
1

© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use,
please contact journals.permissions@oup.com

Burns & Trauma, 2024, 12, tkad047
https://doi.org/10.1093/burnst/tkad047

Review

Review

Metabolic reprogramming in skin wound

healing

Zitong Wang 1, Feng Zhao2, Chengcheng Xu1, Qiqi Zhang1,

Haiyue Ren 1, Xing Huang3, Cai He1, Jiajie Ma1 and Zhe Wang 1,*

1Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street,
Shenyang, 110004, China, 2Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of
Stem Cell and Regenerative Medicine, China Medical University, No. 77 Puhe Road, Shenyang, 110013, China and
3Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang,
110004, China

*Corresponding author: wangz@sj-hospital.org

Received 25 July 2023; Revised 5 September 2023; Accepted 6 September 2023

Abstract

Metabolic reprogramming refers to the ability of a cell to alter its metabolism in response to

different stimuli and forms of pressure. It helps cells resist external stress and provides them

with new functions. Skin wound healing involves the metabolic reprogramming of nutrients, such

as glucose, lipids, and amino acids, which play vital roles in the proliferation, differentiation,

and migration of multiple cell types. During the glucose metabolic process in wounds, glucose

transporters and key enzymes cause elevated metabolite levels. Glucose-mediated oxidative

stress drives the proinflammatory response and promotes wound healing. Reprogramming lipid

metabolism increases the number of fibroblasts and decreases the number of macrophages. It

enhances local neovascularization and improves fibrin stability to promote extracellular matrix

remodelling, accelerates wound healing, and reduces scar formation. Reprogramming amino acid

metabolism affects wound re-epithelialization, collagen deposition, and angiogenesis. However,

comprehensive reviews on the role of metabolic reprogramming in skin wound healing are lacking.

Therefore, we have systematically reviewed the metabolic reprogramming of glucose, lipids,

and amino acids during skin wound healing. Notably, we identified their targets with potential

therapeutic value and elucidated their mechanisms of action.
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Highlights

• Glucose, lipid, and amino acid metabolism are involved in skin wound healing and the inflammatory response.
• Reprogramming glucose, lipid, and amino acid metabolism can accelerate wound healing and reduce scar formation.
• Developing wound-healing drugs to target metabolic reprogramming may improve treatments for patients, such as those

with diabetes.
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Background

Skin wound healing is a complicated, dynamic, multistep,
and highly ordered biological process that mainly comprises
three steps: the inflammatory response, cell proliferation,
and tissue remodelling [1] (Figure. 1). The three phases are
independent yet overlapping, and dysregulation during any
phase can affect the wound-healing process [2]. Multiple cell
types, including keratinocytes, fibroblasts, vascular endothe-
lial cells, and immune cells, are required for wound repair.
These cells work together to restore skin barrier function
[3]. During the inflammatory phase, local vessel permeability
increases, neutrophils are transported to the wound sur-
face [4], and macrophages kill bacteria and engulf debris
through phagocytosis and the release of their proteolytic
enzymes. This process prevents infection, degrades necrotic
tissues, and activates the signals required for wound heal-
ing [5]. The proliferative phase typically begins approxi-
mately 3 days after injury and includes endothelial cell-
mediated angiogenesis, fibroblast-mediated granulation tis-
sue formation, and keratinocyte-mediated re-epithelialization
[6]. Fibroblasts produce large amounts of provisional extra-
cellular matrix (ECM) to form granulation tissues that cover
the wound bed [7], whereas keratinocytes advance, prolifer-
ate, differentiate, and reform a functional epidermis; these
actions promote the closure and recovery of the vascular
network and protect the tissue from further injury [8]. The
remodelling phase rejuvenates the various cellular and non-
cellular components of the tissue during the final stage of skin
wound healing. Fibroblasts differentiate into myofibroblasts
and control the fine balance between wound contraction and
re-epithelialization [9], whereas the ECM components, such
as collagen fibres, myofibres, and elastic fibers, proliferate
and rapidly accumulate via the stimulation of cytokines [10].
These process help the tissue maintain its density and resis-
tance to compression to protect it from exogenous pathogenic
microorganisms [11].

Metabolism is a collective term referring to the chemi-
cal reactions that maintain life processes in organisms and
is the basis for all life activities. Metabolism mainly com-
prises catabolism and anabolism and includes substantive and
energy metabolism. A regular and ordered metabolic system
is the biochemical basis that maintains normal physiological
functions, such as growth, reproduction, the maintenance of
structural stability, and responses to external stimuli. Aerobic
glycolysis provides synthetic substance precursors and energy
for nucleotides, amino acids, and lipids, which are essential
for synthesizing macromolecules by cell division [12]. Lipid
metabolism involves digestion, absorption, catabolism, and
anabolism with the help of different related enzymes [13,14].
Lipid signal transduction can mediate parts of the cellular
process and intercellular communication during skin wound
healing and tissue regeneration [15]. Amino acids are sub-
strates for protein synthesis and can be used during energy
production to drive nucleoside synthesis and maintain cellular
redox homeostasis [16].

Metabolic reprogramming refers to the process by which
a cell alters its metabolism to cope with different stim-
uli and pressures. It helps cells resist external stress and
perform various functions [17]. Metabolic reprogramming
involves pathways regulating glucose, lipid, and amino acid
metabolism and is closely associated with the occurrence and
progression of multiple diseases [18,19]. Different stages of
skin wound healing have different metabolic phenotypes [20].
This information suggests that the metabolic programming of
glucose, lipids, and amino acids is closely related to the devel-
opment of skin wound healing [21,22]. The key proteins in
the metabolic reprogramming-related signalling cascades can
become targets that ameliorate wound healing and require
further investigation.

Eming et al. [23] summarized the metabolic reprogram-
ming of macrophages and fibroblasts during distinct stages
of normal healing and their metabolic interactions in the
wound microenvironment. Manchanda et al. [24] used a
combination of single-cell transcriptomics and metabolomics
to study the major metabolic pathways in clinical human skin
trauma samples. The researchers further conducted a pre-
liminary validation of the sequencing results through human
skin wound-healing tests and identified glycolysis and glu-
taminolysis as potential targets for therapeutic intervention.
However, most applications that involve regulating metabolic
reprogramming to improve skin wound healing are still in the
research stage. In this review, we summarize the roles of the
metabolic reprogramming of glucose, lipids, and amino acids
in skin wound healing, as well as their targets and mechanisms
of action. We also discuss new wound-healing drugs targeting
metabolic reprogramming, emerging therapeutic opportuni-
ties, and associated challenges for the future.

Review

Glucose metabolic reprogramming in skin wound

healing

Glucose provides energy for the body and plays an impor-
tant role in metabolism. The decomposition and oxidation
of glucose supply every cell and tissue in the body with
energy so that they can grow normally. During the process
of skin wound healing, glucose metabolism is enhanced,
and the activities of key enzymes in the process are also
changed (Figure. 2). Factors such as whole-body malnutri-
tion, hyperglycaemia, and excessive inflammation can affect
the skin wound-healing process and result in nonhealing
chronic wounds [25,26]. Presently, among persons diagnosed
with diabetes mellitus, the lifetime incidence of foot ulcers
is as high as 25%, and they are at risk of needing amputa-
tion [27,28]. Therefore, improving the treatment of diabetic
wounds by targeting glucose metabolism is an urgent clinical
issue.

Glucose transporters (GLUTs) GLUTs are carrier proteins
that transport glucose. They are embedded in the cell mem-
brane and are widely distributed in various tissues in the
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Figure 1. Three processes of wound healing (1) In the inflammatory stage, neutrophils migrate to the wound surface, and macrophages kill bacteria and ingest

foreign debris through phagocytosis and hydrolase release. (2) In the proliferation stage, endothelial cells promote angiogenesis, fibroblasts produce a large

amount of ECM to form granulation tissue to encapsulate damaged tissue, and keratinocytes mediate epithelialization. (3) At the stage of tissue remodeling,

fibroblasts differentiate into muscle fibroblasts, and the ECM increases. ECM extracellular matrix

body. The uptake of glucose by cells needs to be completed
by GLUTs on the cell membrane to maintain the balance of
glucose metabolism in the body.

GLUT2 and GLUT4 regulate glucose transport during
wound healing [29]. Placental mesenchymal stem cells
modulate themselves under hypoxic conditions by secreting
insulin and upregulating the expression of GLUT1/2/3 and
adhesion molecules to eventually promote wound healing
[30]. Hyperglycaemia-induced GLUT4 suppression in muscle
and fibroblasts causes glucose intolerance in wound tissues
and affects diabetic skin wound healing [31]. Freemerman
et al. [32] demonstrated that GLUT1 overexpression in
macrophages on the wound surface in high-fat diet-fed
rodents increases glucose uptake and metabolism and the
levels of intermediates in the pentose phosphate pathway,
with a concomitant reduction in cellular oxygen consumption
rates. Furthermore, GLUT1-overexpressing macrophages
showed an increased secretion of inflammatory mediators,
which is characteristic of the hyperinflammatory state,
suggesting that the proinflammatory response is driven
by glucose-mediated oxidative stress. GLUT1 levels are
significantly higher in burn patients who develop keloids
than in those without keloids, indicating that GLUT1 is

a potential indicator of abnormal glucose metabolism and
increased keloid risk [33].

Glucose phosphorylation The first step of glycolysis involv-
ing glucose phosphorylation at C6 to form glucose-6-
phosphate is catalysed by hexokinase (HK). Nguyen et al. [34]
detected the maximum HK activity in mice of all ages after
skin injury and confirmed that glucose utilization and aerobic
metabolic potential were increased after skin injury. Gupta
et al. [35] monitored the activities of HK in the granulation
tissue of normal and diabetic rats at different time points
(2, 7, 14, and 21 days) post-injury. The researchers observed
decreased HK activity in the wound tissue of the diabetic rats
compared with that in the normal rats. The alterations in
the energy-metabolizing enzymes in the wound tissue of the
diabetic rats may have affected the energy levels required for
cellular activity, thereby disrupting skin wound healing.

Pyruvate formation The phosphoenolpyruvate (PEP)-mediated
transfer of high-energy phosphate groups to produce
adenosine triphosphate (ATP) and pyruvate under the
catalysis of pyruvate kinase (PK) is a crucial substrate-level
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Figure 2. Reprogramming of glucose metabolism in wound healing. Glycolysis and the relative metabolic pathways are shown. Broad arrows (in red) indicate

increased expression/activity of enzymes and the relative metabolic pathways. GLUT promotes glucose intake, supporting the glycolytic pathway. High

expression of HK, PKM2, and LDHA activate glycolysis, promoting wound healing. α-KG α-ketoglutarate, GLUT glucose transporter, G6P glucose-6-phosphate,

HK hexokinase, LDHA lactate dehydrogenase A, PKM2 pyruvate kinase 2, TCA tricarboxylic acid

phosphorylation reaction in glycolysis. PK is a critical rate-
limiting enzyme in glycolysis. There are two PK isoforms
(PKM1 and PKM2) that catalyse the transfer of a phosphate
group from PEP to adenosine diphosphate (ADP), yielding
pyruvate and ATP [36]. Angiogenesis is a vital step in skin
wound healing; vascular resident endothelial progenitor cells
(VR-EPCs) can differentiate into epithelial cells (ECs) and
can participate in angiogenesis to a certain extent [37].
The activation of PKM2 promotes VR-EPC angiogenesis
by modulating glycolysis and mitochondrial fission and
fusion [38]. Infiltrated/activated neutrophils at the wound site
release PKM2 during the early stages of skin wound repair
[39]. This process may increase angiogenesis to promote early
skin wound healing. The glycolytic enzyme PKM2 regulates
endothelial cell junction dynamics and angiogenesis through
the regulation of ATP production [40]. In addition, PKM2 is
upregulated in the inflammatory phase of skin healing and is
coupled with angiogenesis during skin wound repair; this is
required for the complete induction of vascular endothelial
growth factor (VEGF) in keratinocytes [41].

Lactate formation The last step of glycolysis involves the
conversion of lactate to pyruvate and the oxidation of NADH
to NAD+ by lactate dehydrogenase (LDH) [42]. Lactate
mediates the production of angiogenesis-related factors and

the recruitment of endothelial progenitor cells to the wound;
this especially involves the signalling of collagen synthesis in
fibroblasts and VEGF transcription in endothelial cells, which
leads to the activation of procollagen and angiogenic factors
[43]. Exogenous lactate reduces muscle atrophy and improves
reperfusion in mice with ischaemic hindlimb wounds [44].
This findings suggest that the angiogenic potential of lactate
accelerates angiogenesis and skin wound healing.

LDH is the key enzyme in lactate formation. A previ-
ously published proteomic analysis identified several pro-
teins that may contribute to delayed wound healing, includ-
ing LDH [45]. The knockdown of lactate dehydrogenase-A
(LDHA) inhibits the proliferation and migration of vascular
smooth muscle cells (VSMCs) [46]. This result suggests that
LDHA prevents vessel lumen constriction and accelerates skin
wound healing.

Lipid metabolic reprogramming in skin wound healing

Lipids are important substances for energy storage and sup-
ply, as well as important structural components of biofilms.
Lipid metabolism involves the enzyme-mediated digestion,
absorption, synthesis, and decomposition of lipids in the
body. It is an important biochemical reaction comprising
energy transformation in the body. The reprogramming of
lipid metabolism in skin wound healing is shown in Figure. 3.
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Figure 3. Reprogramming of lipids metabolism in wound healing. Lipid synthesis, β-oxidation, and the relative metabolic pathways are shown. Broad arrows

(in red) indicate increased expression/activity of enzymes and the relative metabolic pathways. The consequent raise of exogenous fatty acids up-take sustains

increased lipid synthesis and β-oxidation. Fatty aceyl-CoA stimulates citrate, which acts as positive feedback, driving the progression of wound healing. α-KG

α-ketoglutarate, FA fatty acid, HMGCR 3-hydroxy-3-methyl glutaryl coenzyme A reductase, SCD1 stearoyl-CoA desaturase-1, TCA tricarboxylic acid

De novo fatty acid synthesis De novo fatty acid synthesis
takes place in the cytoplasm. It requires acetyl coenzyme A,
which is produced by various metabolic processes utilizing
ATP. Platelets mainly transfer mitochondria to mesenchy-
mal stem cells through endocytosis to enhance their wound-
healing ability by activating the de novo fatty acid synthesis
pathway and enhancing their angiogenic activity [47].

Sterol regulatory element-binding proteins (SREBPs) are
a vital regulatory transcription factors for de novo fatty acid
synthesis and govern cellular lipid homeostasis. They also
play crucial roles in regulating angiogenesis in response to
VEGF [48]. SREBP1 is responsible for the biosynthesis of
cholesterol and fatty acids, and SREBP2 mainly mediates
cholesterol biosynthesis [49,50]. Interleukin-8 (IL-8) is a
chemokine involved in inflammation. The activation of
SREBP1 and SREBP2 has been found to stimulate IL-8
in human microvascular endothelial cells and rabbit skin
wound-healing models [51]. SREBP1 also contributes to
promoting anti-inflammatory Toll-like receptor 4 signalling
by reprogramming macrophage lipid metabolism [52].
Mitochondrial autophagy regulatory factor (BNIP3) is
regulated by the SREBP1/FASN pathway and promotes free
fatty acid (FFA) synthesis, which reduces the wound-healing
capacity of mouse skin [53].

Fatty acid oxidation (FAO) FAO refers to the oxidation and
decomposition of glycerol and fatty acids produced by fatty
hydrolysis to generate carbon dioxide and water. This pro-
cess provides the body with a large amount of energy and
plays a vital role in skin wound healing. Increased FAO
is essential for the remodelling and tissue repair function
of M2 macrophages [54,55]. LncFAO is a long noncod-
ing RNA that directly interacts with the HADHB subunits
of mitochondrial trifunctional proteins and activates FAO
[56]. It promotes the resolution of inflammation and tissue
repair by activating FAO. Macrophages engulf apoptotic
cells via efferocytosis [57]. This leads to elevated levels of
cellular fatty acids, which promote mitochondrial respira-
tion and activate NAD-dependent signal transduction. This
metabolic signalling pathway promotes anti-inflammation
and skin wound healing.

Fatty acid desaturation Polyunsaturated fatty acids (PUFAs),
which mainly comprise omega-3 and omega-6 fatty acids, can
regulate the immune response and participate in skin wound
healing, repair, and tissue remodelling [58–60]. In diabetic rat
skin wound healing models, omega-3 PUFAs have been found
to alter proinflammatory cytokine production, which sub-
stantially decreased the number of grade three mast cells on
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days 3 and 5 and the wound area by day 7 [61]. The number
of fibroblasts capable of repair was significantly increased in
the wound areas of omega-3 PUFA-treated rats, whereas that
of macrophages was decreased, thereby accelerating healing
[62].

Omega-6 PUFAs include linoleic, conjugated linolenic,
gamma-linolenic, and arachidonic acids. Linoleic acid and
its products act as inflammatory mediators in skin wound
healing. They enhance local neovascularization, fibroblastic
protein stability, ECM remodelling [63], and fibroblast
proliferation [64]. They eventually increase the rate of wound
closure and decrease the bleeding time to accelerate dynamic
skin wound healing. The wound closure rate has been
found to substantially improve in mice fed a 1% conjugated
linoleic acid-supplemented diet during the early stages of skin
wound healing (inflammatory stage), which increased the
wound closure rate by modulating oxidative stress and the
inflammatory response [65]. Gamma-linolenic acid inhibits
inflammatory responses by inactivating NF-κB and AP-1 by
suppressing oxidative stress and the ERK and JNK sig-
nal transduction pathways in lipopolysaccharide-induced
macrophages [66]. Arachidonic acid stimulates endothelial
cell adhesion in vivo [67]. Its metabolites have anti-
inflammatory capabilities, including stimulating inflam-
matory cell chemotaxis and increasing elastin activity to
degrade extracellular proteins; this affects the formation
and remodelling of tissue healing [68]. Arachidonic acid
levels decrease when fatty acid levels decrease at the local
wound site, which primarily occurs when the body has an
essential fatty acid deficiency that may cause excessive keloid
formation.

Cholesterol synthesis The skin barrier comprises ker-
atinocytes buried in extracellular lipids [69], which mainly
consist of cholesterol, fatty acids, and ceramides [70]. The
critical enzyme regulating cholesterol synthesis is3-hydroxy-
3-methyl glutaryl coenzyme A (HMG-CoA) reductase. The
angiogenic and proliferative responses of keratinocytes
are biphasically regulated through HMG-CoA reductase
expression and activity during skin wound healing [71].
HMG-CoA reductase inhibitors have been found to reduce
granulation tissue formation in mouse wound chambers by
64.7%, accompanied by associated ultrastructural evidence
of apoptosis in fibroblasts, which demonstrates the capability
of HMG-CoA reductase inhibitors to induce fibroblast
apoptosis [72]. An HMG-CoA reductase inhibitor was also
found to inhibit smooth muscle cell (SMC) proliferation in
vitro and to reduce neointimal formation caused by vascular
injury [73]. HMG-CoA reductase inhibitors further reduced
hypertrophic scar formation by inhibiting connective tissue
growth factor in rabbit ear models [74], blocked endothelial
cell migration [75], inhibited angiogenic factor-induced
endothelial cell proliferation in vivo [76], and increased
intraperitoneal fibrinolysis to decrease postoperative adhe-
sions [77].

Hypercholesterolaemia is also closely related to the state of
skin wound healing. High-density lipoproteins (HDLs) play

functional roles in anti-inflammation and angiogenesis [78].
In endothelial cells, HDLs interact with scavenger receptor
class B type I to activate the PI3K/Akt signalling pathway;
activation of this pathway leads to a decrease in inflammatory
protein production and an increase in angiogenic growth
factors [79]. HDLs inhibit inflammation by deactivating the
NF-κB pathway in macrophages [80]. Additionally, recon-
stituted HDLs (rHDLs) reduce CCL2, CCL5, and CX (3)
CL1 expression in monocytes and human coronary artery
endothelial cells and chemokine receptor CCR2 and CX
(3) CR1 expression, demonstrating their anti-inflammatory
properties [81].

Amino acid metabolic reprogramming in skin wound

healing

Amino acids are among the many bioactive macromolecules
involved in the construction of biological organisms. They are
also the basic materials for the construction of cells and tissue
repair. The balance of amino acids is a basic prerequisite for
human health. The metabolic reprogramming of amino acids
helps in tissue repair during skin trauma (Figure. 4).

Arginine metabolism Arginine, a versatile amino acid used
to synthesize various bioactive molecules by arginase, plays
a crucial regulatory role during skin wound healing. There
are two isoforms of arginase: Arg-I and Arg-II. Arg-I is
highly expressed in the liver; it catalyses the conversion of
arginine to ornithine and urea, participates in the urea cycle,
and plays a vital role in ammonia detoxification. Arg-II is a
mitochondrial enzyme that hydrolyses arginine to ornithine,
which is further metabolized into polyamine and proline.
Polyamine is an essential medium for cell proliferation and
differentiation, and proline is a vital component of colla-
gen, constituting approximately one-third of the amino acid
residues of collagen. Therefore, amino acid metabolism is
vital for collagen synthesis, ECM production, wound healing,
and tissue remodelling [82,83].

Arginase competes with nitric oxide synthase (NOS) for
the substrate, L-arginine. This competitions inhibits NO syn-
thesis in vascular endothelia, SMCs, and other diseased tissues
and causes dysfunction; the deactivation of arginase or a
reduction in its expression can restore NO synthesis [84,85].
NO activates guanylyl cyclase-C to produce cGMP in vascu-
lar endothelial cells, leading to SMC relaxation and vasodi-
lation [86,87]. An increase in arginase activity leads to the
uncoupling of endothelial NOS, and the chronic inhibition
of arginase in vivo can restore the nitroso-redox balance and
improve endothelial function [88,89].

Glutamine metabolism Glutamine is the most abundant free
amino acid in the human body. It regulates the expression of
multiple genes related to metabolism, signal transduction, cell
defence, and repair and activates signalling pathways in cells
[90–92]. Glutamine is rapidly metabolized in macrophages
[93], and human monocytes subsequently convert citrulline
to arginine to promote skin wound healing. A glutamine-
containing supplement can shorten the time needed for
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Figure 4. Reprogramming of amino acids metabolism in wound healing. Metabolism of amino acids in wound healing are shown. Broad arrows (in red) indicate

activity of the relative metabolic pathways. Amino acids are crucial for collagen synthesis, ECM production, wound healing, and tissue remodeling, all of which

are achieved through the metabolism of amino acids. α-KG α-ketoglutarate, TCA tricarboxylic acid

wound closure in patients with trauma and wound-healing
disorders [94].

Glutamine also reduces C-reactive proteins (CRPs), which
play vital roles in the inflammatory process, including NO
release, cell apoptosis, and the production of IL-6 and tumour
necrosis factor-α [95]. IL-6 is crucial in mediating wound
healing by regulating the differentiation, activation, and pro-
liferation of keratinocyte fibroblasts and endothelial cells
[96]. The PI (3) K-PKB-FOXO network regulates autophagy
via the modulation of glutamine metabolism [97], and the
importance of autophagy in skin wound healing has been
demonstrated in numerous other studies [98–102].

Tryptophan metabolism Many studies have shown that tryp-
tophan metabolism is altered in skin wound healing. Trypto-
phan catabolism induces an increase in FAO by destabilizing
hypoxia inducible factor 1 to impair endothelial glucose
metabolism [103]. These metabolic changes diminish basal
intracellular cGMP levels, impair endothelial migration, and
produce a proinflammatory response. Tryptophan is also a
precursor for 6-formylindolo [3,2-b] carbazole, which has
been found to enhance keratinocyte migration and promote
wound healing in a MAPK/ERK-dependent manner in multi-
ple mouse models [104].

Indoleamine 2,3-dioxygenase 1 (IDO1) is a key enzyme
in tryptophan metabolism. Ito et al. [105] found that skin

wound healing in IDO1-knockout (IDO-KO) mice was sub-
stantially better than that in wild-type (WT) mice, and the
inhibition of IDO1 activity could accelerate wound heal-
ing. Another study by Bandeira et al. demonstrated that
IDO1 expression increased 5 days after wounding. The num-
bers of neutrophils, macrophages, and T cells increased and
were reversed by tryptophan. The administration of trypto-
phan further decreased myofibroblast density, collagen depo-
sition, re-epithelialization, and wound contraction. These
findings indicate that the tryptophan-induced reduction in
the inflammatory response and IDO1 expression may have
accelerated cutaneous wound healing in chronically stressed
mice.

Therapeutic potential of targeted metabolic reprogramming
in skin wound healing The key proteins in the abovemen-
tioned metabolic pathways may be therapeutic targets to
improve skin wound healing and are worth investigating
(Figure. 5). In terms of glucose metabolism, Apolinário et al.
[106] revealed that the topical use of insulin may improve
skin wound healing in hyperglycaemic mice by modulating
the expression of inflammatory factors, growth factors,
and proteins in the insulin signalling pathway. Yang et al.
[107] proved that the exogenous application of insulin
could promote the apoptosis of neutrophils and subsequently
trigger the polarization of macrophages and improve diabetic
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Figure 5. Landscape of metabolic reprogramming and related pathways in wound healing. The metabolism of glucose, lipids, and amino acids is reprogrammed

owing to changes in key enzymes and transporters. These altered metabolic pathways provide opportunities for therapy. Long solid and dotted arrows represent

direct and indirect shifts or bioconversions, respectively. Square symbols (in blue) represent metabolic materials and products in metabolic reprogramming in

wound healing, whereas yellow oval symbols represent enzymes and transporters. α-KG α-ketoglutarate, FA fatty acid, GLUT glucose transporter, G6P glucose-

6-phosphate, HK hexokinase, HMGCR 3-hydroxy-3-methyl glutaryl coenzyme A reductase, LDHA lactate dehydrogenase A, PKM2 pyruvate kinase 2, SCD1

stearoyl-CoA desaturase-1, SREBPs sterol-regulatory element binding proteins, TCA tricarboxylic acid

wound healing in Wistar rats. Liang et al. [108] designed a
metformin-releasing hydrogel with pH/glucose dual sensitiv-
ity, adhesion, and self-healing properties, which helped heal
athletic diabetic foot. A glucose-responsive multifunctional
metal–organic drug-loaded hydrogel was further found
to decompose excess glucose into hydrogen peroxide and
glucuronic acid [109] and to change the hyperglycaemic
wound microenvironment. This approach may be helpful
for diabetic wound repair with synergistic antibacterial
and angiogenic activity. Peroxisome proliferator-activated
receptor-delta ligand-coated stents have been found to induce
the expression of pyruvate dehydrogenase kinase isozyme
4, downregulate GLUT1 expression, prevent thrombocyte
activation, and support vessel re-endothelialization in VSMCs
[110] to prevent in-stent restenosis and stent thrombosis.

Targeting aberrant glucose metabolism with shikonin,
a PKM2 inhibitor, improves healing in vivo. This finding
indicates a potential clinical application for shikonin in
preventing abnormal scarring [33]. Lactic acid released from
a Matrigel matrix was found to induce repair angiogenesis,
improve reperfusion, and prevent muscle atrophy in ischaemic
hindlimb wounds in mice [44]. Poly lactate-glycolic acid
(PLGA) is biodegradable and biocompatible and has received
regulatory approval for clinical use [111].

A subcutaneous implant of PLGA was found to enable
sustained local and systemic lactate release. This promoted
fibroblast proliferation [112], granulation tissue formation
[113], collagen deposition [114], and re-epithelization [115],
thus contributing to skin wound healing.

In terms of lipid metabolism, clinical studies have shown
that HMG-CoA reductase inhibitors accelerate the skin
wound-healing process [116–118] and reduce scar formation
[119]. HMG-CoA reductase inhibitors, such as statins,
are cholesterol-reducing agents that block the synthesis
of wound-healing inhibitors by targeting the cholesterol
pathway [120]. Kerecis® is derived from the skin of wild
Atlantic cod, which contains a complete epidermis and
dermis and comprises a substrate that retains natural omega-
3 fatty acids. Kerecis® has gained popularity as a dermal
substitute for skin wound healing owing to its high PUFA
content [121]. Fatty acid extracts from Lucilia sericata larvae
promote angiogenic activity and wound healing in the murine
cutaneous layer [122]. The topical application of omega-3,
omega-6, and omega-9 fatty acid emulsions in rats with
excision wounds has been found to accelerate wound closure
compared to untreated wounds [123,124]. Additionally, oral
PUFAs have been found to accelerate the inflammatory stages
of mouse wound healing [125,126].
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Table 1. Clinical application of targeted metabolism reprogramming to improve skin wound healing

Targets Name Roles in wound healing References

Glucose Insulin Modulating inflammatory factors and growth factors [106]
Glucose Insulin Promoting anti-inflammatory macrophage polarization [107]
pH/Glucose pH/glucose dual-responsive hydrogel Reducing inflammation and enhancing angiogenesis [108]
Glucose Glucose-responsive multifunctional

hydrogel
Changing the hyperglycemic wound microenvironment [109]

Pyruvate dehydrogenase kinase
isozyme4 and glucose transporter 1

PPARδ

ligand-coated
Preventing thrombocyte activation and supporting
vessel re-endothelialization

[110]

PKM2 Shikonin Abnormal scar prevention [33]
Lactate L-lactide-co-glycolide (PLGA) Pro-angiogenic [44]
Lactate PLGA-curcumin nanoparticles Re-epithelialization, granulation tissue formation, and

anti-inflammatory
[111]

HMG-CoA reductase Statins Managing wound infections, reducing scar elevation
index, decreasing type I/III collagen content, and
myofibroblast persistence

[113]
[114]
[115]
[116]
[117]

PUFAs Acellular fish skin Decreasing scar formation and providing pain relief [118]
PUFAs Omega fatty acids Inducing early deposition of collagen, promoting new

microvasculature, moderating pro-inflammatory
cytokines and growth factors, and restoring impaired
plasticity of macrophage progenitor cells

[119]
[120]
[121]
[122]
[123]

Arginase 2(S)-amino-6-boronohexanoic acid
NH4 (ABH)

Promoting re-epithelialization and localization of
myofibroblasts beneath the wound epithelium

[124]

Arginine Arg-Lig-NF gel Increasing re-epithelialization, collagen deposition, and
angiogenesis

[125]

Arginine PVA/HA/CNCs/L-arginine Promoting proliferative and adhesive potential on cells [126]
Glutamine L-glutamine Acting on collagen synthesis, wound contraction, and

epithelialization
[127]

Tryptophan ALA/PCL-based ENMs Enhancing type I collagen synthesis and reducing
smooth muscle actin expression

[128]

PUFAs polyunsaturated fatty acids, HA hyaluronic acid, ALA α-Lactalbumin, PCL polycaprolactone, ENMs electrospun nanofibrous mats, HMG-CoA 3-
hydroxy-3-methyl glutaryl coenzyme A, PVA polyvinyl alcohol, PPAR peroxisome proliferator-activated receptors

In terms of amino acid metabolism, drug discovery has
mostly focused on inhibitors with arginase as a target.
For example, 2(S)-amino-6-boronohexanoic acid NH4
(ABH) is an active arginase inhibitor with high efficiency
and specificity. Animals treated with ABH have exhibited
increased amounts of granulation tissue and improved re-
epithelialization and localization [127]. An in vivo, full-
thickness wound-healing assay of a gel containing nanofibres
that were surface-modified by arginine molecules (Arg-Lig-
NF gel) increased re-epithelialization, collagen deposition,
and angiogenesis and ultimately accelerated wound closure
in rats [128]. Similarly, researchers incorporated CNCs
as nanofillers and loaded L-arginine into citric acid-
crosslinked poly (vinyl alcohol)-hyaluronic acid (HA)-based
nanofibres (NFs) (PVA-HA NFs) to develop a new bioactive
wound dressing (PVA/HA/CNC/L-arginine). This nanofibre
had substantial potential for proliferation and adhesion,
excellent haemocompatibility, high protein adsorption, and
antibacterial activity [129]. The oral administration of L-
glutamine (1 g/kg) further induced complete epithelialization
with new blood vessel formation and increased amounts of
fibrous tissue [130]. The wound area substantially decreased,

and the rate of wound contraction increased to promote
wound healing compared with that in control rats.

α-Lactalbumin (ALA) is a dietary protein rich in trypto-
phan. As a precursor of the neurotransmitter serotonin, ALA
can promote burn wound healing and reduce scar forma-
tion. Guo et al. [131] designed electrospun nanofibrous mats
(ENMs) based on ALA and polycaprolactone. These ENMs
adhered to fibroblasts, resulting in increased fibroblast pro-
liferation, type I collagen synthesis, decreased smooth muscle
α-actin expression, and reduced scar formation. A summary
of the clinical use of targeted metabolic reprogramming to
improve skin wound healing, as well as its action targets and
roles in wound healing, is presented in Table 1.

Conclusions

Metabolic reprogramming plays a vital role in skin wound
healing by providing multiple repair cells with energy and
substrates. Reprogramming glucose, lipid, and amino acid
metabolism can accelerate wound healing and reduce scar
formation. Glucose-mediated oxidative stress drives the
proinflammatory response and promotes wound healing.
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Reprogramming lipid metabolism enhances local
neovascularization and improves fibrin stability to promote
extracellular matrix remodelling. Reprogramming amino
acid metabolism affects wound re-epithelialization, colla-
gen deposition, and angiogenesis. Therefore, developing
wound-healing drugs to target metabolic reprogramming
may improve treatments for patients, such as those with
diabetes. It is believed that a comprehensive understanding
of metabolic reprogramming in skin wound healing will
potentially provide theoretical references for promoting the
development of new wound-healing drugs.
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