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The joint attack on the body by metabolic acidosis and oxidative stress
suggests that treatment in degenerative diseases, including Alzheimer’s
disease (AD), may require a normalizing of extracellular and intracellular
pH with simultaneous supplementation of an antioxidant combination
cocktail at a sufficiently high dose. Evidence is also accumulating that
combinations of antioxidants may be more effective, taking advantage of
synergistic effects of appropriate antioxidants as well as a nutrient-rich
diet to prevent and reverse AD. This review focuses on nutritional, nutra-
ceutical and antioxidant treatments of AD, although they can also be used
in other chronic degenerative and neurodegenerative diseases.
1. Introduction
Countless lives have been savedwith antibiotics and vaccines for various commu-
nicable diseases [1,2]. However, chronic disease is currently the most significant
burden on health systems globally and the cause of approximately 70% of
deaths worldwide [3,4]. Alzheimer’s disease (AD) and other neurodegenerative
diseases have not specifically been included in those numbers and therefore the
situation may be much worse. Approximately 45% of all Americans suffer from
one or more chronic diseases [5].

In Europe, current estimates are that 50 million people live with multiple
chronic conditions and this number is expected to increase during the next
decade [6]. In 2015, dementia affected 47 million people worldwide (or roughly
5% of the world’s elderly population), a figure that is predicted to increase to
75 million in 2030 and 132 million by 2050. Recent reviews estimate that globally
nearly 9.9 million people develop dementia each year. People diagnosed with one
or more chronic conditions often have complex health needs, die prematurely and
have poorer overall quality of life [3]. Patients with multiple chronic conditions
generally receive ineffective, incomplete and fragmented care [6].

According to theGrattan Institute, ‘Australianprimary care is failing inone cru-
cial area: the prevention andmanagement of chronic disease’ [4], and it is probably
the same globally. Professor Allen D. Roses has provided two excellent reviews on
the economics and future of usingpharmacogenetics toproducedrugswith greater
efficacy and safety on a more personalized treatment basis instead of limited effi-
cacy for 30–40% of medicated patients [7,8]. However, it may take another 10
years or more for clinically trailed drugs to be brought to market. Medicinal
drugs used to treat chronic illnesses need to be taken daily for the rest of each
patient’s life [9] and are therefore very profitable for the companies that produce
them. These medicines, which provide symptomatic relief, are used in chronic dis-
eases without the prospect of providing a cure. Unless there is a paradigm shift
away from single-mode to multimodal medicines, or to combinations or cocktails
of medicines which address all the factors of the disease process, it is unlikely
that a cure will be found for chronic degenerative or neurodegenerative diseases
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[10,11]. Focusing research efforts, drug development strategies
and healthcare approaches predicated on a single component
of a system, rather than the interacting network of components
comprising such a system, may obscure important aetiological
principles and/or diseasemechanisms, including those evident
duringpresymptomatic stagesofdisease. Theapplicationof sys-
tems science and its extension into healthcare therefore posits
that health and/or disease result from the dynamic interactions
of an individual’s intrinsic multiomic components (e.g. genetic,
epigenetic, etc.), their resultant phenotype, and the extrinsic
(environmental) factors influencing the intrinsic milieu [12,13].

A holistic approach to healthcare to delay and prevent
chronic disease by lifestyle changes that optimize individual
diet, exercise, sleep and stress reduction is beneficial.
Nutrition is also a central tenet of functional or integrative
medicine, traditional Chinese medicine, Ayurveda and
naturopathic medicine [12,13]. It is imperative that effective
treatments for chronic diseases are implemented, reducing
hospitalizations and serious complications to improve the
quality of life of patients and lower the ever-increasing cost
of healthcare, which we all share [5,6,14]. Research has demon-
strated that a natural approach to preventing, delaying, and
even reversing chronic degenerative and neurodegenerative
diseases is effective [15–40].

In this review,wewill focus onnutritional, nutraceutical and
antioxidant treatments of AD, although they can also be used in
other chronic degenerative and neurodegenerative diseases.
2. Alzheimer’s disease
AD is the most common form of dementia in the aged and is
characterized by cognitive decline and mental deterioration
[41–43]. After heart disease and cancer, it is the third leading
cause of death in the ageing population. The prevalence of
AD is increasing exponentially with progressing age, affecting
one in five people by the age of 80 [44]. AD is characterized his-
tologically by the existence of intracellular and extracellular
amyloid deposits in the brain. Beta amyloid (Aβ) is the major
protein component of these deposits [45]. Aβ is a 4 kDa peptide
which consists of 39–43 amino acids [46]. Aβ 1-40 is the major
Aβ species and is soluble, whereas Aβ 1-42 is a minor soluble
species and is fibrillogenic as exhibited in amyloid plaques.
The Aβ peptide directly produces hydrogen peroxide through
transition metal ion reduction, [47] thereby rendering it neuro-
toxic [48]. Increasing evidence has implicated Aβ in the
induction of oxidative processes, either directly or indirectly,
and thismay have a key role in the neurotoxicity of the peptide.
The neurotoxic mechanism of Aβ is being investigated
although substantial evidence now exists which suggests that
it exerts its effects through the production of oxygen free
radicals. Butterfield [49] has demonstrated that Aβ interacts
with the membrane lipids causing lipid peroxidation. As a con-
sequence of lipid peroxidation the production of isoprostanes is
increased. Since this adduct of lipid peroxidation is very stable it
has been employed as a marker of lipid peroxidation [50].
Levels of isoprostanes were found to be elevated in the brains
of AD patients. It has been shown that there is a 100% overlap
between Aβ deposits and markers of oxidative stress in trans-
genic mice. This suggests that the transgenic mice with Aβ
deposition show the same oxidative stress and damage
response characteristic of AD. The association between oxi-
dative stress and (Aβ) deposition possibly results in a positive
feedback system [51]. Tau aggregates are another characteris-
tic of AD. The usually soluble tau becomes abnormally
phosphorylated forming oligomers and larger filamentous
aggregates. Hyperphosphorylated tau results in a clumping of
filamentous actin forming neurofibrillary tangles, dysfunc-
tional mitochondria and oxidative stress, and damages DNA,
which thereby may cause cell death via apoptosis [52].

Since the aforementioned studies show that oxidative pro-
cesses are important factors in neurodegeneration, it appears
rational that antioxidants will be beneficial in the treatment
of AD. Indeed, in a double-blind clinical trial, vitamin E at
2000 international units per day showed some beneficial effects
with respect to the rate of deterioration of cognitive function
[53]. Furthermore, in another double-blind placebo controlled
clinical trial employing Ginkgo biloba extract (Egb 761), there
was a slight improvement in cognitive function in Alzheimer’s
patients [54]. Further studies with more potent antioxidant
combinations may prove to be more effective in treating this
devastating disease due to their synergistic effect.
3. Oxidative stress
Oxidative stress is an imbalance between reactive oxygen
species generation and antioxidants [55]. Oxidative stress can
be caused bya variety of reasons, for example by an inadequate
intake of antioxidants in the diet, or by the action of toxins in
the body, such as smoking and pollution, or by inappropriate
activation of phagocytes as in chronic inflammation. Oxida-
tive stress has been implicated in numerous diseases. Tissue
damage, by whatever insult or trauma, results in increased
levels of free radicals and if antioxidant levels are minimal,
then oxidative stress is the consequence. It is therefore impor-
tant to assess the significance of oxidative stress in the
disease process. The assessment will involve determining
whether oxidative stress contributes directly to the disease pro-
cess or whether it is merely an inactive end product.

Oxidative stress was initially proposed to be a major factor
in AD in 1986 [56]. Since then many other researchers have
found that oxidative stress is implicated in AD in various
stages of the disease. Overwhelming evidence exists that the
cells in the Alzheimer’s brain undergo abnormally high
levels of oxidative stress and that amyloid plaques are a
focus of cellular and molecular oxidation. Oxidative stress is
perhaps not the primary aetiology of AD; however, it precedes
specific cellular and tissue damage, which underlies the onset
of this disease [57]. Since 1994 various studies have established
that oxidative stress is present in dying neurons and not just in
(Aβ) deposits. Since oxidative stress is thought to play an
important role in AD it follows that antioxidants may provide
a useful therapy in the disease. There are many reasons and
sources that cause oxidative stress in neurodegenerative
diseases. Important sources of oxidative stress resulting in
neurodegenerative disease are mentioned in figure 1.
4. Oxidative stress and decreased pH
Various studies have demonstrated that free radical formation
is accelerated substantially as pH decreases (figure 2) [58–62].
For example, lipid peroxidation catalysed by transition
metals such as iron is enhanced with decreasing extracellular
pH. In fact, Fe2 and Fe3 are more soluble as solutions are
more acidic, which makes them more available for lipid
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peroxidation reactions [62]. It has also been shown that an
acidic pH can release iron from proteins such as lactoferrin
[63,64] and ferritin [59]. In addition, cell culture studies
have found that acidosis reduces the activity of antioxidant
enzymes, which is in turn associated with increased intracellu-
lar free iron levels and increased oxidative stress [65]. Acidic
pH releases iron from sequestered sites; this iron is more
destructive due to enhanced solubility [62].

The problem is compounded by the fact that superoxide
dismutation to hydrogen peroxide and oxygen occurs faster
at an acidic pH [66] which could result in intensified free
radical production. Ceruloplasmin, the main copper transport
protein in plasma [67], contains six or seven copper atoms
per molecule [68], one or more of which can partake in oxi-
dation reactions depending on the degree of acidity [69].
Ceruloplasmin has been demonstrated to partake in antioxi-
dant defence by inhibiting superoxide or ferritin-induced
lipid peroxidation. Ceruloplasmin also scavenges hydrogen
peroxide [70] and can act as a catalyst in the conversion of
Fe2 to Fe3 [71]. A significant increase in the levels of ceruloplas-
min has been found in the neuropil of AD brains [71],
indicating that ceruloplasmin may indeed be instrumental in
the production of free radicals in AD.

Decreased pH also results in the increased oxidation of
lipids. For example, linoleic acid oxidation is increased by
decreased pH [72], and the oxidation of polyunsaturated
fatty acids occurred more rapidly at acidic pH [59,62,73]. In
addition, homogenized liver and brain, both rich in lipids,
oxidized more rapidly at acidic pH [59,73,74]. The above-
mentioned studies provide strong evidence that decreased
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pH intensifies the production of detrimental free radicals. The
situation is exacerbated by the commonly held view that pH
is maintained at an appropriate level, since blood pH is well
maintained. Chronic metabolic acidosis, which is associated
with intracellular and extracellular acidosis, can exist even
though blood pH is maintained within a normal range [75].
While it is generally understood by most physicians that
severe disorders of acid–base metabolism are dangerous to
the patient, the dangers of mild metabolic acidosis are less
appreciated [76–78].

In a study on the relationship between glucose and brain
lactate levels during cerebral ischaemia in gerbils, it was
shown that intracellular pH was markedly decreased when
brain lactate levels rose above 17 µmol g−1 [79]. Ageing and
excessive dietary protein and meat intake are associated
with chronic metabolic acidosis; however, these factors are
often overlooked since blood pH appears normal [75,80,81].
The association of metabolic acidosis with ageing may also
be complicated by a decreased rate of renal acid excretion
associated with a progressive loss of nephrons, resulting in
a reduced glomerular filtration rate [82]. A study employing
the 31P-MRS-based measurement of intracellular and intersti-
tial pH in vivo has shown that neurons have a basal pH of
6.95 and astrocytes a pH of 7.05, and that they are capable
of substantial regulation of intracellular pH, despite inter-
stitial pH decreasing by 0.31 pH units [83]. Nevertheless,
evidence of the detrimental effects of decreased pH has
been substantiated in in vitro studies. Neurons isolated from
the hippocampus of aged rats are more susceptible to lactic
acid induced toxicity [78], and brain capillary endothelial
cells as well as cholinergic neurons were shown to be vulner-
able to low pH [84]. It has also been demonstrated that
astrocytes subjected to an acidic environment show rapidly
increased glial fibrillary acidic protein (GFAP) immunoreac-
tivity [85]. In another study, lymphoblasts from AD patients
exhibited a lower H+-buffering capacity and a decreased
rate of H+ removal when subjected to an acid load in com-
parison to control cells [86]. Moreover, in an in vivo study
it was demonstrated that acute acidosis elevated malon-
aldehyde in rats [87]. Acidosis-induced swelling and
intracellular acidification of glial cells have been demon-
strated [88], suggesting that this may be the mechanism by
which glia and astrocytes become reactive.

Further evidence for a role of acidosis in AD comes from
studies which have demonstrated that Αβ aggregates more
avidly at pH 6.8 than pH 7.4 [89], and incubation of Αβ with
Fe3-Citrate or Cu2-Glycine at pH 6.8 resulted in the production
of more Fe2 and Cu1 than at pH 7.4 [47,90]. Adding to this is
evidence of the formation of larger and more complex fibrils
from Αβ at acidic pH which was demonstrated when undiffer-
entiated rat pheochromocytoma (PC12) cells were subjected to
a pH 5.8 environment compared to pH 7.4 [91]. Embryonic rat
hippocampal neurons incubated in serum-free neurobasal
mediumwere shown to lead to an increase in Αβ immunoreac-
tivity when subjected to lactic acid [76]. In vitro studies have
also shown that the β-secretase ASP-2 cleaves the APP at pH5
but not at pH 8.5 [92]. Thismay support the theory thatΑβ pep-
tides are produced in acidic organelles, since Αβ peptides have
been found in low-pH organelles like the endosomes and
lysosomes [93].

Lactate is increased and pH values are decreased in human
postmortem brains from patients who have died in an agonal
state [94,95]. The assessment of AD and Down syndrome
brains has also shown a decreased pH and increased lactate
levels compared to controls [96]. Brain levels of lactic acid
have also been demonstrated to rise sharply during ischaemia
as a result of decreased blood flow to the brain [97]. Early onset
AD patients have been found to have a fourfold increase in lac-
tate [98], suggesting that Αβ is accumulating at low-pH,
although it is not known if the lower pH is a result of accumu-
lating Αβ in early onset AD patients, or a precursor to Αβ
accumulation. Apoptotic neurons in AD brains frequently dis-
play intracellular Αβ42 labelling [99]. There is evidence that
neurons accumulating Αβ undergo lysis to form amyloid pla-
ques [100]. Αβ plaques may represent the redox silencing and
entombment of Αβ by the transition metal zinc [101]. Investi-
gations with substances known to promote a more alkaline
cellular environment, such as potassium citrate and calcium
carbonate, arewarranted. Thesemay improve total antioxidant
status through the mechanism of reduced production of free
radicals. Indeed, recently it has been shown that long-term
intake of a high-protein diet modulated acid–base metabolism,
which was neutralized by dietary supplementation of potass-
ium citrate in male rats [102]. Furthermore, in a randomized,
prospective, controlled, double-blind trial, postmenopausal
women with osteopenia were shown to have increased bone
mass after potassium citrate treatment as well as decreased
blood pressure [103]. Ageing is associated with increased free
radical production; therefore it is conceivable that agemediates
an increased sensitivity to low pH, triggering increases in
oxidative stress.

In Veurink’s unpublished research employing an ISFET
pH mV−1 meter it is demonstrated that there is a very close
relationship between pH and mV or oxidation reduction
potentials (figures 3 and 4).

Taken together, this suggests that antioxidant status of bio-
logical fluids and tissue homogenatesmay be improved just by
increasing pH to a more alkaline level. Thus it is also conceiva-
ble that, by improving extracellular and intracellular pH, the
antioxidants supplied by an optimal diet are perhaps sufficient
to complement the antioxidant system of the body in order to
prevent disease. However, further research employing potass-
ium citrate or potassium bicarbonate would be needed to test
that hypothesis.
5. Effect of diet on extracellular pH
There has been a profound transformation of the human diet
consequent to agricultural development, animal husbandry
and the development of modern food production methods.
The contemporary diet has an overabundance of unhealthy
fats, sugar and sodium chloride, and a paucity of fibre, calcium
and potassium [104–107]. It has been estimated that in the
palaeolithic diet, sodium intake was at about 29 meq and
potassium intake in excess of 280 meq per day. By contrast,
modern humans consume between 100 and 300 meq of
sodium and about 80 meq of potassium per day [108]. As a
consequence of this dietary transformation, contemporary
humans are not only overloaded with sodium and chloride
but are also deficient in potassiumand bicarbonates. Therefore,
from a relatively young age through to old age, humans
may develop a progressive increase in extracellular acidity
and decrease in plasma bicarbonates. Together, these are
indicative of increasing low-grade metabolic acidosis. How-
ever, increasing dietary potassium to levels estimated in the
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palaeolithic diet, by eating more fruits and non-grain plant
foods, may hold benefits for preventing or delaying many
of the diet- and age-related degenerative diseases and their
consequences [109,110].
6. Metabolic acidosis
Diet may be one of the main contributing factors to low-grade
metabolic acidosis leading to increased all-cause mortality and
chronic diseases such as type 2 diabetes mellitus and hyperten-
sion, which are also associated with AD. Generally, foods
which tend to decrease pH are from animal origin and foods
which raise pH are mostly of plant origin [111]. Metabolic
acidosis has been demonstrated to increase protein breakdown
in humans. Moreover, it also stimulates branched chain amino
acid oxidation in both humans and animals [112]. Thus, meta-
bolic acidosis could result in increased oxidative stress as well
as protein breakdown and aggregation, thereby contributing to
a worsening of the disease state. It has also been established
that, during ischaemia, intracellular pH of neurons and glia
generally acidify to pH 6.5, and during trauma, brain pH acidi-
fies to pH 6.2–6.8. If hyperglycaemia precedes ischaemia, then
pH can become as low as pH 6.0. Experimental research under-
taken has also shown that acidosis by different means
ultimately results in neuron loss [113,114]. Dietary metabolic
acidosis by modulating cortisol output may influence risk for
insulin resistance syndrome (see review by McCarty [115]).
It is also suggested that there is a strong link or association
between insulin resistance and AD [116,117]. Furthermore, in
their study showing acute acidosis elevates malonaldehyde
in rat brain [87], Waterfall et al. have provided in vivo evidence
for acidosis-induced oxidative stress in brain tissue. In
addition, in an in vitro study, it was shown that acidic pH pro-
motes the formation of toxic β amyloid fibrils and that they
induced significant apoptotic death of rat PC12 cells [91].
Therefore, metabolic acidosis, together with insulin resistance
and oxidative stress, may severely impact the development
and progression of AD.

Considering themultifactorial nature of AD and the factors
discussed above it may suggest that AD, like other neurode-
generative diseases and likely all degenerative diseases, may
have a common link. Namely that by dietary intake, age-
dependent metabolic acidosis is incurred which causes oxi-
dative stress, ultimately leading to the development and
cyclical continuation, through a feedback loop, of disease in
various regions of the human body. Of course, the degenera-
tive disease process is also impacted upon by environmental
factors, the ageing process and genetic disposition. The joint
attack on the body by metabolic acidosis and oxidative stress
suggests that treatment in degenerative diseases, including
AD, may require a normalizing of extracellular and intracellu-
lar pHwith a simultaneous supplementation of an antioxidant
combination cocktail at a sufficiently high dose. Various
studies have shown that dietary intake of fresh fruit and veg-
etables is very effective in reducing or halting oxidative stress.
The reason that many studies wherein supplementation of anti-
oxidants is used to remove oxidative stress are not that
convincing is that perhaps the normalizing of the acid-base
was not considered nor dealt with. Moreover, the dietary
intake of fresh fruits and vegetables help to normalize pH due
to the high levels of alkaline minerals contained in them. Alter-
natively, the intake of antioxidants may have been ‘a little too
lowand a little too late’. Furthermore, itmaybe that dietaryanti-
oxidant intake from a well-balanced diet consisting of a high
percentage of fresh fruit and vegetablesmay be sufficient to pre-
vent or deal with disease when extracellular and intracellular
acid-base is normalized and maintained by supplementation
with potassium citrate, fresh fruits and vegetables.

In Veurink’s unpublished data 12-month-old Tg2576
transgenic mice were fed diets with or without antioxidant sup-
plementation in an attempt to assess the effect of large doses of
antioxidants on the development of AD-like neuropathology
and memory deficits. The antioxidants included vitamin E acet-
ate, vitamin C palmitate, Ginkgo biloba and grape seed extract
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(pycnogenol) supplemented to a Standard (Std) Chow diet.
Tg2576 mice use the prion protein promoter to express AβPP
with the Swedish doublemutation (K670N/M671 L,AβPPSwe),
resulting in increased total Aβ production [118]. These mice
deposit Aβ plaques and some vascular amyloid, and develop
neuritic dystrophyandgliosis at 6–10months. Theyalso demon-
strate progressive behavioural and cognitive deficits.

Aβ plaque deposition, levels of apoptosis and memory
performance were investigated in these mice following three
months on the different diets. Tg2576 transgenic mice were fed
large doses of either vitamin E or large doses of an antioxidant
combination, and were compared to mice fed a Std Chow diet.
Twenty-four female 12-month-old Tg2576 mice were given
either a Std Chow diet without additives, a Std Chow diet sup-
plemented with a high dose of vitamin E acetate at 64.8 g kg−1

of feed, or a Std Chow diet supplemented with a combina-
tion of antioxidants that consisted of vitamin E acetate at
28.8 g kg−1 of feed, vitamin C palmitate at 28.8 g kg−1 of feed,
Ginkgo biloba at 3.6 g kg−1 of feed and grape seed extract (pycno-
genol) at 3.6 g kg−1 of feed. The mice were maintained on these
diets for a period of three months.

The results (figure 5) demonstrate that supplementation
with large doses of antioxidants was instrumental in reducing
the number of plaques in the brains of Tg2576 AD transgenic
mice. Although vitamin E supplementation showed a trend
toward decreasing numbers of plaques, thiswas not significant,
unlike the result obtained in the mice fed the combination of
antioxidants. The results from the work described above indi-
cate that antioxidant supplementation at high doses can be
effective in slowing down, stopping, or even reversing Aβ
plaque deposition in Tg2576 transgenic mice.

Secondly, antioxidant supplementation at high doses was
demonstrated to be effective in reducing apoptosis associated
fluorescent pixel areas (figure 6), again supporting the hypo-
theses that oxidative stress is of primary importance in the
neuropathological pathway of Aβ-induced damage in the
AD brain, and that antioxidant supplementation can alleviate
some of the damage produced by excessive Aβ production.
These findings are consistent with other studies which
have demonstrated that a combination of antioxidants can be
effective in reducing apoptosis [38].

The results (figure 7) indicate a significant improvement in
memory in the transgenic animals fed StdChow supplemented
with high doses of the antioxidant combination when com-
pared to the other transgenic mice fed Std Chow alone or Std



Table 1. Antioxidants and dietary interventions in Alzheimer’s disease.

antioxidants and nutraceuticals effect or biological action references

molecular hydrogen An exceptional antioxidant which also reduces inflammation and modulation signalling

pathways. Diffuses into mitochondria and nucleus reacting with free radicals act their

source. Reduces the hydroxyl radical. Reduces beta amyloid-induced ROS.

accumulation. Suppressed learning and memory impairment and extended lifespan.

Improved word recall scores. Increases superoxide dismutase and glutathione levels.

[119–121,124–126]

glutathione Maintains the thiol redox status of cells, protects against oxidative stress, detoxes reactive

metals and electrophiles. Scavenges lipid peroxidation products. Beneficial in

maintaining good health in the aged.

[126–129]

astaxanthin Most potent carotenoid having neuroprotective properties. Reduces oxidative stress,

inflammation and apoptosis. Protects against the neurotoxic effects of beta amyloid

oligomers. Decreased memory impairment in Wistar rats.

[130–134]

ascorbyl palmitate Maintains vitamin C activity without the side effects of ascorbic acid. Is an efficient

scavenger of the hydroxyl radical. Able to cross the blood brain barrier. Regenerates

vitamin E.

[135–143]

nicotinic acid (niacin) (vitamin B3) Megadoses of nicotinic acid restored mental capacity in previous prisoners of war. [144]

vitamin B12 and B9 (folate) Reduces homocysteine [145]

fruits and vegetables Dietary supplementation with fruits, vegetables and their extracts can decrease oxidative

stress and inflammatiom

[146]

dietary restriction, Mediterranean

diet, lifestyle changes

The evidence supports nutritional interventions and lifestyle changes prevent and treat

Alzheimer’s disease.

[15,147,148]

low-carbohydrate diet Reduces triglycerides, blood glucose and insulin resistance common in Alzheimer’s patients. [149–152]

ketogenic diet and lifestyle changes Reverse memory problems in 100 Alzheimer’s patients. [19]
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Chow with vitamin E as the sole extra antioxidant. The results
also suggest that high doses of the combination of antioxidants
helped the transgenic mice learn where the water baits were
placed in the maze just as well as the control, non-transgenic
mice fed Std Chow alone. In these studies, and from our
small study of the individual antioxidant vitamin E as well
as vitamin E combined with other antioxidants, evidence is
accumulating that combinations of antioxidants may be more
effective, taking advantage of synergistic effects of appropriate
antioxidant combinations.
7. Antioxidants
As already mentioned oxidative processes are important
factors in neurodegeneration, so it appears rational that
antioxidants will be beneficial in the treatment of AD.

An antioxidant is a compound which reacts with free rad-
icals to render them harmless. The term is often used to
describe chain-breaking inhibitors of lipid peroxidation. Yet,
free radicals in addition to lipid peroxidation also damage
proteins, DNA, and almost any type of biomolecule. Exten-
sive research has shown that oxidative stress is an early
factor in the AD process and that antioxidants have mini-
mized their deleterious effects. For a very comprehensive
review see [35,119,120]. In considering these reviews, we
may conclude that antioxidants have an important function
in neuroprotection and therefore we will examine some of
the most effective antioxidants.
8. Molecular hydrogen antioxidant
Molecular hydrogen (H2) has been researched recently for
various oxidative stress-related diseases [121–123] (table 1).
It is an exceptional antioxidant which reduces inflammation
and modulation of signalling pathways, thereby providing
cytoprotection [153]. By virtue of the fact that molecular hydro-
gen is the lightest gas and the smallest molecule in existence, it
readily penetrates cell membranes and lipid bilayers, and dif-
fuses into the cellular organelles such as the mitochondria or
the nucleus, thereby reacting with free radicals at one of their
major sources. Molecular hydrogen can be administered by
various methods, including inhalation, ingesting hydrogen-
rich water, injecting hydrogen rich saline, bathing in
hydrogen-rich water or by increasing production of intestinal
hydrogen by bacterial effect on undigestible carbohydrates.
Moreover, the reactivity of molecular hydrogen is so mild
that it does not react with physiological relevant reactive
oxygen species which are involved in cell signalling or defen-
sive mechanisms against microbes. See reviews in [121–
123,153]. Molecular hydrogen has been shown to selectively
reduce the most destructive hydroxyl radical implicated in
the destruction of nucleic acids, proteins and causing lipid per-
oxidation which is also characteristic in AD [124].
Administration of molecular hydrogen to short-lived
Drosophila increased their survival and life span [125]. Hydro-
gen rich water attenuated (Aβ) induced neurotoxicity in
cultured human neuronal cells, upregulated (Aβ) suppressed
AMPK and downstream Sirt1-FoxO3a signalling, reduced



(b)

(c)

(a)

Figure 8. Figure showing the chemical structure of (a) glutathione, (b) astaxanthin and (c) ascorbyl palmitate.
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(Aβ)-induced reactive oxygen species accumulation, and
upregulated intracellular anti-oxidative enzymes such as
superoxide dismutase 1 & 2 and catalase [127]. In a mouse
model hydrogen rich water was shown to suppress a decline
in learning and memory impairment, extending the average
lifespan [154]. Furthermore, in a subsequent randomized pla-
cebo controlled clinical study in APOE4 genotype patients,
the total ADAS-cogs and word recall task scores were signifi-
cantly improved after one year of drinking hydrogen-rich
water [154]. These research studies reveal that molecular
hydrogen may have great potential for suppressing AD.
9. Glutathione antioxidant
Glutathione is the most important endogenous antioxidant,
with the chemical structure shown in figure 8a. It is needed
for maintaining the thiol redox status of cells, protection
against oxidative stress, detoxing reactive metals and electro-
philes. Glutathione is also needed for the storage and
transport of cysteine, and for protein and DNA synthesis,
cell cycle regulation and cell differentiation [155]. Glutathione
is also an excellent scavenger of lipid peroxidation products
including 4-hydroxy-2-nonenal (HNE) and acrolein which
bind proteins, thus inhibiting their normal activity. [155].
Glutathione is also extremely important in that it forms
metal complexes via non enzymatic reactions with metal
ions such as arsenic, cadmium, copper, gold, lead, silver,
mercury and zinc so that they can be eliminated from the
body in a detoxification process [155–157].

A higher level of glutathione in centenarians was found to
be associated with the best functional capacity, suggesting that
an increased level of glutathione is beneficial in maintaining
good health [128]. Glutathione levelsmay be increased through
eating specific foods and nutrients or antioxidant supplements
tomaintain optimal amounts. Humans require the amino acids
glycine, cysteine and glutamic acid in order to produce suffi-
cient levels of glutathione. It has been suggested that
cysteine, which is a sulfur amino acid, may be ingested in
sulfur-rich foods to increase glutathione synthesis. N-acetyl-
cysteine (NAC), itself an antioxidant and rich in cysteine, is
suggested as a supplement to increase glutathione. Whey
protein concentrate, Omega-3 fatty acids, salmon, vitamin B
complex, vitamin C, vitamin E, alpha-lipoic acid, selenium,
phytonutrients, citrus fruits and cruciferous vegetables rich
in sulforaphane may be used to increase glutathione levels
[129]. Apple cider vinegar has also been shown to increase
the activity of the antioxidant enzymes, superoxide dismutase,
catalase and glutathione peroxidase, and it reduced lipid
peroxidation [126,130]. Molecular hydrogen in the form
of hydrogen rich water was shown to increase superoxide
dismutase as well as glutathione levels in young healthy
males [131].
10. Astaxanthin
Astaxanthin is the most potent carotenoid antioxidant. It is
lipid soluble belonging to xanthophylls which have been
demonstrated to have neuroprotective properties. Astaxanthin
may be sourced from shrimp, asteroidean, algae, lobster, crus-
tacean, krill, trout, red sea bream and salmon. It is mostly
isolated from the microalgae Haematococcus pluvialis [132].
Astaxanthin has a linear polar-non-polar-polar structure with
keto and hydroxyl moieties at the polar ends, and has conju-
gated carbon–carbon double bonds at a non-polar middle
part (figure 8b) that enables it to fit specifically into the same
span of cell membranes as well as be able to pass through the
blood-brain barrier. Research studies have demonstrated that
astaxanthin is effective in reducing oxidative stress, inflam-
mation and apoptosis, which are key factors in the process of
neurodegeneration. Researchers have shown that Astaxanthin
reduced ischaemia-associated injury in brain tissue by inhibit-
ing oxidative stress and protected neuroblastoma cells against
Aβ-induced oxidative stress. Astaxanthinwas shown to protect
primary hippocampal neurons from the neurotoxic effects of
Aβ oligomers, thereby supporting the notion that daily con-
sumption of Astaxanthin may be beneficial in AD as well as
other neurodegenerative diseases [133].

In a study of the role of Astaxanthin in hippocampal insulin
resistance induced by Aβ peptides in Wistar rats, the results
demonstrated a dose dependent reversal of memory impair-
ment. [134]. These and other studies indicate that Astaxanthin
is a promising antioxidant for the treatment of neurodegenera-
tive disorders including Alzheimer’s and Parkinson’s disease
[15,158]. Astaxanthin mitigates oxidative stress in various
neurodegenerative disorders by preventing oxidative stress
induced mitochondrial dysfunction (see review [135]). Further
research is under way in order to improve the bioavailability
of Astaxanthin [136].
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11. Ascorbyl palmitate
Oral supplementation of vitamin C may be particularly desir-
able in humans, since humans are not able to synthesize
vitamin C like many other animals [137]. Ascorbyl palmitate
(also known as L-ascorbyl-6-palmitate; 6-O-palmitoylascorbic
acid or L-ascorbic acid, 6-hexadecanoate; figure 8c) is a fat-
soluble synthetic derivative or analogue of vitamin C
(ascorbic acid).

Ascorbyl palmitate maintains all the antioxidant activity of
vitamin C without the problems that can be associated with
ascorbic acid, the water-soluble form of vitamin C [138].
Tissue demand for vitamin C is better satisfied when it is sup-
plied in its lipophilic rather than in its hydrophilic form [136].
Extensive use has beenmade of this antioxidant in foods, phar-
maceuticals and skin care products to prevent the oxidation of
various oils and waxes, and research has established that it is
an efficient hydroxyl free radical scavenger [139–143,159].
Being amphipathic allows it to concentrate into the phospholi-
pid membranes in biological systems whereby the fatty acid
portion is intercalated into the outer layer of the bi-layered
membrane and the inner portion (ascorbate head) is buried
into the inner membrane [138,160]. It is also stable at neutral
pH. Ascorbyl palmitate can therefore be active inside as well
as outside the cells [137].

The FDA status is GRAS (generally recognized as safe) and
there is no limitation on levels which can be used in food or
cosmetics; it, therefore, could prove to be an ideal agent for
the protection of cell membranes which generally are very sus-
ceptible to free radical attack via lipid peroxidation [143].
Ascorbyl palmitate is able to cross the BBB and thus, on aver-
age, makes more vitamin C available to neural tissue by an
order of magnitude [137]. Furthermore, because it resides in
the cell membrane, ascorbyl palmitate can regenerate the
vitamin E radical continuously, unlike ascorbic acid which
only regenerates the vitamin E radical at the interface of
water-soluble and lipid components. Many cross-sectional
large-scale and long-term studies have tried to establish
whether the use of vitamin C supplements, either alone or in
combination with other supplements such as vitamin E,
reduce the incidence of AD. Some studies suggest vitamin C
supplementation does reduce the incidence of AD [161]; how-
ever, some studies produced ambiguous results, and further
long-term studies are required [162]. In a randomized study
of various antioxidants on their effect on inclusion bodies in
the brains of apoE-deficient mice, the group receiving ascorbyl
palmitate had the least number of inclusion bodies (G.V. 2007,
G.P. 2020, S.K.S. 2020, unpublished data). That suggests that
ascorbyl palmitate crosses the blood–brain barrier and may
be an antioxidant to consider in future research in AD.

However, some studies on single use antioxidants have
not demonstrated efficacy. It may be that different forms of
vitamin E including the four tocopherols as well as the toco-
trienols when combined may be more effective since high
doses of alpha tocopherol can decrease the bioavailability of
the other forms potentially having a detrimental effect. More-
over high doses of vitamin C have been posited to have a
pro-oxidant effect in some studies. For this reason, it may
be advantageous to assess the oxidation reduction potential
of patients and dose antioxidants at personalized levels.

Future clinical trials should incorporate cocktails of anti-
oxidants which have a synergistic and antioxidant recycling
activity [163].
12. The Keap1-Nrf2-ARE pathway
TheKeap1-Nrf2-AREpathway recently hasbeen receiving atten-
tion since it plays an important function in protecting cells from
oxidative stress by activating Nrf2, to induce the downstream
phase II enzymes such as heme-oxygenase-1, superoxide dismu-
tase, glutathione peroxidase, glutamate-cysteine ligase, catalase
and others. These enzymes are not consumed by their antioxi-
dant actions and they catalyse many chemical detoxification
reactions and some regenerate small molecule antioxidants.
This may be an important target for the potential development
of novel therapeutic agents to treat various degenerative and
neurodegenerative diseases [144,164].
13. Dietary interventions for Alzheimer’s
The concept that diet can affect mental ability and susceptibility
to neurological disorders is not new. Several thousand soldiers
held as prisoners of war in Japanese camps were made
prematurely senile by almost four years of malnutrition. Sup-
plementation with megadoses of nicotinic acid (3 grams per
day) restored mental capacity. This led to the conclusion that
‘senility’ is due to chronic malnutrition and that it is a vitamin-
dependent condition which comes from many years of mild or
moderate chronic vitamin deficiencies [145]. A variety of other
nutritional factors have also been integrally linked with AD
(see reviews in [146–148]). For example, it has been shown
that dysregulation of energy balance, vitamin B12, folate and
homocysteine levels plays a role in the pathogenesis of AD.

It has been suggested that an integratedmedicine approach
combining evidence-based treatments from the literature
on dietary intervention, a reduction in stress, an increase in
exer ise, and dietary supplementation with pharmaceuticals
and/or vitamins and antioxidants into an all-embracing
complementary treatment strategy would benefit the elderly
in many health aspects, and possibly reduce the risk of
age-related conditions including AD [28,147,148].
14. Mineral and antioxidant deficiencies
in foods

14.1. Agricultural methods
Thenutritional value of cropplants is determinedbyanumberof
factors including genetic makeup, the type of soil in which the
plants are grown, seasonal effects, stage of maturity at harvest,
and the quantity and type of fertilizers used in the production
of the plants [165]. Hundreds of years of agriculture using the
same surface soil in many countries have slowly drained soils
of minerals. In addition, pesticides and herbicides have been
sprayed on most soils, inadvertently destroying the microorgan-
isms which are needed to release many of these minerals and to
maintain soil fertility [166].

In Western Australia as elsewhere, it is common practice to
test soils for nitrogen, phosphorus and potassium (NPK) levels;
other macro and trace elements are rarely tested, and thus
depletion ofmany essential minerals has not been documented
carefully, or even measured, in many areas. The continuous
yearly application of NPK fertilizer has resulted in a high phos-
phate status of soils, and two-thirds of high phosphate status
soils have been found to be deficient in sulfur and a quarter
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deficient in potassium [167]. Problems are compounded by the
fact that high phosphate soils greatly diminish the uptake of
copper, zinc and manganese by plants, probably owing to
the formation of complex phosphate salts [168].

14.2. Trace or essential minerals
Essential minerals and trace elements are not replenished with
the addition of NPK fertilizer and the resulting food crops are
severely deficient in them. Low zinc levels in soils have also
been found in many regions throughout the world: this may
directly impact on antioxidant status since zinc has a direct
antioxidant action by occupying iron or copper binding sites
in lipids, proteins and DNA [169–171]. Interestingly, it has
also recently been reported that zinc binding toΑβ inhibits neu-
rotoxicity by suppressing the generation of hydrogen peroxide
[101]. These studies andmanyothers suggest there is a need for
mineral replenishment of soils, since depleted soils cause
deficiencies in plants which may have a detrimental impact
on the entire food chain. For example, studies comparing the
antioxidant status of fruits such as plums, pears and peaches
have found that levels of vitamins C and E and polyphenols
are significantly higher in these fruits when grown using
organic practices instead of conventional methods [172,173].
It has also been demonstrated that increased soil organic
matter content increases the uptake of copper, zinc andmanga-
nese in oat crops [168]. The agricultural problems are further
aggravated by the common harvesting procedure of picking
fruits and vegetables before they reach maturity, despite the
fact that most fruits and vegetables reach their maximum vita-
min content at maturity. This practice also impacts their
phytonutrient and antioxidant content [174].
15. Food processing and storage methods
Extensive research needs to be undertaken on the effects of
storage on vitamin and phytonutrient levels in fruits and veg-
etables, since some studies have demonstrated their reduction
during storage [175]. Processing and preservation of foods
increases the problem further; for example, nutrient losses fol-
lowing the refining of flour and sugar have been demonstrated.
Similarly, a marked decrease of all trace elements with the
exception of copper occurs when rice is polished [176].

Large losses of nutrients also occur due to the canning of
fruits and vegetables. Although the snap-freezing of vegetables
is thought to preserve much of the vitamin content of such
foods, it has been found, for example, that the freezing of veg-
etables results in a loss of 37–56% of vitamin B6 levels [177].
Levels of vitamin B6 and pantothenic acid are also decreased
as a result of freezing and canning of fruits or fruit juices,
with losses ranging from 7% to 50% [176]. Around 40 micro-
nutrients including vitamins, essential minerals and trace
elements are required in the human diet. Recommended
dietary allowance of micronutrients is mostly based on infor-
mation on acute effects of dietary deficiencies. However, for
long-term health, the optimum intake of dietary micronutrient
quantities is largely unknown, and a substantial percentage of
the population is deficient in many of the micronutrients [177].
Many individual essential minerals have been found to be lack-
ing in Western diets despite the availability of a huge range of
foods, and supplementation of such minerals may prove to
restore antioxidant balance in the body, or improve resistance
to AD via other mechanisms. For example, magnesium has
been studied extensively by researchers and has been demon-
strated to lower serum total cholesterol, decrease serum LDL
and insulin-stimulated glucose uptake in type 1 diabetic sub-
jects [178]. A more recent study of aged mice has found that
a diet moderately deficient in magnesium, compared to a
magnesium-supplemented diet, results in increased levels of
oxidized lipids, and increased oxidative stress which was
associated with inflammation [179].
16. Low-carbohydrate diets
In developing countries diets are increasingly becoming higher
in trans-fats, refined foods and carbohydrates; however, levels of
fibre have decreased. These dietary factors are contributing to a
rapidly increasing prevalence of obesity and type 2 diabetes and
a decline in health, particularly in the aged [149,180]. Alterations
in dietary lipids have been posited as playing a role in cognitive
defects in AD [146]. It may be likely that high-carbohydrate,
high-trans-fat and high-cholesterol (HFHC) diets, together
with declining levels of vitamin B12 and folate andwith declines
in trace minerals, play a role in the pathogenesis of AD [146].

The common advocacy of low-fat and high-carbohydrate
diets is contradicted by various studies [150,151,181–184].
In fact, studies of glucose metabolism suggest this sort of
diet is actually detrimental to human health. For example,
in a dietary intervention study in which patients were sub-
jected to either a high-fat or high-carbohydrate diet, it was
demonstrated that triglyceride, glucose and insulin levels
were higher on the high-carbohydrate diet [150]. In another
dietary intervention study, it was shown that a high-
carbohydrate diet led to increased insulin and triglycerides
but to significantly lower levels of HDL [151]. Similar results
were seen in non-insulin-dependent diabetes mellitus subjects
when fed high- and low-carbohydrate diets; the conclusion
suggested that high-carbohydrate diets did not improve glyce-
mic control nor insulin sensitivity, but contributed to raised
plasma triglycerides and VLDL concentrations yet reduced
HDL levels [181]. Moreover, it has been demonstrated that a
high-monounsaturated-fat, low-carbohydrate diet improves
insulin sensitivity peripherally in non-insulin-dependent
diabetes mellitus subjects [182].

The effect of high dietary fat on endurance performance in
athletes has also been assessed, and a significantly improved
performance was demonstrated when compared to a diet
with high-carbohydrate intake [183]. Studies of aerobic exercise
and diet on obese women have also demonstrated that a
greater loss of weight occurs when subjects are on a low-carbo-
hydrate diet thanwhen consuming a low-fat diet [184]. The use
of a low-fat, high-carbohydrate diet has also been found to
accentuate hyperglycaemia and hyperinsulinaemia, therefore
leading to upper-body obesity, glucose intolerance, hyperten-
sion and hypertriglyceridaemia (reviewed by Kaplan [185]).
For example, a cross-sectional study of subjects in India
revealed that central obesity was associated with higher post-
prandial plasma levels of insulin, glucose, serum iron and
oxidative stress. This study also found that vitamin C, vitamin
E, serum zinc/insulin ratio and serum magnesium/insulin
ratio had an inverse association with high body fat [186].

Insulin resistance syndrome and associated conditions
such as type 2 diabetes mellitus and hypertension are also
associated with age-related memory impairment and AD



royalsocietypublishing.org/journal/rsob
Open

Biol.10:200084

11
[187,188]. As the evidence of links between insulin resistance,
impaired glucose metabolism and AD increases, it would
appear that diets appropriate for the prevention of diabetes
and obesity may also be appropriate for the prevention of
AD. A meta-analysis of a number of studies has also revealed
that high-monounsaturated-fat diets can improve lipoprotein
profiles and glycemic control in patients with type 2 diabetes
[181]. Therefore, a diet rich in monounsaturated fatty acids
and low in carbohydrates may be a useful addition for the
elderly and also for AD patients.

In a study on the Mediterranean diet (MeDi) and risk for
AD it was shown that adherence to the MeDi was associated
with a lower risk of AD. This diet involves a high intake of
vegetables, legumes, fruits, olive oil, fish and dairy, low
meat, and moderate wine. [152]. High adherence has been
attributed to centenarians in Sicily and they did not have
any cardiac risk factors nor other major age-related diseases
such as severe cognitive impairment or heart disease [189].

The effects of endogenous and exogenous antioxidants as
derived from nutrition were comprehensively reviewed [155].
It has been shown in clinical research on humans that dietary
interventions, including amino acids, vitamins, minerals
and phytochemicals, have a substantial effect of glutathione
levels, which thereby may provide clinical benefits [129].
Bruce N. Ames proposed that there are longevity vitamins
and proteins that can be used as supplements for prolonging
healthy ageing [15]. Moreover, seed sprouting improves the
nutritional and antioxidant profiles and confers improved
increases in protein, fats, vitamins, minerals and phyto-
nutrients [190]. Furthermore, a reversing of memory
problems in one hundred patients has recently been demon-
strated in which a ketogenic diet among other interventions
was used [19]. There is also a dietary guide book of nutrition
for AD based on evidence from research [191].
17. Conclusion
Focusing research efforts, drug development strategies and
healthcare approaches on a single component of a system,
rather than the interacting network of components comprising
such a system, may obscure important factors and/or disease
mechanisms, including those evident during presymptomatic
stages of disease. A holistic approach to healthcare to delay
and prevent chronic diseases such as AD by lifestyle changes
which optimize individual dietary needs is imperative. The
MeDi has been shown to play a role in various factors involved
in the pathogenesis of AD including oxidative stress and
inflammation. Higher adherence to the diet by Sicilians has
resulted in increased numbers of centenarians with a reduced
risk for AD. Complex phenolic, carotenoid, antioxidants such
as vitamin C and vitamin E are found in high concentrations
in the MeDi [152,189].

In considering the multifactorial nature of AD, it may
suggest that AD, like other neurodegenerative diseases and
probably all degenerative diseases, may have a common link.
Thus, the joint attack on the body by metabolic acidosis and
oxidative stress may require a normalizing of extracellular
and intracellular pH with simultaneous supplementation of a
combination of antioxidants at sufficiently high personalized
doses and a nutrient-rich, low-carbohydrate diet.
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