation entropy.
In addition, the different amplitudes of the same patterns are not considered by the permutation
entropy used in MPE. To solve these issues, the time-shift multi-scale weighted permutation entropy
(TSMWPE) approach is proposed in this paper. The inadequate process of coarse-grained time series
in MPE was optimized by using a time shift time series and the process of probability calculation that
cannot fully consider the symbol mode is solved by introducing a weighting operation. The parameter
selections of TSMWPE were studied by analyzing two different noise signals. The stability and
robustness were also studied by comparing TSMWPE with TSMPE and MPE. Based on the advantages
of TSMWPE, an intelligent fault diagnosis method for rolling bearing is proposed by combining
it with gray wolf optimized support vector machine for fault classification. The proposed fault
diagnostic method was applied to two cases of experimental data analysis of rolling bearing and the
results show that it can diagnose the fault category and severity of rolling bearing accurately and the
corresponding recognition rate is higher than the rate provided by the existing comparison methods.

Keywords: multi-scale permutation entropy; time-shift multi-scale weighted permutation entropy;
rolling bearing; fault diagnosis; gray wolf optimization support vector machine

1. Introduction

Rolling bearing is one of the most important parts of rotating machinery and the one most
prone to failure [1]. Due to the complexity of mechanical conditions, once the rolling bearing beings
working with failures, it is very likely to cause unpredictable security accidents and economic losses.
Thus, it is particularly important to implement condition monitoring and fault diagnosis for rolling
bearing [2,3]. Generally, the vibration signals of rolling bearing with failures represent non-linear and
non-stationary characteristics and traditional linear or stationary time domain analysis methods have
certain limitations when dealing with these types of vibration signals [4–7]. As a non-linear dynamic
analysis tool, entropy plays an important role in measuring complexity and randomness of time series
stemming from a nonlinear dynamical system.
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In recent years, lots of nonlinear dynamic methods have been proposed, including approximate
entropy (APE) [8], sample entropy (SE) [9], permutation entropy (PE) [10], fuzzy entropy (FE) [11].
The literature [12] indicates that PE at times differed the similar failure modes of complex gearbox
vibration signals when it was applied to wind turbine gearbox fault diagnosis. In literature [13],
PE was applied to experiment data analysis of rolling bearings and the result concluded that PE is
a randomness and dynamic behavior detection method of vibration signals and that it can effectively
identify the bearing fault types and degrees. However, the entropy-based indicators mentioned above
are generally limited to single-scale analysis of time series and the information of time series on other
scales is ignored, which results in a serious loss of information. For this reason, multi-scale sample
entropy (MSE) [14], multi-scale fuzzy entropy (MFE) [15] and multi-scale permutation (MPE) were
developed by the scholars to measure the complexity of time series in different scales. In literature [16],
MSE was applied to rotor fault diagnosis and the experiment results show that MSE contains more
information than single-scale sample entropy. In literature [17], MFE was studied and then used
to extract the fault features of rolling bearing. However, MSE and MFE also have some intrinsic
weaknesses. MPE is an effective method for evaluating the random mutation behavior of time series [18],
whose strong anti-noise ability and low computational cost make it stand out. However, due to the
limitations of coarse-grained time series, which become shorter and shorter when the scale factor
increases, much information of time series is lost. Based on the idea of time-shift coarse-grained
time series [19], in this paper, time-shift multi-scale permutation entropy (TSMPE) is developed to
enhance the robust performance of MPE, together with the time-shift multi-scale weighted permutation
entropy (TSMWPE) based on weighted permutation entropy [20,21]. TSMWPE fully considers the
probability calculation of the same modes which have different amplitudes of the state vector in
symbol sequence after a reconstruction matrix of coarse-grained time series. TSMWPE optimizes the
inadequate coarse-grained time series used in MPE and the process of probability calculation that
cannot fully consider the symbol modes. The parameters of TSMWPE are determined by analyzing
Gaussian white noise (WGN) and pink noise (1/f Noise) data [22] and stability analysis is performed
by comparing TSMWPE with TSMPE and MPE. Finally, an intelligent fault diagnosis approach for
rolling bearings is proposed based on TSMWPE and gray wolf optimized support vector machine
(GWO-SVM) [23] and then applied to two kinds of experimental data analysis of rolling bearing.

The rest of this paper is structured as follows. In Section 2, the algorithms of MPE and WPE are
reviewed and then TSMWPE is developed. The selection of parameters in TSMWPE is studied and the
stability analysis among TSMWPE, TSMPE and MPE are made in Section 3. In Section 4, the TSMWPE
and GWO-SVM based fault diagnosis approach for rolling bearing is proposed and applied to two sets
of experiment data analysis to verify its effectiveness by comparing it with the existing other methods.
Finally, Section 5 concludes this paper.

2. Algorithm of TSMWPE

2.1. MPE method

MPE is proposed to measure the complexity and randomness of time series in multiple scales and
its steps can be described as follows.

(1) For a given maximum scale factor τmax, the coarse-grained time series can be constructed from
the original time series

{
x(i), i = 1, 2, . . . , N

}
by using formula (1)

y(τ)j =
1
τ

jτ∑
i=( j−1)τ+1

xi, 1 ≤ j ≤ N/τ (1)

where j represents the length of coarse-grained time series.
(2) For the scale factor τ ≥ 2, permutation entropy of each coarse-grained time series is calculated.

Finally, the entropy values of all scales are obtained and seen as a function of the scale factor.



Entropy 2019, 21, 621 3 of 21

The above definition of “coarse-grained” indicates that the length of coarse-grained time series will
become short when the scale factor increases, and thus the coarse-grained time series will inevitably
cause the important information loss of the original time series.

2.2. Algorithm of TSMPE

In this part, TSMPE is firstly developed to solve the problem of MPE mentioned above and its
steps can be given as follows.

(1) For a given time series
{
x(i), i = 1, 2, · · · , N

}
, there are

yk,β = (xk, xβ+k, x2β+k, . . . , x∆(β,k)β+k) (2)

where the positive integers k (1 ≤ k ≤ τ) and β (β = τ), represents the start point and interval of
time series. ∆(k,β) = (N − β)/k, indicating the upper boundary number, is a rounded integer.

(2) For scale factor τ ≥ 2, the PEs of each time-shift coarse-grained time series are calculated.
The obtained different PEs of each time-shift coarse-grained time series are averaged by

TSMPE(X, τ, m,λ) =
1
τ

τ∑
k=1

TSPE(y(τ)k,β , m,λ) (3)

where m is the embedding dimension and λ is delay time.

TSMPE optimizes the insufficient time series coarse granulation process of the MPE algorithm,
which makes the time-shift coarse-grained time series have little dependence on the length of the
original time series. However, TSMPE does not optimize the process of phase space reconstruction,
which undoubtedly makes TSMPE not fully consider the influences of different amplitudes of the
same pattern.

2.3. Algorithm of TSMWPE

In this subsection, TSMWPE algorithm is proposed to enhance the performance of MPE and
TSMPE and its steps can be briefly described as follows.

1. For the original time series
{
x(i), i = 1, 2, · · · , N

}
, the process of time-shift coarse-grained time

series yk,β can be obtained by Equation (2).

2. For each time-shift coarse-grained time series yk,β, phase space reconstruction [24,25] is carried
out and a matrix (with dimension (n− (m− 1)λ) ×m) will be constructed.

3. Each row in this matrix is regarded as a state vector and each state vector is mapped into m!
possible sorting mode πr, fω(πr) represents the frequency of the r-th permutation in the time series.

fωπr =
S∑

s=1

f (πr(s)) ·ωr(s), s = 1, 2, · · · , S (4)

where S is the number of possible patterns in the same motif. If the state vector can be mapped
into the sort mode πr, f (πr(s)) = 1 will be obtained, otherwise f (πr(s)) = 0. ωr is denoted
as variance of each vector. It represents the weight value for each same pattern, which has
different amplitudes.

4. The weighted relative probability of each state vector pω(πr) can be concluded by

pw(πr) =
fω(πr)∑m!

i=1 fω(πr)
(5)
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5. For τ time-shift coarse-grained time series, the weighted permutation entropy of each time-shift
coarse-grained time series (TSMPE) can be defined as Hk

w according to Shannon entropy as

Hk
ω = −

∑
Π

pω(πr) ln pω(πr)1 ≤ k ≤ τ (6)

6. Finally, τ Hk
w are obtained and final TSMWPE of original time series is described as

TSMWPE (x, τ, m,λ) =
1
τ

τ∑
k=1

Hk
w(yk,β, m,λ) (7)

Theoretically, TSMWPE relies little on the length of raw signal by applying the idea of time-shift
coarse-grained time series. Meanwhile, after the phase space is reconstructed, the probability of symbol
sequence using the same pattern but different amplitudes is fully considered through the idea of
weighting. The flowchart of the proposed method can be simply described as Figure 1.
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3. Analysis of Parameter Selection

3.1. Selection of Parameter m

The computation of TSMWPE algorithm is affected by the parameters m, λ and N. If m is too
small, fewer patterns can be generated by elements contained in the state vector, which will have less
significance of the reconstruction matrix. Next, m = [4–7], λ = 1, and N = 3000 are selected to study
the influence of m on TSMWPE. Without the loss of generality, the white Gaussian noise (WGN) and
1/f noise are chosen as two examples for experiments and their waveforms in time domain and their
power spectrum are shown in Figure 2a–d.
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Figure 2. Time domain waveform and power spectrum of WGN and 1/f noise. (a) Time domain
waveform of WGN, (b) Power spectrum of WGN, (c) Time domain waveform of 1/f noise and (d) Power
spectrum of 1/f noise.

The comparisons of TSMWPE with TSMPE and MPE are made under different embedding
dimensions and the results are shown in Figure 3. From the Figure 3, it can be found that the TSMWPE,
TSMPE and MPE values of WGN and 1/f noises become smaller and smaller with the increase of
m. The TSMWPE, TSMPE and MPE curves for different embedding dimensions are compared in
Figure 3a. It can be found that when m = 4, TSMWPE, TSMPE and MPE have larger entropy values
from a scale of 1 to 20. It has a small range of variations from 0.95 to 1. The result indicates the smaller
the value of parameter m, the fewer types of patterns are produced by each state vector. Even though
the occurrence number of state vectors with the same pattern but different amplitudes is relatively
small, the occurrence frequency is relatively larger, which causes an increase in the weighted relative
probability of each pattern. Eventually the calculated entropy value will inevitably become larger.
When m = 6 or 7, there is a large ranges of amplitude changes, which indicates that it can more fully
reflect the change process of entropy value on different scale factors relatively to when m = 4 or 5.
However, when m = 7, it can be found that there is a great consistency between TSMPE and MPE, and it
is difficult to distinguish between MPE and TSMPE. Based on the analysis above, the parameter m = 6
is chosen in TSMWPE, TSMPE and MPE. In addition, it is worth noting that the curve of TSMWPE is
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significantly more stable than that of MPE, which indicates that TSMWPE exhibits good stability in
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3.2. Selection of Parameter λ

Based on the analysis above, the effect of m on TSMWPE, TSMPE and MPE curves is studied and
m is set as 6 in the following part. The delay time λ = [1,2,3,4] and the 1/f noise with a length of 3000 is
chosen to analyze the effect of different delay time on TSMWPE. The TSMWPE, TSMPE and MPE of
1/f noise signals under different time delays are computed and shown in Figure 4. From Figure 4 the
linear trend of TSMWPE is consistent with that of TSMPE and MPE. The entropy values are very close
for different time delays. Therefore, the time delay generally has a very slight effect on TSMWPE and
thus the delay time λ is set as 1. In addition, it can be found that the TSMWPE and TSMPE curves are
smoother than MPE, because the process of time-shift coarse-grained time series saves more useful
time information and can effectively improve the process of a single coarse-grained time series.
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3.3. Selection of Parameter N

In this subsection, the 1/f noise with lengths of N = 1000, 1500, 2000, 2500, 3000, 3500, 4000,
4500 are set with m = 6 and time delay λ = 1 to determine the effect of parameter N on TSMWPE.
The TSMWPE of 1/f noise with different lengths are shown in Figure 5. It can be found from Figure 5
that the TSMWPE curve of 1/f noise shows a slight fluctuation when N ≤ 2500 and when N ≥ 2500,
it appears to be quite stable and has a nearly parallel trend. Therefore, N ≥ 3000 is generally selected in
the subsequent step.
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3.4. Stability Analysis

Based on the analysis above, we set m = 6 and λ = 1. 20 sets of WGN and 1/f noise with a length
of 3000 are selected to verify the superiority of TSMWPE in feature extraction. The mean standard
deviations of TSMWPE, TSMPE and MPE under the same parameter are shown in Figure 6. It can be
seen from the Figure 6 that for WGN and 1/f noise, the standard deviations of TSMWPE and TSMPE



Entropy 2019, 21, 621 8 of 21

are much smaller than that of MPE, which indicates that TSMPE and TSMWPE are more stable than
MPE in feature extraction. The standard deviations of TSMWPE are not much different from that of
TSMPE, and the curve of TSMWPE is relatively smooth and stable.
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4. TSMWPE and GWO-SVM Based Fault Diagnosis Method for Rolling Bearing

4.1. GWO-SVM

Generally, the parameters in original SVM were set by the users’ experience. Once the kernel
function has been selected, it will not be changed, This inevitably makes the classification effect of
SVM be limited. Therefore, it is necessary to study the selection of kernel functions and setting of
parameters [26]. In this paper, the penalty factor c and the parameter g of radial basis kernel function
of SVM are optimized by the gray wolf optimization algorithm.

The GWO algorithm was proposed by Seyedai et al [27] in 2014 inspired by the division of
labor between wolves and collaborative hunting of food. It is a new swarm intelligence algorithm
that simulates the hierarchy in wolves and the hunting behavior of wolves. Followed by wolf
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species B, wolf species C and wolf species E, the highest ranking wolf is the wolf species A, which is
located at the top of the food chain and is responsible for leadership, decision making and other
behaviors. Although wolf species B and wolf species C are not the highest-ranking wolf species,
they can succeed wolf species A and become a new leader when the wolf species A loses its leadership.
Wolf species E, the lowest level of wolf, is responsible for balancing the relationship between the inside
of the population.

The GWO algorithm treats each wolf as a potential solution, where wolf species A is the first
optimal solution, while wolf species B and C are respectively the second optimal solution and the
sub-optimal solution. The GWO algorithm is an iterative optimization process in which the positions
of wolves A, B and C are constantly updated. The wolves update the distance and position through
the formulas (8) and (9) to complete the search for the prey.

D =
∣∣∣C×Xp(t) −X(t)

∣∣∣ (8)

X
(
t + 1) = Xp(t) + D (9)

where D is the distance between gray wolf and the prey, t is the number of iterations; Xp indicates
the position of the prey, X indicates the position of the gray wolf and its initial position coordinates
are defined as (c, g). A and C represent the coefficients where A = 2a× r2 − a , C = 2r1. When |A| > 1
it represents a global search, that is, the gray wolf group expands the search range to find a better
prey. In contrast, while |A| ≤ 1, it represents a local search, and the gray wolf group will narrow
the encirclement and search for the prey nearby. a = 2− 2t

tmax and the convergence factor a linearly
decreases from 2 to 0 as the number of iterations increases, and tmax is the maximum number of
iterations. r1 and r2 are respectively a random value of [0,1].

When the gray wolf judges the position of the prey, the head wolves A lead the wolves B and
wolves C to surround the prey, because wolves A, B, and C are the closest to the prey, so the position of
the three wolves gradually approaches the prey, they are described as follows.

Da =
∣∣∣C1 ×Xa(t)−X(t)

∣∣∣ (10)

Db =
∣∣∣C2 ×Xb(t)−X(t)

∣∣∣ (11)

Dc =
∣∣∣C3 ×Xc(t)−X(t)

∣∣∣ (12)

where Xa represents current location of wolves A, Xb represents current location of wolves B,
Xc represents current location of wolves C. C1, C2 and C3 are random variables. X(t) is the current
location of the wolf species. The step lengths and directions of wolves E to wolves A, B and C are
defined by formulas (13)–(15) and the final position of wolves E are defined by formulas (16).

X1 =|C3 ×Xa −A1 ×Da| (13)

X2 =|C2 ×Xb −A2 ×Db| (14)

X3 =|C3 ×Xc −A2 ×Dc| (15)

X(t+1) =

∣∣∣∣∣∣ (X1 + X2 + X3)

3

∣∣∣∣∣∣ (16)

When the wolves are hunting, wolves A, wolves B and wolves C have different fitness values for
the prey. By calculating different fitness values, the first optimal solution, the optimal solution and the
sub-optimal solution are obtained, and the current position information is saved. Meanwhile, the wolves
judge the moving direction of the prey and approach the prey to complete the hunting based on the
three sets of positional information. After that, the positions of the gray wolves are updated again until
the first optimal solution is provided. The position coordinate value corresponding to the first optimal
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solution is defined as (best c, best g). The flowchart of GWO-SVM is shown in Figure 7. The GWO-SVM
can optimize the penalty factor c and the parameter g in kernel function of original SVM and ensure
that the best c and the best g can be found, which is more superior to SVM in theory.
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The GWO-SVM can optimize the penalty factor c and the parameter g in the kernel function of
the original SVM and ensure that the best c and the best g can be found, which is superior to SVM in
theory. The best c and the best g change as different models change.

4.2. The Proposed Fault Diagnosis Approach

Due to the advantages of TSMWPE and GWO-SVM, the GWO-SVM based multi-class classifier
is constructed to achieve an intelligent fault diagnosis of rolling bearing. The steps of the proposed
methods for rolling bearing can be described as follows.

(1) Let the rolling bearing contains K class work conditions, N sets of samples are collected for
each state. TSMWPE is computed for all samples of each state of rolling bearing in M scales.
The TSMWPE values obtained are used as the sample feature information to form the original
feature vector matrix RK×N×M.

(2) For each state of rolling bearing, N samples are collected and I samples are selected from the N
ones as training samples to form a feature training set (RK×I×M) and the rest (N−I) ones are seen
as testing samples to form the testing feature set (RK×(N−I)×M).

(3) The training model feature set is employed to train the GWO-SVM based multi-classifier.
(4) The testing sample feature set is inputting to the trained multi-classifier for prediction. The fault

categories and severity of rolling bearing are judged according to the output of GWO-SVM
multi-fault classifier. The flowchart of proposed method of fault diagnosis is shown in Figure 8.
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4.3. Experimental Analysis of Rolling Bearing

4.3.1. Case 1

In this subsection, the experimental data of Case Western Reserve University [28] are used to
verify the proposed method in fault diagnosis of rolling bearing. As shown in Figure 9, the test rig
consists of a fan end bearing, a drive end bearing and a torque transducer. The type of tested rolling
bearing is 6205-2RS JEM SKF deep groove ball bearing; here single point faults are seeded to the rolling
bearings through electric discharge machining technology. In the test, the rotary speed is 1, 730 r/min,
load of rolling bearing is 2205 W and sampling frequency is 12 kHz. The data with fault diameters
0.5334 mm and 0.1778 mm are applied in the following part. The vibration signals are collected from
normal (Norm) and inner race (IR) Ball Element (BE) and Outer Race (OR) with local single point
pitting and they are successively denoted in Table 1. Experimental data is collected by the acceleration
sensor in which the binary counting method is adopted. Each class has 20 samples with the length of
4096 points and the waveforms of vibration signal of rolling bearings are shown in Figure 10.

Entropy 2019, 20, x FOR PEER REVIEW  11 of 20 

 
Figure 8. Flowchart of the proposed fault diagnosis approach. 

4.3. Experimental Analysis of Rolling Bearing 

4.3.1. Case 1 

In this subsection, the experimental data of Case Western Reserve University [28] are used to 
verify the proposed method in fault diagnosis of rolling bearing. As shown in Figure 9, the test rig 
consists of a fan end bearing, a drive end bearing and a torque transducer. The type of tested rolling 
bearing is 6205-2RS JEM SKF deep groove ball bearing; here single point faults are seeded to the 
rolling bearings through electric discharge machining technology. In the test, the rotary speed is 1, 
730 r/min, load of rolling bearing is 2205 W and sampling frequency is 12 kHz. The data with fault 
diameters 0.5334 mm and 0.1778 mm are applied in the following part. The vibration signals are 
collected from normal (Norm) and inner race (IR) Ball Element (BE) and Outer Race (OR) with local 
single point pitting and they are successively denoted in Table 1. Experimental data is collected by 
the acceleration sensor in which the binary counting method is adopted. Each class has 20 samples 
with the length of 4096 points and the waveforms of vibration signal of rolling bearings are shown in 
Figure 10. 

Table 1. The types and degrees of faulty rolling bearing for case 1. 

Abbreviation Fault Location Fault Diameter (mm) 
BE1 Ball element 0.1778 
BE2 Ball element 0.5334 
IR1 Inner race 0.1778 
IR2 Inner race 0.5334 
OR1 Outer race 0.1778 
OR2 Outer race 0.5334 

Norm Normal bearing 0 

  
(a) (b) 

Figure 9. The test rig of CWRU (a) The test rig of CWRU and (b) its sketch.

Table 1. The types and degrees of faulty rolling bearing for case 1.

Abbreviation Fault Location Fault Diameter (mm)

BE1 Ball element 0.1778
BE2 Ball element 0.5334
IR1 Inner race 0.1778
IR2 Inner race 0.5334
OR1 Outer race 0.1778
OR2 Outer race 0.5334

Norm Normal bearing 0
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In this part, the TSMWPE, TSMPE and MPE values of 140 samples of rolling bearing with seven
fault categories and degrees are calculated with the parameter m = 6 and λ = 1. The mean values
and standard deviations of TSMWPE, TSMPE and MPE for all samples are depicted in Figure 11a–c.
First, it can be concluded from Figure 11 that the TSMWPE, TSMPE and MPE trends of fault vibration
signals gradually decrease with the increase of the scale factor. Second, the trends of TSMPE and
TSMWPE are very similar, but they are different from that of MPE, especially for BE1 and OR1.
Third, TSMWPE is more stable than MPE under all states of rolling bearings especially for OR2. It is
very difficult to judge the superiority of TSMWPE by observing the curve of TSMWPE, TSMPE and
MPE. The fault identification accuracy will be compared by combining TSMWPE, TSMPE, MPE with
GWO-SVM for fault feature extraction and classification. The seven states of rolling bearing are marked
as 1 to 7. Among the 20 samples of each class, 10 samples are randomly selected from all ones and seen
as training data, while the remaining 10 are used for testing.
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Figure 11. MPE, TSMPE and TSMWPE of different states of rolling bearings for case 1 (a) MPE
(b) TSMPE and (c) TSMWPE.

In order to explore the superiority of TSMWPE to TSMPE and MPE, the TSMWPE, TSMPE and
MPE of all samples are computed to make a comparison analysis. Then the first d (d = 1, 2, . . . , 20)
TSMWPE to TSMPE and MPE values are taken as fault features and used to train the GWO-SVM
classifier, where the optimized parameters are shown in Tables 2–4. It can be seen from the Tables 2–4
that when the number of used features is different, the corresponding best c and best g are different.
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That indicates that according to the status of feature input, the best c and the best g will make
corresponding changes to optimizing the Performance of SVM. The corresponding identification
accuracy for different number of features is shown in Figure 12. It can be seen from the Figure 12 that
when the single feature, i.e. only WPE is used, the recognition accuracy of TSMWPE and GWO-SVM
based fault diagnosis method of rolling bearing is 92.8%. The recognition accuracy of proposed method
will maintain at 100% when the number of inputting features is larger than one. The recognition
accuracy of MPE and GWO-SVM based fault diagnosis method are correspondingly 84.3% and 98.6%
when the single feature and the first three features are used. When the first, the first two and the first
three TSMPE features are input into the trained GWO-SVM classifier, the identification accuracy of
GWO-SVM classifier are 85.7%, 92.9% and 97.1%. Also, the original un-optimized SVM is used for
comparison to verify the necessity and superiority of GWO-SVM, where the kernel function used in
SVM is polynomial function. It can be seen from Figure 12 that the identification accuracy of TSMWPE
and SVM based fault diagnosis method is 85.7% and 98.6% when the single feature and the first
two features are used and always remains at 100% after there are more than three inputting features.
However, by observing Figure 12, it can be found that for the equal number of inputting features
(less than five), the highest fault identifying accuracy are generally obtained by the proposed method
rather than other methods. Therefore, we set the number of inputting number ranging from 5 to 10 for
a high and fast diagnosis. And the above analysis also indicates that TSMWPE is an effective method
for distinguishing the fault categories and degrees of rolling bearings.

Table 2. The best c and the best g in TSMWPE and GWO-SVM based fault diagnosis method for case 1.

Number of Used
Features 1 2 3 4 5 6 7 8 9 10

Best c 2.7 19.3 81.1 12.7 4.9 14.5 90.4 34.5 3.6 52.8
Best g 67.8 14.1 35.4 26.7 33.7 5.4 46.8 92.7 33.7 16.9

Number of used
features 11 12 13 14 15 16 17 18 19 20

Best c 58.4 48.3 91.5 6.2 83.5 48.2 68.2 91.9 22.1 5.1
Best g 1.1 20.0 0.6 8.1 19.9 15.2 17.6 0 24.5 0

Table 3. The best c and the best g in TSMPE and GWO-SVM based fault diagnosis method for case 1.

Number of Used
Features 1 2 3 4 5 6 7 8 9 10

Best c 72.6 64.1 70.6 1.0 55.3 48.7 7.9 66.6 43.4 49.0
Best g 100 15.9 14.0 57.6 46.6 77.0 64.8 10.4 20.5 2.9

Number of used
features 11 12 13 14 15 16 17 18 19 20

Best c 34.1 58.1 63.6 97.2 40.0 52.8 93.7 14.0 79.9 61.5
Best g 2.8 36.8 13.5 7.0 10.2 16.9 17.6 5.5 6.9 1.3

Table 4. The best c and the best g in MPE and GWO-SVM based fault diagnosis method for case 1.

Number of Used
Features 1 2 3 4 5 6 7 8 9 10

Best c 36.4 78.2 29.6 94.4 3.8 34.1 84.5 3.1 62.4 37.9
Best g 97.1 38.7 70.0 55.2 14.9 9.1 13.9 8.2 0.0 16.3

Number of used
features 11 12 13 14 15 16 17 18 19 20

Best c 17.9 31.6 72.2 0.0 55.8 89.0 73.4 14.6 92.4 2.3
Best g 11.4 8.9 13.5 0.0 0.0 0.0 0.3 0.2 6.7 0.0
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4.3.2. Case 2

The experimental data of rolling bearing used in this subsection were provided by Soochow
University [29,30] to further verify the effectiveness of the proposed method. The test bearing is
6205-2RS deep groove ball bearing and the faulty rolling bearings are machined by a metal electric
engraving machine to set a local fault. The spindle speed is 900 r/min and sampling frequency is
10 kHz. The experiment has six different fault classes and locations of rolling bearings, which are
listed in Table 5. The test rig of rolling bearing is shown in Figure 13. The operating system includes
plum coupling, driving motor, testing bearing, normal bearing, acceleration sensor, buffer device,
dynamometer and loading device. Each class of rolling bearing has 28 samples with a length of
4096 points and the vibration signal waveforms of rolling bearing are depicted in Figure 14.

Table 5. The fault locations and degrees of faulty rolling bearing for case 2.

Abbreviation Fault Location Fault Diameter (mm)

BE1 Ball element 0.6
IR1 Inner race 0.2
IR2 Inner race 0.6
OR1 Outer race 0.2
OR2 Outer race 0.6

Norm Normal bearing 0
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The TSMWPE, TSMPE and MPE of all 28 samples of each class are calculated with the parameter
m = 6, λ = 1, and the mean values and standard deviations are shown in Figure 15a–c. First, it can be
obviously obtained from Figure 15 that the standard deviation of MPE is larger than that of TSMPE
and TSMWPE, especially for OR2. Second, the TSMPEs are much denser than TSMWPEs and MPEs,
while TSMWPEs are more scattered than TSMPEs and MPEs. The above analysis indicates that the
TSMWPE based feature extraction method has irreplaceable superiority to MPE and TSMPE and is
more stable and robust than TSMPE and MPE.
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Figure 15. MPE, TSMPE and TSMWPE of different states for rolling bearings for case 2. (a) MPE;
(b) TSMPE; and (c) TSMWPE.

Next, 10 samples of each class rolling bearing are randomly chosen from 28 samples for training
and the left 18 are used for testing. Therefore, the fault features (with dimensions 60 × 20) can be
obtained and employed to train the GWO-SVM based multi-classifier and the left fault feature sets
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(with dimensions 108 × 20) are inputting to the trained multi-classifier for testing. The identification
accuracy of the proposed method with different numbers of inputting features used are given in
Figure 16, together with that of the TSMPE and MPE based methods, where the optimized parameters
in GWO-SVM for the three methods are shown in Tables 6–8. It can be seen from Figure 16 that for the
TSMWPE and GWO-SVM based fault diagnosis method, the recognition accuracy when the single
feature is considered is 93.5% and it remains at 100% when the number of features is larger than 2.
In fact, the identification accuracy of the proposed method is higher than that of MPE and TSMPE
based methods for different numbers of features.
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Table 6. The best c and the best g in TSMWPE and GWO-SVM based fault diagnosis method for case 2.

Number of Used
Features 1 2 3 4 5 6 7 8 9 10

Best c 42.9 97.3 19.1 29.8 53.6 86.7 39.3 41.1 67.0 15.8
Best g 54.1 96.8 87.3 26.5 62.9 34.9 3.3 60.7 3.1 33.7

Number of used
features 11 12 13 14 15 16 17 18 19 20

Best c 17.3 45.3 24.9 45.2 98.5 58.2 29.7 40.1 33.7 97.8
Best g 82.6 51.5 32.5 2.6 59.8 64.4 85.5 38.6 33.6 21.2

Table 7. The best c and the best g in TSMPE and GWO-SVM based fault diagnosis method for case 2.

Number of Used
Features 1 2 3 4 5 6 7 8 9 10

Best c 78.4 16.8 100 15.3 15 68.6 36.7 96.2 68.1 89.1
Best g 31.2 13.7 23.8 29.4 38.4 0.0 30.8 0.9 89.6 88.5

Number of used features 11 12 13 14 15 16 17 18 19 20
Best c 69.8 98.4 68.4 31.4 24.6 58.7 91.5 90.9 15.7 37.9
Best g 61.6 26.8 83.8 83.0 33.1 42.1 85.5 36.3 75.1 89.3

Table 8. The best c and the best g in MPE and GWO-SVM based fault diagnosis method for case 2.

Number of Used
Features 1 22 3 4 5 6 7 8 9 10

Best c 29.8 18.3 4.6 63.8 48.9 0.3 0.0 48.6 43.3 57.4
Best g 95.0 40.0 3.1 6.1 18.4 2.5 4.8 9.0 1.7 19.5

Number of used features 11 12 13 14 15 16 17 18 19 20
Best c 58.4 13.6 100.0 25.7 17.4 70.0 60.0 77.4 79.1 55.1
Best g 0.0 4.2 7.7 1.7 0.0 4.7 3.6 9.9 2.1 3.7

The GWO-SVM in the proposed method was also replaced by original SVM for comparison.
Like the above process, the identification accuracy of the TSMWPE, TSMPE and MPE based fault
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extraction method by combing SVM for classification is given in Figure 16. It can be observed from
Figure 16 that for the first eight features, the identification accuracy of the TSMWPE and SVM based
method gradually increases from 79.6% to 89.8% then remains at 89.8% from the eighth features to the
fourteenth features and at 90.7% from the fourteenth features to the twentieth feature. The identification
accuracies of the fault diagnosis method based on TSMPE and SVM are stable at 83.3% when the
number of features is larger than 4. The identification accuracy of the MPE and SVM based fault
diagnosis method varies from 82.4% to 84.3%. The identification accuracy of GWO-SVM based fault
classification is higher than 90%, while that of SVM based multi-classifier is lower than 90% and this
indicates the superiority of GWO-SVM to SVM. By observing Figure 16 carefully, it can be found that
the GSOSVM is superior to SVM and the proposed TSMWPE and GWO-SVM based fault diagnosis
method has higher fault identifying rates than other comparative methods. Generally, we set the
number of input number ranging from 5 to 10 for a high diagnosis effect. Therefore, the results above
demonstrate the superiority of TSMWPE to TSMPE and MPE in feature extraction, together with that
of GWO-SVM to original SVM.

5. Conclusions

In this paper, the TSMWPE algorithm was proposed to measure the complexity and irregularity of
time series, which can effectively optimize the traditional coarse-grained time series and fully consider
the same symbol modes with different amplitudes, in which the weighted relative probability of each
pattern is calculated. Also, the superiority of TSMWPE to MPE and TSMPE was further verified by
two simulation analyses. Based on TSMWPE and GWO-SVM, a new fault diagnosis method for rolling
bearing was proposed and applied to two experimental data case analyses of experiment data of
rolling bearing. The proposed fault feature extraction method of rolling bearing was compared with
MPE and TSMPE based fault feature extraction one and the analysis results validated that TSMWPE
shows a better performance than MPE and TSMPE, and the TSMWPE and GWO-SVM based fault
diagnosis method has a higher recognition accuracy than the TSMPE and GWO-SVM based method,
together with the MPE and GWO-SVM based method. Also, the GWO-SVM for fault classification
method was compared with the original SVM to verify the effectiveness of the proposed method.
Additionally, the number of inputting features were discussed and recommended in the paper. In future
work, the TSMWPE algorithm will be further studied and applied to machine condition monitoring.
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