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Abstract: The incidence of skin cancer has increased dramatically in recent years, particularly in
Caucasian populations. Specifically, the metastatic melanoma is one of the most aggressive cancers
and is responsible for more than 80% of skin cancer deaths around the globe. Though there are
many treatment techniques, and drugs have been used to cure this belligerent skin cancer, the side
effects and reduced bioavailability of drug in the targeted area makes it difficult to eradicate. In
addition, cellular metabolic pathways are controlled by the skin cancer driver genes, and mutations in
these genes promote tumor progression. Consequently, the MAPK (RAS–RAF–MEK–ERK pathway),
WNT and PI3K signaling pathways are found to be important molecular regulators in melanoma
development. Even though hydrogels have turned out to be a promising drug delivery system
in skin cancer treatment, the regulations at the molecular level have not been reported. Thus, we
aimed to decipher the molecular pathways of hydrogel drug delivery systems for skin cancer in
this review. Special attention has been paid to the hydrogel systems that deliver drugs to regulate
MAPK, PI3K–AKT–mTOR, JAK–STAT and cGAS-STING pathways. These signaling pathways can be
molecular drivers of skin cancers and possible potential targets for the further research on treatment
of skin cancers.

Keywords: skin cancer; hydrogel; signaling mechanisms; pathways; gene regulation; MAPK pathway

1. Introduction

Skin is one of the largest and complex organs in the human body and it has some
distinct functions such as acting as a protective fence in defense against injury due to UV
radiation, chemicals and infections by microorganisms, enables the ability to feel, adjust
body temperature and sensation [1]. Structurally, skin is a multi-lamellar structure, and
the layers are epidermis, dermis, and subcutaneous tissue (Figure 1). The outermost layer,
i.e., epidermis, is composed of the stratum corneum (SC) and the viable epidermis. The SC
is metabolically inactive and possesses 10–24 layers of non-viable, elongated corneocytes
(keratinized). These corneocytes are found to be embedded in the lipid bilayer matrix
and this structural arrangement is known as the “Brick and Mortar” arrangement [2]. The
extracellular lipid is composed of crystalline and liquid lipid phases. Hence, the skin acts
as a principal physiological barrier inhibiting the uptake of polar compounds with high
molecular weight (>500 Da) [3]. The dermis is thicker (3–5 mm) than the epidermis and
comprises collagen fibrils and elastic connective tissues. Dermis consist of fibroblasts, mast
cells, macrophages, lymphocytes, and melanocytes along with blood vessels, nerves, sweat
and sebaceous glands [4]. Structurally, dermis does not show the same resistance to drug
penetration as the SC, however, permeation of lipophilic drugs may be reduced in this
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layer. The subcutaneous tissue is a specialized fat cell layer, inter-connected by collagen
and elastin fibers. Large quantities of fat are produced and stored in this layer [5].

To date, many reviews have been done on the applications against skin cancers [6,7].
However, the information on the regulations of the hydrogel drug delivery system of the
drugs on the molecular mechanisms and pathways-related skin cancers is limited. This
article provides a brief about skin cancer and its molecular drivers, and current treatment
drugs along with an emphasis on studies conducted on hydrogel delivery system regulating
gene expressions in skin cancers.
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2. Skin Cancer

Skin cancer is the most common cancer among Caucasian populations and according
to U.S. estimates, almost one in five Americans will develop some kind of skin cancer.
DNA damage caused by ultraviolet (UV) radiation, followed by failure of DNA damage
repair mechanisms, are the primary source of these neoplasms, and Fitzpatrick skin type
and immunosuppression are also considered as potential risk factors for the development
of skin cancer [8]. Skin cancers will develop in the outer most layers of the skin in the
early stage and, if not treated, they may invade deeper into the skin with metastatic
(secondary malignant growth far away from the primary origin) potential [7,9]. Based on
their origin, skin cancers have been broadly classified into two types: non-melanoma skin
cancer (NMSC) and melanoma.

2.1. NMSC

NMSCs are known to be the most common human cancers and UV radiation is the
primary cause of them. UV-A (320–400 nm), UV-B (280–320 nm) and UV-C (100–280 nm)
are the three regions of the UV spectrum. However, UV-B is considered as the most
carcinogenic radiation and long term exposure to UV-B radiation will result in specific
mutations in keratinocytes followed by NMSC [10]. Basel cell carcinoma (BSC) is the most
common skin neoplasm, which develops in the basal layer of epidermis and is usually
located on the face or the back of hands. Squamous cell carcinoma (SCC) is known to be the
second most common skin cancer, develops in the squamous (spinosum) layer of epidermis
and occurs mainly on neck and head areas (Figure 1). BCC shows slow growth and spreads
locally with little or no metastasis, however, SCC may advance to invasive SCC and risk of
metastasis is 2 to 6% [11,12]. Normally, earlier surgical removal of the metastatic NMSC
and precancerous superficial lesions may inhibit its further progression into tumors.

Apoptosis is a crucial molecular mechanism in the development of malignancies in
almost all type of cancers and an important cell survival pathway. The NFκB (nuclear
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factor kappa-light-chain-enhancer of activated B cells), Bcl-2, p53, TNF-related apoptosis-
inducing ligand (TRAIL), ubiquitin ligases, overexpression of COX-2, mitogen-activated
protein kinase (MAPK/ERK) pathways have significant role in skin cancers. The NF-κB
regulates different cell survival pathways which control cell growth. Clinical studies have
proven that disrupting NF-κB signaling in the epidermis causes terminal differentiation
and promotes the appearance of SCC [13]. Bcl-2 and Bcl-x shows the overexpression in
BCCs and SCC.

The p53 gene, known as the “guardian of the genome” is a member of the Bcl-2
protein family which found mutated in most of the human cancers. Mutations in the
p53 gene induced by UV radiation has been regarded as a critical factor for developing
skin cancer, as the susceptibility to apoptosis reduction would favor survival and tumor
formation of mutated keratinocytes. Mutations of p53 are found in majority of NMSCs
(more than 90% in SCC and 50% in BCC). Skin cancer cells cannot express Fas, but they
can simultaneously express FasL, and thereby infiltrate antitumor T cells that express Fas
will be killed. Reduction in the expression of the death receptor for TRAIL (a ligand that
induces apoptosis from TNF family) was also observed in malignant cells in SCC [13–15].
The extracellular ligand-binding domain of epidermal growth factor receptor (EGFR) can
bind to different ligands, i.e., epiregulin, EGF and TGF. Mutations in the EGFR tyrosine
kinase domain activates the antiapoptotic signaling pathways in PI3K/AKT, ERK/MAPK
and JAK–STAT [16]. Agustí et al. evaluated EGFR amplification deviations majorly in
SCC [17].

Variations in the MAPK ERK signaling pathway have been detected in SCC. In non-
transformed epidermis, Ras and Raf inhibit differentiation, stimulate cell division, and
increase the expression of integrins [16]. In that K-RAS and H-RAS shows lower and higher
level of mutations in SCC [13]. Despite the low rate of mutant RAS genes, an increase in
levels of Ras with active GTP is observed in most tissues of spontaneous human SCC.

2.2. Melanoma

Melanoma is the deadliest skin cancer, originating from melanocytes, that predomi-
nantly affects younger and middle-aged people. Melanoma is not only developed on the
skin, but also develops in the eyes, vagina, anus, sinus and oropharynx. However, occur-
rence in these areas consists of only 5% of total melanoma incidents. Cutaneous melanomas
are classified as superficial spreading, lentigo malignant, nodular and acral lentiginous [18].
Because of their altering presentations, it is not easy to classify malignant melanomas.
Though the incidence of melanoma is least, its often associated as an aggressive cancer
condition for death, with increased tumor cell invasion and migration to other organs in
the metastatic stage.

Various factors such as genetic and environmental factors such as prolonged sun
exposure and sun burns by UV irradiation, lower melanin pigments, heredity, aging [10],
more melanocytic nevi and immunosuppression in post-transplant patients can induce
melanoma. The transformation of melanocytes (melanin producing cells present in the
epidermal layer) into melanoma cells is a multistage process by occurrence of genomic
alterations [19]. During the growth phase of the melanoma cells, it invades into the
dermis/subcutaneous tissues followed by penetration into the capillaries and eventually
enters the blood circulation to facilitate distant metastasis. The genetic mutations such
as deletions, amplification, DNA methylation and translocations which drive melanoma
were identified by genome-wide sequencing [20]. Therefore, the important genes that
are known to be altered/mutated in melanoma and the molecular pathways involved in
melanomagenesis are summarized in Table 1. Even though key genetic drivers are required
for melanomagenesis, key microenvironmental factors play vital roles in modulating
melanomagenesis and progression.
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Table 1. Genes and pathways involved in melanoma.

Gene Pathway Regulation References

BRAF RAS–RAF–MEK–ERK
mitogen-activated protein kinase (MAPK) pathway

Somatic missense mutation-valine-to-glutamic
acid substitution at position 599 (V599E) [21]

NRAS RAS–RAF–MEK–ERK
MAPK pathway Substitution mutations [22]

KIT
mitogen-activated protein (MAP) kinase and
phosphatidylinositol 3 (PI3) kinase pathways,
PI3K–AKT–mTOR, JAK–STAT

Somatic mutations- on exon 11 (L576P or exon
13 (K642E) [23,24]

GNAQ MAPK pathways Somatic mutations—glutamine at position 209
(Q209) is mutated to either leucine or proline [25]

GNA11 MAPK pathway Somatic mutations—glutamine at position 209
(Q209) is mutated to either leucine or proline [26]

CDKN2A (p14ARF) MDM2–p53 Deletion [27,28]

CDKN2A (p16INK4A) p16INK4A–cyclin D/CDK4–RB checkpoint ‘G’ TO ‘A’ transition at the first nucleotide of
the splice donor site of intron 2 [28,29]

PTEN oncogenic phosphatidylinositol-3-kinase (PI3K)
signaling pathway

Deletion or mutation leads to constitutive
activation of this pathway [30]

LKB1 LKB1–AMPK
‘C’ to ‘T’ transition, resulting in the substitution
of the normal glutamine codon (CAG) with a
premature termination codon (TAG)

[31,32]

MITF MITF–PGC1a
Transcription, lineage, cell cycle Amplification/germline missense substitution [33,34]

NF1/neurofibromin PI3K and MAPK pathways Mutation [35]

MYC Amplification [36]

Cyclin D1 RAS/MAPK pathways Amplification [37,38]

CDK4 Cell cycle, G1/S cyclin-dependent kinase Amplification or Point mutation [39]

HDM2 P53 Amplification [40]

PIK3CA PI3K–AKT–mTOR Missense mutations [41]

AKT1,AKT2, AKT3 PI3K–AKT–mTOR Oncogenic mutation [42]

ERBB4 Receptor tyrosine kinases Amplification [43]

fibroblast growth factor receptor 3
(FGFR3) Ras/MAPK Amplification, gain-of-function mutations [44,45]

MET PI3K, MAPK Amplification/single-nucleotide variations [46]

The MAPK pathway is most regularly triggered in cancer to facilitate rapid prolifera-
tion of tumor cells. Intracellular sequential activation of Ras, Raf, MEK, and ERK take place
in with regard to extracellular binding of growth factors to receptor tyrosine kinases (RTKs)
to regulate many oncogenic biological activities. The v-Raf murine sarcoma viral oncogene
homologue B1 (BRAF) is one of the best-studied oncogenic mutations in melanoma. It
encodes a serine/threonine protein kinase, a key regulator in the RAS–RAF–MEK–ERK
MAPK pathway. Point mutation of BRAF by the substitution of valine to glutamic acid
at codon 600 (V600E) occurs frequently (more than 50%) in melanoma than other types,
which leads to a downstream MAPK pathway [47]. The wild-type BRAF melanomas have
oncogenic mutations in upstream components of the MAPK pathway, such as NRAS (neu-
roblastoma RAS viral oncogene homolog), KIT (v-Kit Hardy–Zuckerman 4 feline sarcoma
viral oncogene homolog), GNAQ (guanine nucleotide-binding protein, q polypeptide) and
GNA11 (guanine nucleotide-binding protein, a11) [19].

Uncontrolled cell cycle is an important characteristic of melanoma development and
p16INK4A is a key down-regulator of the cell cycle, which is induced by the expression of
oncogenic BRAFV600E. CDKN2A locus encodes p16INK4A and is found mutated in 25% of
melanoma types. The initiation of p16INK4A by the MAPK pathway along with activation
of microphthalmia-associated transcription factor (MITF) locus amplification is found in
20–30% of melanomas [48]. Triggering of the PI3K (phosphoinositide 3-kinase)–AKT–
mTOR (mammalian target of rapamycin) pathway occurs constitutively in BRAF-initiated
melanogenesis which inactivate PTEN (phosphatase and tensin homolog), a down-regulator
of this pathway [26,27]. Though NRAS and PTEN mutations are mutually exclusive in
melanomas, an oncogenic RAS also can trigger the PI3K–AKT–mTOR pathway. By contrast,
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even though mutations in the catalytic subunit of PI3K, or AKT1, AKT2, and AKT3, are
rare in melanoma, immunopositivity of AKT3 is common in melanoma, and could activate
PI3K–AKT–mTOR in PTEN wild type tumors. Amplification or mutations in CDK4 is
another genetic alteration found in melanoma, which is the binding partner of p16INK4a.
Hyperactivation of ERK or loss of p16INK4A can dysregulate the CDK4 pathway. Both
CDKN2A and CDK4 have important roles in controlling cell cycle, as both mutate, which
disturbs the G1/S-phase checkpoint [49,50].

2.3. Current Treatments and Drugs for Skin Cancers

Early diagnosis and immediate treatment are important in any type of skin cancer.
Surgical and non-surgical treatments such as topical therapies are mostly carried out for
skin cancer lesions [51]. Depending on the cancer progression stage, skin cancers can be
treated by surgery [52], immunotherapy [53], cryosurgery [54], laser therapy [55], curet-
tage, desiccation [56], dermabrasion [57], targeted therapy, photodynamic therapy [58],
chemotherapy and radiotherapy [59]. Commonly used medications against melanoma in-
clude 5-fluorouracil (5-FU, Efudex), Imiquimod, Resiquimod, Ingenol mebutate, Diclofenac,
cisplatin, etc. (Table 2). However, these conventional treatment methods and drugs can
induce side effects such as hypopigmentation, scars, loss of hair, edema, gastrointestinal
irritabilities such as chronic ulcer formation, blister formation and radiodermatitis.

Table 2. Current drugs used for skin cancer.

Drug Origin Molecular
Weight (g/mol) Structure Route of

Administration Effect References

Alitretinoin Synthetic/Natural 300.4
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Table 2. Cont.

Drug Origin Molecular
Weight (g/mol) Structure Route of

Administration Effect References
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[75]

SC acts as a major barrier to the penetration and delivery of adequate concentration of
anti-skin cancer drugs to the targeted site when administrated topically. Many drugs that
are currently used to treat cancer have a limited distribution in the tumor area and there
are multiple factors, such as solid tumor development far away from the blood vessels,
extracellular matrix composition, and elevated interstitial fluid, which cause the limited
drug distribution [76]. Tumor microenvironment is a highly dynamic network of cells and
molecules that create a favorable condition for the development of tumors. Immunosup-
pressive cells such as regulatory T lymphocytes and tumor-associated macrophages are
general characteristic of the tumor microenvironment that are associated with extracellular
matrix destruction, angiogenesis and metastasis [77,78]. The immune system of hosts
has significant importance in response against cancer. However, most of the common
cancer therapies that are used at present have immunosuppressive effects. For instance,
myelosuppression is a common cause of chemotherapy and ionizing radiation [58,79]. Even
though there are different immunotherapeutic techniques such as cytokines and mono-
clonal antibody-based therapies, antitumor vaccines and T cell therapies for treating SKs,
disadvantages such as systemic side effects and cost of the therapies make immunotherapies
still in their infancy [80].

3. Hydrogel: Promising Drug Delivery Systems to Treat Skin Cancers

To overcome the side effects associated with anti-neoplastic drugs in skin cancer treat-
ment, hydrogel-based drug delivery systems could be promising drug candidates [81–85].
The hydrogels are three-dimensional, highly crosslinked polymers that can retain a substan-
tial quantity of water in their swollen state due to the hydrophilic –OH, –CONH–, –CONH2,
–COOH, and –SO3H groups [86–89]. Classification of hydrogels can be done based on the na-
ture of material (synthetic, natural or hybrid) [90], mechanism of gel formation (chemically
or physically crosslinked) [91], nature of side group (cationic, anionic or neutral) [92,93],
biodegradability (degradable or non-degradable) [94,95], and the degree of swelling (low,
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high or superabsorbent) [96] and porosity (micro-, macro- or super porous) [97]. Hence,
the compositions and synthesis conditions determine hydrogel properties and structures.
For instance, highly porous structures permit more adherence and entrap the therapeutic
agents in it, and the release of therapeutic agents can be controlled by regulating its porous
structure [98–100]. These high swelling properties of biocarriers have a comparable degree
of elasticity to natural tissues, and can undergo gel–solid phase transitions in response to
various types of stimuli such as temperature, light, pressure, electric field, magnetic field,
ionic strength and pH [101–103]. The natural polymers have reached a considerable signifi-
cance in drug delivery applications, due to their characteristics such as biocompatibility,
biodegradability, bifunctionality, biochemical stability, improved drug solubility, controlled
drug release, cost effectiveness and nontoxicity [104–107]. These advantages, identical to
the native extracellular matrix (ECM), and tunable physical and mechanical properties, aid
in a vast variety of biomedical applications [108–110].

Unique characteristics of hydrogel such as tunable porous structure, high strength
and stimulus response have made them widely used as carriers or vehicles for differ-
ent biomolecules such as drugs, nucleic acids, antibodies, metal ions and enzymes, and
are reported to be effective against different types of cancers such as lung cancer [111],
leukemia [112], colon cancer [113], breast cancer [114], melanoma [115,116], hepatocellular
carcinoma [116,117], etc. In addition, it is applied in the delivery of antibodies and other
immune modulatory molecules at tumor sites in immunotherapy [118], drug carriers for
the eye [119] and drug-delivering contact lenses for glaucoma therapy, in tissue engineering
and mesenchymal stem/stromal cells [120]. Hence, it has been used to treat osteoporo-
sis [121], osteoarthritis [122] and wound healing [123]. The topical and transdermal drug
delivery using hydrogel is a convenient way to deliver the drugs systemically, in which
the drug penetrates through the SC initially and to the epidermis and dermis for systemic
absorption via dermal microcirculation [124]. Hence, it has many advantages such as
increased patient compliance by reduced dosing, prevents pre-systemic metabolism for
enhanced bioavailability [125], and soft swollen hydrogels [126]. In contrast to topical treat-
ment, injectable hydrogels are generally introduced into the body via syringe or catheter.
Since the blood circulation will quickly remove the normal chemotherapeutics injected
inside the body, the effect of drugs will not be enough to kill the cancer cells. Therefore,
engineering injectable hydrogels by physical or chemical cross-linking for sustained and
controlled drug release at in situ (near cancer) upon minimal injection enables higher drug
concentration at the targeted site while diminishing the systemic drug concentration and
the associated site effects. Moreover, the drugs can be delivered into tissues that are difficult
to access through surgery [127,128]. Hydrogel particles are transported to the intercellular
matrix through plasma membrane (PM) during drug or gene delivery and PM act as a
major obstacle for the efficient delivery. The small or macro molecules enter the cells by
endocytosis and target specific organelles for efficient drug delivery. Hydrogels are mainly
internalized through endocytosis with clathrin- and dynamin-dependent pathways [129].
The physiochemical properties such as shape, size, charge and chemistry of the surface of
colloidal particles determine the cell translocation and intracellular distribution [130–132].
Particles with nanometer to micron sizes are generally subjected to intercellular uptake.
However, particles with a diameter of around 100 nm are known to show a higher degree
of uptake. For example, particles with a 100–200 nm size range avoided premature clear-
ance by the reticuloendothelial system in cancer cells [133,134]. The smaller particles are
internalized into B16F10 murine melanoma cells through clathrin-dependent pathway and
microtubule dependent intracellular trafficking whereas larger particles are internalized
through caveolae mechanism [135].
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4. A Brief Background on the Use of Hydrogel-Based Drug Delivery System to
Regulate Skin Cancer Related Genes

Over the past decade, a plethora of chemotherapeutic agents has been developed or
studied to challenge skin cancers and most of these agents remained unsuccessful, espe-
cially to eradicate melanoma. Because melanoma is considered to be intrinsically resistant
to chemotherapeutics, and different mechanisms such as overexpression of drug efflux pro-
teins, alteration of enzyme activation, deregulation of apoptosis, Ras mutation, epithelial
to mesenchymal transition, and deregulation of microRNAs expression are responsible
for this drug resistance [136]. There will be a significant change in the recovery rate if
this drug resistance is conquered. Availability of trace amounts of drugs in the tumor
microenvironment is one of the factors that contribute to sensitivity of drugs. Since tumor
microenvironment is very complex and dynamic, it is very difficult to deliver chemother-
apeutics in sufficient concentration. Although previous studies have reported the need
of an efficient advanced drug delivery system to overcome this problem, microsphere or
nanomaterial-based cancer eradication developed slowly. However, initial burst release,
increased drug accumulation in the tumor and rapid elimination by the reticuloendothelial
system have reduced the efficacy of nanoformulations to affect the cancer cells [137,138].
Hydrogels are potential carriers for localized delivery of anti-neoplastic agents. Blood
supply and morphology of blood vessel network do not affect the hydrogel-based delivery
system. Therefore, hydrogels can be utilized to carry drugs that are capable of killing cancer
cells as well as to regulate the genes related to skin cancer and deliver in the targeted local
tumor microenvironment. Because of molecular complexity of SK, combinatorial drug
therapy is gaining more importance. In opposition to single-drug therapy, multiple-agent
therapy can maximize the therapeutic effects, modulate cancer related signaling pathways,
and overcome drug resistance. In addition, combinatorial drug therapies may be able to
trigger senescence of cancer cells and permit clearance by T cells. Hydrogels can carry and
deliver more than one therapeutic agent simultaneously to the targeted site [7,139–141].
To decipher the gene regulations mediated by hydrogel, Zhao, Y., et al. developed an
injectable hydrogel loaded with Cripto-1 receptor antibodies (2B11) for embryonic microen-
vironments on tumor reversion treatment using B16 tumor-bearing mice model [142] in
which cancer cell morphology reversed normal melanin cells. Additional RNA-sequencing
experiments in comparison with the whole gene expression show that 2B11 hydrogels could
significantly stimulate apoptosis. Oncogenes (Kit, Itga4, Hapln1) were downregulated and
tumor suppressors genes (Irf8, Trail, Casp1, Aim2, Irf1) were upregulated compared with
the control group. The interleukin-15 (IL-15)- and cisplatin (CDDP)-loaded poly (ethylene
glycol)-poly(γ-ethyl-L-glutamate) diblock copolymers (mPEG-b-PELG) thermosensitive
hydrogels injected into mice bearing B16F0-RFP melanoma cells exhibited synergistic
immune regulations such as Cyclin A2, CDK2 and Cdc25A expression was significantly re-
duced [143]. Another co-delivery of doxorubicin and curcumin peptide hydrogel increased
the inhibitory effect of cell growth and improved apoptosis by differential apoptotic/anti-
apoptotic gene expression profiles in head and neck squamous cell carcinoma by Karavasili,
C., et al. [144]. The various studies that have been carried out on hydrogel delivery systems
regulating the molecular mechanisms of skin cancers are included in Table 3 and Figure 2.

Table 3. Recent studies on the gene regulations upon hydrogel-based drug delivery system for skin cancers.

Hydrogel Gene Pathway Effect In Vivo/In Vitro Cancer Reference

Hyaluronic acid scaffold loaded
with Nodal Signaling Crypto 1
receptor antibodies (2B11)

Kit, Itga4, Hapln1,
Irf8, Trail, Casp1,
Aim2, and Irf1

Apoptosis
pathways, MAPK
pathways and
PI3K–AKT–mTOR,
JAK–STAT

Upregulation of tumor
suppressor genes and the
downregulation of
oncogenes

In vivo and
in vitro Melanoma [142]

mPEG-b-PELG hydrogel
encapsulating f interleukin-15
(IL-15) and cisplatin

Cyclin A2, CDK2,
and Cdc25A Cell cycle

Significant decrease in the
expressions of genes and
cell cycle arrest

Ex vivo Melanoma [145]
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Table 3. Cont.

Hydrogel Gene Pathway Effect In Vivo/In Vitro Cancer Reference

Poly Lactic-co-Glycolic Acid
(PLGA)-polyethylene
glycol-PLGA hydrogel
encapsulating,
nano-hydroxyapatite and
granulocyte-macrophage
colony-stimulating factor

E2Fs family genes
and PLK1, KLF14,
KLF11

Cell cycle Cell cycle arrested in the
G2/M phase, apoptosis In vitro Melanoma [143]

PELG-PEG-PELG loaded with
DOX, IL-2, and IFN-g

Bcl-2
Caspase 3

Janus kinase,
JAK/STAT and
mitochondrial
signal pathways

Induces apoptosis In vitro Melanoma [146]

Olesterol-bearing cycloamylose
with spermine group nanogel
carrying VEGF-specific short
interfering RNA

Vascular endothelial
growth factor
(VEGF)

Angiogenesis In vitro [147]

peptide hydrogel
(ac-(RADA)4-CONH2) loaded
with curcumin and doxorubicin

p53, p21, BAX,
BAD, Cdk2, Bcl-2,
c-myc and CyclD1

Apoptosis
pathways, High rate of apoptosis In vitro

Head and neck
squamous cell
carcinoma

[144]

Alginate hydrogel bearing
loaded with anti-PD-1
monoclonal antibody and
celecoxib

IL-1b, IL-6, CXCL9
and CXCL10

Programmed death
1 (PD-1) signaling
pathway

Increases the expression of
two anti-angiogenic
chemokines and
suppresses the intra
tumoral production of
interleukin (IL)-1, IL-6, and
cycloxygenase-2 (COX2)

In vitro Melanoma [148]

RADA24-melittin fusion
peptide hydrogel loaded with
cell-derived secretions from
cells exposed to HOCl

IFN-α, IFN-β, IL-6
cGAS-STING
pathway and PD-1
signaling pathway

Increased tumor cell death,
cytotoxic T lymphocyte
infiltration, and
tumor-associated
macrophage
reprogramming towards
an M1 phenotype

In vitro Melanoma [149]

N-succinyl chitosan and
oxidized dextran hydrogel
loaded with doxorubicin

CD206, Arginase-1,
TNF-α and Inos

p65 NF-kappaB and
P53 pathway

Induced macrophages to
produce anti-tumorigenic
cytokines such as TNF-α,
iNOS, IL-6 and IL-1β

In vivo and
in vitro Melanoma [150]

Polyvinyl alcohol/gelatin

mechanotransduction
related genes and
transposase-
accessible
chromatin

MAPK pathway
and MKL1/SRF
pathway

Poor cell adhesion and
increased chromatin
accessibility

in vitro melanoma [151]
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Figure 2. Gene regulations on hydrogel mediated drug delivery treatment for skin cancers, based
on the recent reports. The upregulation of Caspase 3, Bim, BAD, CXCL9, KLF14, p53, p21 and
downregulation of Bcl-2, CDK2, CDC25A were mainly reported after the hydrogel-based drug
delivery for skin cancers as apoptosis and cell proliferation regulators.
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5. Conclusions and Perspectives

Skin cancers are often non-cared but persist as the most common malignancy of
humans and affect millions of people every year. Even though vast research on skin cancer
has enriched our understanding of the disease, 100% eradication is yet to be achieved. The
expanding knowledge of molecular mechanisms and pathways involved in NMSCs, and
melanoma pathogenesis could lead to identify the potential molecular players. In addition,
the hydrogel-based delivery systems with drugs were mainly regulated the MAPK, PI3K–
AKT–mTOR, JAK–STAT and cGAS-STING pathways. Though very minimal studies have
been conducted, these pathways could be a potential target for further researchers.

In the future, the skin cancers can be treated using various therapies such as chemother-
apy, immunotherapy, gene therapy as well as combinatorial therapy. In particular, the
advancement in the hydrogel-based drug delivery systems can minimize the side effects of
the chemotherapeutic drugs. The sequencing and genome engineering technologies could
be able to identify the potential markers in the skin cancer and could help to proceed gene
based targeted delivery and therapy. As the p53 gene mutations have been a critical factor
for developing skin cancer, the gene therapy could induce the expression of the p53 genes
which could restore the apoptosis pathway and destroy the cancer cells. In addition, as the
mutation of BRAF is one of the important oncogenic mutations that act as a key regulator
in the RAS–RAF–MEK–ERK MAPK pathway in melanoma, development of the targeted
therapy to inhibit these point mutations also could treat skin cancers. Moreover, receptor
mediated targeted therapy and microbiome replacement therapy also a potential candidate
to improve the treatment options.

Author Contributions: Conceptualization, R.M. and T.T.; software, A.K.V.; validation, R.M. and
T.T.; formal analysis, R.M. and A.K.V.; resources, S.C.K. and D.C.Y.; data curation R.M. and A.K.V.;
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