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Abstract:  Multiple sclerosis (MS) is a complex autoimmune condition with firmly established 

genetic and environmental components. Genome-wide association studies (GWAS) have revealed 

a large number of genetic polymorphisms in the vicinity of, and within, genes that associate 

to disease. However, the significance of these single-nucleotide polymorphisms in disease and 

possible mechanisms of action remain, with a few exceptions, to be established. While the animal 

model for MS, experimental autoimmune encephalomyelitis (EAE), has been instrumental in 

understanding immunity in general and mechanisms of MS disease in particular, much of the 

translational information gathered from the model in terms of treatment development (glati-

ramer acetate and natalizumab) has been extensively summarized. In this review, we would 

thus like to cover the work done in EAE from a GWAS perspective, highlighting the research 

that has addressed the role of different GWAS genes and their pathways in EAE pathogenesis. 

Understanding the contribution of these pathways to disease might allow for the stratification 

of disease subphenotypes in patients and in turn open the possibility for new and individualized 

treatment approaches in the future.
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Introduction
Multiple sclerosis (MS) is a debilitating chronic inflammatory disease of the central 

nervous system (CNS) characterized by autoimmune destruction of myelin and sub-

sequent loss of neurons. The cause of disease remains unknown, but epidemiological 

studies have clearly established genetic factors in MS etiology.1–3 The first genetic 

risk factor has been described in early 1970s and mapped to the human leukocyte 

antigen (HLA) complex,4,5 which encodes numerous genes with immune functions. 

More recently, this strongest genetic influence was refined to HLA-DRB1*1501 that 

confers threefold increased risk to develop MS5,6 and encodes molecules involved in 

the presentation of antigens to T-cells. With the advent of genome-wide association 

studies (GWAS) and large international efforts to gather sufficiently powered cohorts, 

more than 100 non-HLA variants have been identified to predispose for MS5,7–9 together 

with multiple variants and alleles within the HLA locus itself.5,10 The identified MS 

risk variants collectively indicate genetically regulated immune functions that control 

disease susceptibility and they have set the stage for molecular characterization of 

mechanisms causing MS. Nevertheless, apart from few examples,11–13 interpretation 

of the causal variants is limited and their mechanisms are still largely unknown.

Experimental autoimmune encephalomyelitis (EAE) is an animal model widely 

used to study mechanisms of inflammation in the CNS.14 EAE can be induced in a 
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variety of species either by active immunization with CNS 

antigens in adjuvant or by passive transfer of CNS-specific 

T-cells. Although no single EAE model can recapitulate the 

complexity of MS, EAE has been successfully used to study 

mechanisms of relevance for MS and translate them into 

therapeutic interventions.15 The knowledge regarding the role 

of MS risk genes in vivo largely comes from EAE models, 

primarily owing to the possibility of gene targeting in mice. 

In this review, we summarize the current knowledge of the 

mechanisms of well-established MS risk genes5,9 (Table 1) and 

discuss more thoroughly those for which more abundant EAE 

data are available. Where possible, the genes were grouped, in 

the text, according to the pathways or cellular functions they 

fulfill. Additionally, we address in Table 1 whether data on 

the functional consequence of the human single-nucleotide 

polymorphism (SNP) is available as well as whether any clini-

cal trials targeting these molecules are underway.

APC function and costimulation
CD86
CD86 (B7.2), together with the structurally homologous 

CD80 (B7.1), are important costimulatory molecules that reg-

ulate the crosstalk between antigen presenting cells (APCs) 

and T-cells, delivering “signal 2” for T-cell activation. They 

are upregulated upon APC activation in specific and distinct 

temporal patterns and bind to both CD28 and CTLA-4 on 

T-lymphocytes, leading either to enhancement or inhibition 

of T-cell function, respectively.16 In EAE, because of greatly 

overlapping and compensatory effects between CD86 and 

CD80,17 double-knock-out (KO) animals (Cd80/Cd86-/-) 

have been used to address the role of the receptors in disease 

development. Cd80/Cd86-/- animals immunized with myelin 

oligodendrocyte glycoprotein (MOG) show an impaired 

induction phase of EAE. However, transfer of MOG-specific 

wild-type (WT) T-cells into Cd80/Cd86-/- mice, in which any 

defects in priming are overridden, also leads to less severe dis-

ease with eventual complete remission, while WT recipients 

present with chronic progressive disease. These experiments 

point to a role of this costimulatory pathway in the priming of 

the response as well as in the effectors phase.17 Administration 

of antibodies against CD2818 or CTLA-4Ig fusion protein,19 

which both block the pathway, lead to a reduction of disease 

severity during the effector phase both when given systemi-

cally as well as intrathecally, for the latter.20 Abrogation of 

the pathway attenuates the immune response at least partly 

due to death in situ of encephalitogenic T-cells.21 Because 

of the widespread expression of CD80/CD86 in the CNS 

during EAE, it is difficult to discriminate whether local 

APCs (microglia, dendric cells [DCs]) or infiltrating cells 

(monocytes) are responsible for the costimulatory events that 

sustain inflammation. However, even though microglia in 

preactive and remyelinating MS lesions do express CD86,22 

the expression levels are much lower than on classical DCs or 

monocyte-derived DCs as judged from EAE experiments,23,24 

suggesting the latter as crucial cells in the aforementioned 

restimulation events.

TRAF3
TRAF3 is part of the TNF receptor-associated factor family 

and is an adapter protein. It is a potent inhibitor of different 

signaling pathways including CD154 (CD40L), toll-like 

receptors (TLR), and IL-17R.25–27 TRAF3 can negatively 

regulate IL-17 signaling; Traf3 transgenic mice, which 

express significantly higher levels of TRAF3, have reduced 

EAE score and later onset. Accordingly, Traf3 knock down 

mice have exacerbated disease.27 Peli-1, which promotes 

degradation of TRAF3, is abundantly expressed in microglia. 

Peli-1-deficient mice, in which levels of TRAF3 remain high, 

have reduced EAE as well, in spite of normal peripheral T-cell 

activation.28 This reduction in EAE is due to an impaired 

response of microglia to inflammatory stimuli. In summary, 

TRAF3 is a negative regulator of signaling pathway in mul-

tiple cell types, affecting both peripheral as well as CNS 

immune activation stages.

TNFSF14
TNFSF14 encodes for LIGHT, a newly identified costimula-

tory ligand expressed on DCs, T-cells, natural killer (NK) 

cells, monocytes, and granulocytes.29 LIGHT binds to three 

receptors, DcR3, herpes virus entry mediator (HVEM), and 

lymphotoxin b receptor (LTbR), and drives increased T-cell 

proliferation and Th1 cytokine expression.

LIGHT has been shown, in one study, to be an impor-

tant factor for the recovery phase of EAE.29 Light-deficient 

C57BL/6 mice develop a more severe EAE after immuniza-

tion with MOG
35–55

 peptide compared to WT mice. While KO 

mice have more activated microglia/macrophages in the CNS, 

CD4+ T-cells from lymph nodes draining the immunization 

site exhibit lower IFNγ and IL-17 production. The paradoxi-

cal effect of disease exacerbation in Light-deficient mice in 

spite of lower Th1/Th17 effector functions is explained by 

adoptive transfer of encephalitogenic T-cells into KO mice, 

showing that LIGHT is not essential for disease induction but 

plays a major role in limiting disease progression and tissue 

damage by controlling activated macrophages/microglia in 

the CNS during inflammation.29
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IFI30
IFI30 encodes for GILT, an enzyme that functions in 

MHC class II-restricted antigen processing and MHC class 

I-restricted cross-presentation.30 GILT may alter the character 

of immune responses and affect central tolerance.

Gilt KO mice are resistant to EAE induced with MOG
35–55

 

as they fail to induce a proper antigen-specific CD4+ T-cell 

response.31 KO mice immunized with whole MOG protein 

are, however, susceptible to EAE. However, while T-cells 

from WT mice respond to MOG
35–55

, T-cells from KO animals 

proliferate against a different array of peptides. Furthermore, 

Gilt KO mice develop a disease characterized by antibody-

mediated effects, indicating a switch in the pathogenic 

mechanism due to peptide repertoire change. The role of 

GILT as an endosomal reductant has also been shown by 

Burrows et al32 by using RTL550-CYS-MOG, a recombinant 

TCR (T-cell receptor) ligand (RTL) bearing cysteine-tethered 

antigenic peptides, to treat EAE. RTL550-CYS-MOG inhib-

its EAE in WT mice but not in Gilt KO mice, since RTLs 

must be endocytosed and presented by MHC class II and since 

GILT is required to liberate these cysteine-tethered peptide 

ligands in late endocytic compartments.

CD40
CD40 is a costimulatory molecule on APCs. The interac-

tion of CD40 with its ligand CD40L (CD154), expressed 

on activated T-cells, influences a variety of immune func-

tions including B-cell activation and Ig production, and DC 

survival.33

It has been shown that CD40 and CD40L expression 

in inflammatory cells infiltrating the CNS of mice is sig-

nificantly increased during acute EAE and relapses, and 

decreased during remission.34 Furthermore, perivascular 

infiltrates of mononuclear cells have abundant expression of 

CD40 and CD40L in the CNS of marmoset monkeys with 

demyelinating EAE.35

Experiments using Cd40 KO mice have shown the 

importance of CD40-CD40L pathway in EAE development 

and Th polarization.36,37 Cd40 KO mice are resistant to EAE 

development, fail to drive Th17 differentiation, and exhibit 

reduced IL-6 production by DCs. Furthermore, mice that 

receive Cd40-/- DC cells prior to EAE induction exhibit an 

impaired ability to prime a MOG-specific IL-17 response 

even though their ability to induce IFN-γ production is simi-

lar to mice injected with control DCs.38 The administration 

of Cd40-/- DC loaded with MOG prior to standard MOG 

immunization also prevents the onset of EAE.39 Treatment of 

mice with EAE with bone marrow-derived dendritic cells 

(BMDC) transduced with lentiviral vectors encoding CD40 

shRNA results in significant decrease of EAE compared to 

mice treated with BMDCs transduced with control vectors.40 

EAE inhibition is even more profound when mice are injected 

with BMDCs cotransduced with shRNA to both CD40 and 

the IL-23 p19 subunit, leading to further dampening of the 

Th17 response. Ablation of signaling by deletion of the 

ligand, CD40L, using Cd40l KO mice that carry a myelin 

basic protein (MBP)-specific transgenic TCR also leads to 

EAE resistance and lack of CNS inflammation.41

Treatment with anti-CD40L monoclonal antibody (mAb) 

concomitantly to myelin antigen immunization completely 

prevents EAE development. When anti-CD40L mAb is 

administered after EAE onset and before peak of the dis-

ease, it significantly reduces EAE symptoms.35,36,42 When 

anti-CD40L mAb is administered during EAE remission, it 

prevents further clinical relapses.43 In addition, several reports 

have shown the short- and long-term inhibition of EAE in 

different EAE animal models using anti-CD40L treatments, 

suggesting that CD40-CD40L interactions may play a role in 

the ability of encephalitogenic T-cell to interact with APCs 

in the CNS and increase Th effector functions.44–51 Treatment 

with a combination of anti-CD40L Ab and CTLA4Ig confers 

additive protection against EAE and is associated with com-

plete absence of inflammatory cell infiltrates in the CNS.52 

These observations have been further corroborated by studies 

in marmoset monkeys and mice that show that antibodies 

that block CD40 inhibit EAE53–57 and suppress magnetic 

resonance imaging-detectable inflammation and enlarge-

ment of brain lesions.58 Finally, Ichikawa and Williams59 

have shown that activation of the CD40-CD40L pathway is 

sufficient to overcome tolerance against self-antigens.59 In 

this study, myelin-reactive T-cells from tolerized donors are 

converted into pathogenic effector cells upon reactivation 

of specific lymph node cells with anti-CD40 agonists and 

are able to proliferate, secrete cytokines, and induce passive 

EAE in SJL mice.

TCR signaling
CBLB
CBLB is an E3 ubiquitin-protein ligase, which  negatively 

regulates TCR, B-cell receptor (BCR), and FCεR1 signal 

transduction pathways, playing an important role in periph-

eral tolerance maintenance. In naïve T-cells, it inhibits 

VAV1  activation upon TCR engagement, but not other 

pathways such as Zap-70 and Lck, Ras/MAPK, PLC-γ1, or 

Ca2+ mobilization. In this way, CBLB imposes a require-

ment for CD28 costimulation for proliferation and IL-2 
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production, heightening the activation threshold for T-cells.60 

An additional observation linking CBLB to tolerance induc-

tion is that CBLB expression in T-cells is controlled by 

CD28 and CTLA-4. CD28 costimulation induces CBLB 

ubiquitination and proteasomal degradation, while CTLA-

4-B7 interaction induces Cblb expression.60 Independent of 

the aforementioned mechanism, CBLB has also been shown 

to control the generation of peripheral inducible Treg cells 

in response to TGFβ signaling.61 The control of tolerance at 

multiple levels is revealed in Cblb-/- mice immunized with 

MBP, which show a higher incidence and higher EAE score 

than their WT  counterparts.62 These animals also present 

T-cell abnormalities in lymph node trafficking patterns, 

with increased expression of S1P
1
 on T-cells, which do 

however not impact their sensitivity to FTY720 (fingolimod) 

treatment.63

Cytokine signaling and Th  
phenotype
STAT4
STAT4 is a transcription factor essential for CD4+ T-cell dif-

ferentiation to the Th1 phenotype. CD4+ T-cells respond to 

the cytokines IL-27 and IL-12 through STAT1 and STAT4 

phosphorylation, respectively, leading to subsequent nuclear 

translocation, where they induce IFNγ production and expres-

sion of the master transcriptional regulator T-bet.

Both Th1 and Th17 T-cells can induce EAE and appear 

implicated in MS. However, while mice deficient in IL-12, 

STAT1, and IFNγ not only still develop EAE, but often pres-

ent with exacerbated disease in the case of the latter; animals 

knocked out for Stat464 and T-bet are resistant to EAE.65 

 Deletion of T-bet specifically on CD4+ T-cells does not abro-

gate encephalitogenicity,66 implying expression in other cells 

as essential, and leaves STAT4 as a major player in disease 

establishment. Additionally, the regulation of immunity by 

STAT4 goes beyond mere induction of gene transcription in 

that STAT4 can promote active epigenetic marks.67 Recently, 

a study has shown that STAT4 is essential for the induction of 

GM-CSF secretion in both Th1 and Th17 by binding directly 

to the Csf2 promoter.68 Since GM-CSF is the only T-cell 

effector cytokine shown to date to be absolutely essential for 

EAE induction,69,70 the results of this study come to resolve 

the conundrum.

While no data on SNP influence on expression or splic-

ing of STAT4 is available, one study has addressed the role 

of an alternative isoform of STAT4 (STAT4β), which lacks 

44 amino acids in the C-terminus, in the development of 

EAE. Transgenic expression of either STAT4α or STAT4β 

isoforms exclusively leads to reduced EAE in STAT4α 

expressing animals and exacerbated disease in STAT4β 

expressing mice as compared to controls. STAT4β expres-

sion drives increased levels of both IFNγ and IL-17 within 

cellular infiltrates in the CNS of immunized animals.71

IL12B (p40)
IL12B codes for IL-12p40 that together with IL12A 

(IL-12p35) and IL-23p19 forms IL-12 and IL-23 heterodi-

mers, respectively. IL-12 and IL-23 are secreted primarily 

by APCs and influence the differentiation of T-cells into 

a Th1 or a Th17 phenotype, respectively. Both Il-12p40 

and Il-12p35 KO mice fail to produce IL-12 heterodimer 

and lymph node cells from these mice show deficiencies 

in primary IFNγ-responses. However, IL-12p40 deficiency 

renders mice completely resistant to MOG-induced EAE, 

whereas Il-12p35 KOs have unaltered or more severe disease 

compared to wild types.72,73 It was later shown that IL-12p40 

is essential for EAE as a component of IL-23 rather than of 

IL-12.74 Bone marrow chimeras revealed that full disease is 

dependent on IL-12p40 being expressed by CNS resident 

cells.75 IL-12p40 also has the capacity to homodimerize, and 

administration of neutralizing antibodies to this homodimer 

results in less severe EAE in SJL/J mice, while treating mice 

with recombinant IL-12p40 homodimer gives more severe 

disease.76

IL7R
IL7R codes for the IL-7 receptor α chain (IL-7Rα), which 

together with the common γ chain, forms the receptor for 

IL-7. IL-7Rα is also part of the receptor for thymic stromal 

lymphopoietin (TSLP). IL-7 is important for the survival and 

differentiation of cells of the lymphoid lineage such as B-, 

T-, and NK cells. IL-7rα-/- mice have a marked reduction in 

incidence of MOG-induced EAE. Interestingly, available data 

point toward a sex difference with low incidence in females, 

while males are completely resistant and have barely any 

priming of T-cells toward the CNS antigen.77 Treating MOG-

induced EAE in mice with recombinant IL-7 exacerbates 

disease and treatment with a blocking antibody to IL-7Rα 

ameliorates disease, both when given before onset or at peak 

of disease.78 The antibody treatment reduces primarily the 

number of peripheral T-cells, whereas B- and NK cells are 

relatively spared, which also correlates to a lower expres-

sion of IL-7Rα on these cells. Among the T-cells, naïve 

and effector T-cells are the most affected, whereas central 

memory T-cells are largely spared. The treatment also results 

in an increase in absolute numbers of MOG-specific Foxp3+ 
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Tregs in the lymph nodes. Another study later confirmed 

the effect on EAE using a KO mouse model in which the 

IL-7Rα is still present in the thymus to avoid disturbing the 

development of a functional immune system.79 These mice 

are also protected, although to a lesser extent than full KOs. 

Bone marrow chimeras revealed that EAE pathology is 

dependent on IL-7Rα expression on both hematopoietic and 

nonhematopoietic cells and that IL-7Rα is expressed in the 

CNS by oligodendrocytes and astrocytes. The effects seen in 

EAE after manipulating IL-7Rα could also be due to it being 

part of the receptor complex for TSLP. Tslp-/- mice, however, 

have a seemingly normal lymphocyte distribution in the naïve 

state, and there is no effect on EAE onset or progression. 

One of the MS-associated SNPs in the locus (rs6897932) 

has been shown to promote expression of an alternatively 

spliced soluble variant, thus increasing the ratio of soluble 

to membrane bound forms of IL-7Rα.80 This soluble form 

binds to IL-7 and potentiates its activity.81

IL2RA
The IL-2 receptor alpha chain (IL2RA), also known as CD25, 

is a part of the high-affinity receptor complex for IL-2, which 

can be expressed on both hematopoietic as well as nonhe-

matopoietic cells. High expression is found on Foxp3+ Treg 

and transiently on activated effector T-cells. IL-2 is important 

for the expansion of T-cells during an immune response, 

but it also influences their differentiation. As a result of the 

strict IL-2 dependency of Tregs, Il2ra KO mice spontane-

ously develop a progressive lymphoproliferative disorder82 

and have therefore not been a useful tool to study the role of 

this gene in EAE. It has, however, been shown in a model of 

spontaneous EAE that transfer of Il2ra KO T-cells results in 

little or no protection, whereas WT or Il2 KO T-cells do. Thus, 

protection from disease by Tregs requires IL-2 signaling, but 

is not mediated by autocrine IL-2 production.83 Similarly, 

injection of IL-2 coupled to a nonneutralizing antibody to 

increase the half-life results in an increase in Treg numbers 

and resistance to EAE.84 In combination with rapamycin, 

this treatment also reduces severity of ongoing EAE. IL-2 

treatment experiments point to the protective effect being 

associated to an expansion of NK cells in the periphery and in 

the CNS. Moreover, using a human variant of IL-2/anti-IL-2 

antibody complex, a defective CD56+ NK cell compartment 

from MS patients was restored in a human/mouse chimera 

model.85 Soluble CD25 (sCD25) is elevated in MS patients 

compared to control, and there is a positive correlation with 

disease severity and progression.86 Treating mouse EAE with 

sCD25 exacerbates disease and increases Th17 responses.87 

This is consistent with the aforementioned studies as sCD25 

acts as a decoy receptor for IL-2. IL-2 was recently shown 

to be a potent inducer of GM-CSF, a cytokine crucial for the 

development of EAE. An MS-associated polymorphism in 

IL2RA (rs2104286) gene specifically increases the frequency 

of GM-CSF-producing Th cells from risk allele carriers as 

compared to Th cells from control individuals.13 Daclizumab 

is an antibody directed toward CD25 that has shown efficacy 

in several Phase III clinical trials for relapsing-remitting MS 

(RRMS) and is a potential new treatment.

TYK2 (Tyrosine Kinase 2) and STAT3
The Janus Kinase/Signal Transducer and Activator of 

Transcription (JAK/STAT) signaling pathway is the pre-

dominant signal transduction cascade in innate and adaptive 

immunity.88 TYK2 is a member of the JAK/STAT signal-

ing pathway and contributes mainly to the IL-12-induced 

Th1 cell differentiation.88 STAT3 functions mainly as a 

signaling molecule and transcription factor for Th17 cell 

differentiation.88 Dysregulation of the JAK/STAT pathway 

contributes to numerous autoimmune diseases, including 

MS/EAE.

Tyk2-/- C57BL/6 mice are resistant in MOG
35–55

-induced 

EAE with complete lack of inflammation in the CNS.89 

Adoptively transferred Tyk2-/- pathogenic CD4+ T-cells fail 

to induce EAE in WT animals pointing to a role for TYK2 

in T-cells, rather than in APCs or target tissue cells, for the 

phenotype. B10.D1-H2q/SgJ (Tyk2A) mice that carry a 2538 

G→A missense mutation in Tyk2 gene are also resistant 

in MOG
79–96

-induced EAE compared to B10.Q/Ai (Tyk2G) 

mice.90 Ex vivo restimulation of splenocytes and lymph node 

cells from B10.D1 (Tyk2A) leads to lower IFNγ, IL-6, and 

RANTES production and a trend for lower IL-17 compared 

to B10.Q. Since Tyk2A mutation impairs the IL-12R and the 

IL-23R pathways, the authors speculate that EAE resistance 

of B10.D1 (Tyk2A) mice might be due to their inability to 

upregulate encephalitogenic levels of IFNγ and IL-17 on 

T-cells (via IL-12R and IL-23R pathways respectively). On 

the other hand, conditional deletion of Stat3 in the T-cell 

compartment renders animals resistant to EAE, highlight-

ing the importance of STAT3 in Th17 differentiation during 

EAE development.91,92

Different treatments such as COX-2 inhibitors, 1,25-

dihydroxyvitamin D3, COP-1, lovastatin, and AZD1480 

ameliorate EAE symptoms, CNS inflammation, and 

demyelination.93–97 In addition, several herbal compounds 

such as quercetin, curcumin, berberine, embelin, cornel iri-

doid glycoside, and plumbagin have been shown to dampen 
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EAE.98–104 All the aforementioned treatments dampen Th1 

and Th17 differentiation through inhibition of JAK/STAT 

pathway.

Suppressors of cytokine signaling proteins (SOCS) 

inhibit JAK/STAT, inhibit JAK/STAT signaling by vari-

ous mechanisms.105 SOCS3 inhibits STAT3 activation and 

cytokine signaling in  macrophages/microglia.106 Mice with 

conditional KO of Socs3 in myeloid cells develop atypical EAE 

compared to control mice.107,108 Adoptive transfer of SOCS-3 

transduced DCs significantly suppresses EAE and associates 

with impaired IL-23/STAT3 and IL-12/STAT4 signaling and 

further decreases Th17 and Th1 differentiation and increases 

Th2 induction.109

Additionally, Glia maturation factor (GMF),110 miR-

20b,111 miR-125a,112 and the organotellurium compound 

AS101113 modulate EAE by directly affecting the function 

or transcriptional levels of STAT3.

NF-κB signaling
NFKB1 (p50)
NF-κB is a generic name for a protein complex of five protein 

subunits, NF-κB1 (p50), NF-κB2 (p52), RelA, RelB, and 

c-Rel, that act as either homo- or heterodimers, functioning 

primarily as transcription factors for cytokine production and 

cell survival. Being quite central to all immune processes, 

the involvement of NF-κB proteins with EAE and MS is 

expected as a surrogate for immune activation in most cell 

types. Additionally, NF-κB is constitutively active in neurons 

and expressed in all glial cell types, being crucial for nervous 

system plasticity, learning, and memory.114 While deletions in 

immune system cells generally lead to reduced inflammation 

during EAE, CNS-restricted expression ablation has revealed 

both neuroprotective or detrimental roles, depending on the 

type of insult. Specifically for EAE, general NF-κB pathway 

inhibition did not modify disease progression when targeted 

on either neurons or oligodendrocytes, while targeting of 

astrocytes and microglia led to reduced inflammation.114

While effects on EAE have, through selective deletion 

of one of the five subunits or additional regulatory proteins, 

upstream or downstream of the activation cascade been thor-

oughly documented and give partially overlapping results (for 

an extensive review refer to Mc Guire et al114). In specific, 

NFKB1 (p50) is part of the canonical NF-κB pathway that 

is triggered by activation of receptors such as TNFR1, TLRs, 

IL-1R, TCR, and BCR. Deletion of NFKB1 in mice attenuates 

EAE incidence, clinical score, and CNS inflammation due 

at least in part to a reduction in T-cell activation (both Th1 

and Th2).115 Target-tissue-specific effects are also evidenced 

by reovirus infection experiments, in which p50-/- mice fare 

better with reduced CNS apoptosis.116 A similar effect can 

be observed in ischemia induction, in which damage is sig-

nificantly reduced in p50-/- mice.117

While limited information is available for humans on 

NFKB1 specifically, GWAS results have implicated other 

players in the NF-κB cascade, such as TNFRSF1A (TNFR1), 

CARMA1 (CARD11), MALT1, BCL10, PLEKHG5, and 

TNFAIP3 as MS-susceptibility loci.9

MALT1-BCL10-CARD
Triggering of antigen receptors on the surface of lymphocytes 

leads to the initiation of signaling pathways that regulate 

the activation, proliferation, and survival. One of the major 

pathways leads to NF-κB activation and translocation to the 

nucleus, where it acts as a transcriptional regulator. The so-

called classical pathway of activation, in response to antigen 

receptors, requires the signaling molecule MALT1 and its 

binding partners BCL10 and CARMA1 (CARD11),118 all 

three associated to MS, as well as NF-κB p50 (NFKB1) (see 

“NFKB1 (p50)” section).9 While no studies have addressed 

the role of BCL10 directly on EAE, Carma1 KO animals are 

completely protected from EAE apparently due to a strong 

inhibition of Th17 differentiation.119 Similarly, Malt1-/- mice 

immunized with MOG
35–55

 do not develop EAE in spite of 

abundant lymphocytic infiltration into the CNS. Loss of 

Malt1 leads to reduced IL-17 and GM-CSF secretion from 

infiltrating T-cells, which fail to further recruit myeloid cells 

and sustain neuroinflammation, while no impact on Th17 

 lineage-related transcription factors or Th1 differentiation can 

be observed.120 This is, however, inconclusive, since another 

study reveals impairment in lymphocyte activation already 

in the periphery under a similar EAE induction protocol.121 

Transgenic mice expressing a catalytically inactive form of 

MALT1, which conserves its scaffolding function, also pres-

ent a strong defect in lymphocyte activation and protection 

from EAE.122 Surprisingly, ablation of catalytic activity leads 

to an impairment in Treg cell generation and spontaneous 

autoimmune gastritis, which was not seen in complete KOs 

in the same study. Lastly, treatment of EAE in mice with the 

reversible MALT1 inhibitor mepazine either prophylactically 

or after onset of symptoms ameliorates disease.123

Other pathways
PTGeR4 (eP4)
PTGER4 codes for EP4, which is one of the four recep-

tors for prostaglandin E2 (PGE2). PGE2 is produced by 

cyclooxygenase-2 and has both pro- and anti-inflammatory 
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effects. Lipidomic analysis of the arachidonic acid cascade in 

the spinal cord of mice with EAE shows that the PGE2 path-

way is favored over other eicosanoids and that the expression 

of the PGE2 receptors EP1, EP2, and EP4 correlates with 

clinical symptoms.124 The same study also revealed that daily 

administration of EP4 antagonist ONO-AE3-208 before EAE 

onset suppresses MOG-induced EAE, likely due to reduced 

T-cell proliferation as well as diminished IFNγ and IL-17 

expression. Ablation of all the eight prostaglandin receptors 

individually revealed that only Ep4 KOs present with a signifi-

cant effect, leading to decreased disease severity.125 Inhibition 

of EAE is also achieved by treating mice with an EP4 antago-

nist during the priming phase. Paradoxically, treatment with 

an EP4 agonist starting at onset of disease reduces disease 

severity. Agonists for EP1, EP2, and EP3 have no effect.

TNFRSF1A
TNFR1, encoded by the TNFRSF1A gene, is the major recep-

tor for TNF. As a pleiotropic cytokine, the role of TNF is not 

clearly understood and seems to have both pathogenic and 

protective functions in neuroinflammation. Blocking TNF in a 

clinical trial for MS resulted in an exacerbation of symptoms, 

while concomitantly, treatment of other autoimmune diseases 

with anti-TNF resulted in cases of neuroinflammation.126–128 

Analysis of MS GWAS data in conjunction with the 1,000 

Genomes Project data implicates SNP rs1800693 as the 

causal variant in the TNFRSF1A region, leading to the pro-

duction of a soluble TNFR1 in MS patients carrying the pre-

disposing genotype.13,129 This soluble TNF receptor acts in the 

same manner as the blocking treatment and could, therefore, 

promote neuroinflammation. TNF also has a second receptor, 

TNFR2, which can be inducibly expressed in endothelium 

and immune cells. TNFR2 has a protective effect in EAE 

since Tnfr2 deficient mice have exacerbated disease while 

Tnfr1 KO animals or mice treated with TNFR1 antagonists 

are protected.130–134 Taken together, both human and mouse 

data would point to blocking of TNFR1 rather than TNF itself 

as a target for a potential therapy for MS.

CYP24A1 (1,25-hydroxyvitamin  
D-1 alpha hydroxylase)
CYP24A1 encodes for 1,25-hydroxyvitamin D-1 alpha hydrox-

ylase, an enzyme that inactivates 1,25- dihydroxyvitamin D
3
 

through hydroxylation and thus regulates its levels.135

Female B10.PL mice fed with a diet with or without 

vitamin D
3
 prior to MBP immunization have significantly 

less clinical and immunological signs of EAE compared to 

ovariectomized females or intact or castrated males.136 One 

hypothesis for the higher levels of 1,25-dihydroxyvitamin D
3
 

and less Cyp24a1 transcripts in vitamin-D-fed female mice is 

that an ovarian hormone inhibits Cyp24a1 gene expression in 

the spinal cord, which in turn causes 1,25-dihydroxyvitamin 

D
3
 accumulation leading to inflammation resolution before 

severe EAE develops.

Lovastatin treatment provides protection in EAE mice 

through inhibition of Cyp24a1 gene expression in Th1/Th17 

cells that may allow the accumulation of 1,25- dihydroxyvitamin 

D
3
 in the peripheral lymphoid organs and spinal cord.137

Conclusion
The complexity and the heterogeneity of human MS together 

with inaccessibility of the target organ and events that occur 

prior to disease diagnosis necessitate studies in experimental 

models. With the tremendous progress in MS genetics, it is 

likely that EAE will continue to have a central role in functional 

in vivo complementation of human studies, especially in com-

bination with multiple omics from human tissues that can guide 

the hypothesis about the nature of the causal variants.138,139 

Numerous conditional knockout mice, which enable precise 

gene targeting in specific cell types when crossed with appro-

priate Cre lines (sometimes even in an inducible manner), have 

already been developed by the international Knockout Mouse 

Project. This conventional approach can now be complemented 

with the latest cutting-edge technology using the CRISPR-

Cas9.140 In this way, multiple genes can be targeted simultane-

ously, which is likely more suitable for MS pathologies that 

are caused by subtle changes in genes that converge to shared 

pathways rather than variations in single genes. Such strategies 

might give rise to novel models with characteristics that mimic 

better certain MS pathologies, making them further adapted 

for translational research.
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