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Abstract. There has been increased interest in using stem 
cells for regenerative medicine and cancer therapy in the past 
decade. Mesenchymal stem cells (MSCs) are among the most 
studied stem cells due to their unique characteristics, such as 
self‑renewal and developmental potency to differentiate into 
numerous cell types. MSC use has fewer ethical challenges 
compared with other types of stem cells. Although a number 
of studies have reported the beneficial effects of MSC‑based 
therapies in treating various diseases, their contribution 
to cancer therapy remains controversial. The behaviour of 
MSCs is determined by the interaction between intrinsic 
transcriptional genes and extrinsic environmental factors. 
Numerous studies continue to emerge, as there is no denying the 
potential of MSCs to treat a wide variety of human afflictions. 
Therefore, the present review article provided an overview of 
MSCs and their differences compared with embryonic stem 
cells, and described the molecular mechanisms involved in 
maintaining their stemness. In addition, the article exam‑
ined the therapeutic application of stem cells in the field of 
cancer. The present article also discussed the current divergent 
roles of MSCs in cancer therapy and the future potential in 
this field.
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1. Introduction

The human body contains numerous different cell types, which 
make up tissues and organs with specific functions that play a 
role in ensuring sustainability. It was discovered long ago that 
differentiated cells in some tissues, e.g., skin, intestinal epithe‑
lium and blood, have a short lifecycle and are incapable of 
self‑renewal (1). Stem cells are able to self‑renew and possess 
developmental potency to differentiate into numerous cell 
types of an organism. This finding led to the concept of stem 
cells as small unspecialized cells in the human body devoid of 
a number of phenotypic traits commonly found in cells from 
adult tissues for maintaining static and transient cell types (2). 
Potency with each differentiation step classifies stem cells into 
totipotent, pluripotent, multipotent, oligopotent and unipotent 
stem cells (3). As potency decreases, the possible cell types 
that stem cells can differentiate into also decrease accordingly.

Stem cells are generally categorized into two main groups: 
embryonic and nonembryonic (somatic stem cells). Embryonic 
stem cells (ESCs) are pluripotent, while somatic stem cells, 
e.g., mesenchymal stem cells (MSCs), are multipotent (4,5). 
ESCs were first isolated from mouse embryos (6), while MSCs 
were discovered in monolayer cultures of guinea pig bone 
marrow (7). Following their initial discovery, human stem 
cells were isolated and cultured, whereby ESCs were derived 
from human blastocysts (8) while MSCs were derived from 
human bone marrow (9). These achievements in isolating and 
culturing human stem cells opened new possibilities to better 
understand the basic molecular mechanisms behind human 
development and differentiation, leading to potential new 
treatments for various diseases. While the potential benefits 
of research on human ESCs are immense, there is a major 
ethical issue to address, e.g., the derivation of human ESCs 
results in the destruction of an embryo. In addition, reliance 
on human embryos may also lead to the commodification and 
exploitation of women (10‑12). Indeed, the potential exploita‑
tion of women involving the donation or sales of oocytes 
or embryos for research and the purposeful creation of 
embryos for research remain huge ethical issues that need to 
be addressed. This ethical dilemma negatively impacts the 
benefit‑to‑risk ratio, and hence, research has moved towards 
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somatic stem cells instead. Despite the focus on ESCs, MSCs 
have been extensively researched in clinical settings during 
the past decade (13‑24) because MSCs can be easily obtained 
and cultured for clinical use from multiple tissue sources 
that are easily accessible using minimally intrusive methods, 
reducing the ethical dilemmas surrounding human stem cell 
research (25). Additionally, MSCs can differentiate into a 
variety of cell types that confer pleiotropic effects when used 
for therapeutic purposes (26). MSCs were initially discovered 
in bone marrow, and studies have reported that these stem 
cells can also be found in other postnatal organs and tissues, 
e.g., brain, kidney, liver, lung, spleen, adipose tissue, muscle, 
hair follicles, teeth, placenta, and umbilical cord (27,28). The 
International Society for Cellular Therapy (ISCT) defines 
three minimal criteria that need to be fulfilled for MSCs to 
overcome the issue of different characteristics due to isolation 
from different tissue types (29):

1.  MSCs must adhere to plastic surfaces when cultured 
in vitro.

2.  The surface anti‑genes CD73, CD90, and CD105 must be 
expressed by MSCs, while CD34, CD45, CD14 or CD11b, 
CD79α or CD19, and HLA‑DR surface molecules should 
be absent.

3.  MSCs must be able to differentiate into different 
mesodermal cell types, e.g., adipocytes, chondrocytes, 
and osteoblasts, when cultured in vitro under certain 
conditions.

In addition to these criteria, the ISCT recommended 
three additional conditions in 2019 to further clarify the 
nomenclature of MSCs to avoid confusion between mesen‑
chymal stem cells and mesenchymal stromal cells (30). The 
tissue‑source origin of MSCs should be documented to 
highlight tissue‑specific properties, e.g., phenotypic, func‑
tional and secretome behaviour. Comprehensive in vitro 
and in vivo data demonstrate the stemness of MSCs associ‑
ated with a robust matrix of functional assays that test the 
functionality of MSCs in vitro and in vivo based on their 
proposed utility.

Previous studies have reported that MSCs are multipotent 
and capable of differentiating into cells of mesodermal, ecto‑
dermal, and endodermal lineages (29,31‑33). This plasticity 
of MSCs and their self‑renewal capacity make these cells 
promising therapeutic targets for various diseases, including 
cancer treatment and tissue regeneration. MSCs undeniably 
offer immense potential in the field of medicine; however, 
the cells also present potential danger due to their ability to 
differentiate into tumour‑associated fibroblasts (34‑36), which 
support tumour growth through their secretome (37,38) and 
resistance to apoptosis (39). Due to their conflicting role in 
cancer progression and regression, efforts to utilize MSCs in 
anticancer therapies have been unsuccessful. Therefore, it is 
important to understand the underlying molecular mechanisms 
of MSCs to fully utilize their therapeutic potential.

2. Genetic regulators for multipotency of MSCs

Significant advancements in DNA sequencing, computational 
biology, and bioinformatics have been made to identify 

transcriptional processes associated with the multipotency 
of MSCs. Based on previous studies, cyclin L2 (CCNL2), 
stromal cell‑derived factor 1 (CXCL12), podocalyxin‑like 
protein (PODXL), and ubiquitin carboxyl‑terminal hydro‑
lase 1 (USP1) were identified as four genes responsible for 
maintaining multipotency, chromosomal integrity, and MSC 
functions (40‑42). CCNL2 was reported to inhibit prolifera‑
tion and cell specialization while promoting apoptosis upon 
upregulation in mouse embryonic carcinoma P19 cells. In the 
same study, CCNL2‑overexpressing P19 cells had a remarkably 
decreased S phase and reduced expression levels of myocar‑
dial cell differentiation‑related genes, e.g., cardiac actin, 
GATA binding protein 4 (GATA4), myocyte‑specific enhancer 
factor 2C (Mef2C), homeobox protein Nkx‑2.5 (Nkx2.5), and 
B‑type natriuretic peptide (BNP) (43). On the other hand, 
CXCL12 is a chemokine protein that induces the migration 
of stem cells. It functions by binding to CXC chemokine 
receptor (CXCR) 4, CXCR7 and atypical chemokine 
receptor 3 (ACKR3) (44,45). CXCL12 has been reported to 
be responsible for cell survival, growth and migration during 
tissue/organ development (46). While the exact mechanism by 
which CXCL12 helps maintain the stemness of MSCs has not 
been elucidated, there are numerous reports on its function 
in other stem cells. The CXCL12‑CXCR4 axis was found to 
be responsible for cell migration, while the CXCL12‑CXCR7 
axis promotes cell adhesion in cardiac stem cells. Similar 
findings also reported the importance of CXCL12‑mediated 
CXCR4 signalling in controlling the position of haemato‑
poietic stem cells in bone marrow niches, which contain 
limiting lymphoid‑instructive cytokines that are responsible 
for the multipotency of HSCs and their maintenance (47). 
A study confirmed that CXCL12‑mediated CXCR4 signal‑
ling promotes the proliferation, survival, and migration of 
mesenchymal stromal cells in vitro (48). It is also likely that 
CXCL12 acts through a similar mechanism to help MSCs 
maintain their stemness.

PODXL is mainly involved in cell proliferation and onco‑
sphere formation (49). However, the exact mechanism of action 
in maintaining the multipotency of MSCs is currently not well 
understood. A previous study reported that higher expression 
of PODXL and CD49f in MSCs increased the clonogenic 
potential, viability, and differentiation capabilities of 
MSCs (41). There may also be an interaction between PODXL 
and CCNL2, whereby both genes work together to help main‑
tain the multipotency of MSCs. Nonetheless, further studies 
are warranted before this phenomenon can reach a suitable 
conclusion. USP1 encodes a deubiquitinating enzyme. USP1 
was also found to stabilize inhibitors of DNA binding, which 
play a role in inhibiting cell specialization while enhancing 
proliferation (42). As interest in using MSCs for therapeutic 
purposes grows. Moreover, previous studies have reported 
other genes and novel mechanisms by which the stemness 
of MSCs is maintained (50‑52). The therapeutic potential of 
MSCs mostly stems from their ability to self‑renew and differ‑
entiate. The exact mechanism by which MSC multiplicity is 
maintained remains ambiguous, and likely, these genes work 
together in a balancing act to ensure the renewal and stem‑
ness of MSCs. Therefore, a clearer understanding should be 
made available to ensure the safety and efficacy of treatments 
using MSCs. After all, both the potential therapeutic benefits 
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and danger come from the self‑renewal ability, migration, and 
stemness of MSCs.

3. Extrinsic regulators for multipotency of MSCs

The niche microenvironment strongly influences the behaviour 
of stem cells. As mentioned, CXCL12 maintains multipotency 
by directing MSCs to specific niches, where secreted factors 
influence their self‑renewal and stemness (53). This phenom‑
enon indicates that the behaviour of MSCs is determined by 
the interaction between intrinsic transcriptional genes and 
extrinsic factors of the environment. It has been established 
that the protein kinase B (Akt) and extracellular‑signal‑regu‑
lated kinase (Erk) signalling pathways control both stem cell 
proliferation and survival, while the Wnt, Notch, and Sonic 
hedgehog (Shh) signalling pathways regulate stem cell renewal 
and differentiation (54‑57). A study also proposed two novel 
mechanisms that help to maintain the stemness of MSCs via 
the scrapie responsive gene 1 (SCRG1)/bone marrow stromal 
cell anti‑gene 1 (BST1) ligand‑receptor combination and 
cell‑cell adhesion through N‑cadherin (52). An improved 
understanding of the underlying mechanism involved in 
stem cell renewal and differentiation is important because 
the original abilities are lost at a high rate during long‑term 
in vitro culture (58,59). Therefore, current work should 
develop novel techniques to ensure that MSCs maintain their 
multipotency despite long‑term in vitro culture. This would, in 
turn, maintain the potential of MSCs to be used in regenerative 
medicine and cell therapy.

Epigenetic factors influence the differential gene expres‑
sion in MSCs that causes cell differentiation. Hence, the 
DNA sequences of MSCs and their specialized cell types are 
similar, with almost no difference. Commonly studied epigen‑
etic modifications include DNA methylation and histone 
modification, e.g., methylation, acetylation, ubiquitylation, 
and microRNAs. Once epigenetic modifications occur, gene 
expression can be influenced by changing the availability 
of gene promoters, thus affecting the recruitment of supple‑
mentary chromatin‑ modifying enzymes or transcriptional 
regulators that drive stem cell differentiation (60). For example, 
runt‑related transcription factor 2 (Runx2) regulates most 
osteoblast‑specific genes by working together with numerous 
coactivators and corepressors that alter the binding of Runx2 
to the osteocalcin promoter. This binding modification occurs 
through DNA methylation and acetylation of histones H3 
and H4 (61). Additionally, Runx2 changes the expression of its 
target in response to other signals, e.g., transforming growth 
factor‑beta (TGF‑β), bone morphogenetic protein (BMP) and 
Wnt signalling pathways (60), is responsible for the osteogenic 
lineage. MSCs can also undergo adipogenic differentiation, 
whereby hypomethylation of the genes encoding peroxi‑
some proliferator‑activated receptors gamma‑2 (PPARγ2), 
fatty acid‑binding protein 4 (FABP4), leptin (lep) and lipo‑
protein lipase (lpl) was reported to be responsible for these 
mechanisms (61,62).

In addition to secreted factors, the cyclic tensile strain 
that can alter cell behaviour should be considered another 
microenvironmental factor. MSCs have been observed to lose 
multipotency and spontaneously differentiate after prolonged 
passaging in vitro (25,63). Therefore, in vitro culture conditions 

must be optimized to maintain the multipotency of MSCs for 
their therapeutic potential in clinical settings. A study found 
that low actomyosin contractility induced by restricting the 
cells to small islands during initial culture is necessary to 
ensure the stemness of MSCs (64). A disparity in differential 
gene expression when MSCs are cultured in 2D and 3D culture 
systems is likely due to the interaction between the cells in 
an intricate 3D structure compared to that in a monolayer 2D 
culture (65). Recent studies have also found that cyclic tensile 
strain promotes bone marrow‑derived MSCs (BMSCs) to 
differentiate into cardiomyocyte‑like cells (66) and adipose 
stem cells to differentiate into the osteogenic lineage (67). 
However, the regulatory pathways and epigenetic factors that 
might be involved seem to depend on the source of MSCs and 
the desired cell lineage.

4. Clinical applications of MSCs

MSCs have been the subject of clinical trials for the past 
decade, but the outcomes have fallen short of expectations 
despite promising data in animal models. Studies continue to 
emerge, as there is no denying the potential of MSCs to treat 
a wide variety of human afflictions, e.g., neurodegeneration, 
ageing, blindness, diabetes, and cancers (1). It is crucial to real‑
istically assess the time and effort required to establish new 
clinical settings for numerous therapeutic applications. The 
same concern regarding the efficacy and safety of treatment 
must also always be at the forefront when considering the usage 
of MSCs, as there are crucial biological and pharmacological 
discrepancies in preclinical and clinical studies. The first clin‑
ical trial using MSCs as a therapeutic agent was in 1995 (68). 
Since then, MSCs have become the most widely clinically 
studied cell‑based therapy worldwide (69). MSCs are currently 
classified as advanced therapy medicinal products (ATMPs), 
which follow the Good Manufacturing Practices (GMP) 
guidelines of the Food and Drug Administration (FDA) and 
the European Medicines Agency (EMA) to authenticate 
and ensure the quality of cells before their administration 
to patients (70). This compliance with GMP includes the 
sources of MSCs, reagents, equipment, packaging materials, 
procedures, laboratory staff, environment, and final cellular 
medicine (71).

It is of the utmost importance that GMP conditions are 
maintained according to the international and national medic‑
inal governing framework. This act ensures the quality of 
the administered MSCs and prevents possible contamination 
issues that may cause adverse reactions in patients and even 
death. However, there is currently a lack of unified and stan‑
dard criteria for manufacturing MSCs as a therapeutic agent 
due to some differences over specific issues depending on the 
USA, Europe, Canada, Singapore, Japan and so forth. Despite 
this challenge, consistent physical and microbiological testing 
of the MSC production laboratory and cleanrooms to ensure 
the sterility of the production process is also warranted (72). 
This act fulfils the requirement of International Standard 
Organization (ISO) standard 14644.

Currently, 1,088 studies registered as clinical trials list 
MSCs as a clinical intervention. The majority of these trials, 
whether ongoing or completed, are phase 1 or 2 studies that 
evaluate the safety and efficacy of MSCs in humans. Despite 
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the most promising results, MSC‑based therapies still have 
significant limitations due to the nature of the stem cells, 
e.g., MSCs markedly differ in gene expression profile, cell 
differentiation ability, growth rate, and therapeutic capacity, 
depending on their tissue source (63). Therefore, it may be 
vital to isolate and culture homogenous populations of MSCs 
to improve the efficacy and safety of the treatment. The 
method of transplanting MSCs isolated and grown in large 
batches from unrelated donor tissues is known as allogeneic 
transplantation; in contrast to autologous therapy, MSCs are 
extracted and grown from treated patients. The benefits of 
allogeneic transplantation include:

1.  Efficiency, such as the isolation, expansion, and validation 
of MSCs from the patient, is not required.

2.  The therapeutic functions of allogenic MSCs remain the 
same, unlike autologous MSCs, which have been reported 
to have impaired functions when isolated from elderly 
individuals (73,74).

3.  A well‑established stock of MSCs following strict GMP 
requirements reduces the variability of donors and 
improves the success rate of the treatment.

Allogeneic transplantation, however, may induce an 
immunogenic response (75), especially when administered 
repeatedly at the same site (76). This phenomenon makes 
allogeneic therapy less desirable, especially when it needs to 
be administered for an extended period. At the same time, 
in vitro studies have reported on the hypoimmunogenic prop‑
erties (immune‑privileged) of MSCs, while the findings of 
in vivo studies were less conclusive (77). It was theorized that 
MSCs lose their hypoimmunogenic properties upon differ‑
entiation, which triggers the immune response and rejection 
after implantation into the host (77,78). A study also reported 
that different transplantation routes and microenvironments 
could influence the immunogenicity of implanted MSCs (79). 
Because of such inconclusive in vivo results, a paper suggested 
the term immune evasive be used instead of immune‑privileged 
to describe the immunogenicity of MSCs. It was also reported 
that while MSCs may not be truly immune‑privileged, the 
rejection of allogeneic MSCs occurs at a slower rate than that 
of other cell types (80). This phenomenon means that future 
studies should also examine strategies to maintain or prolong 
the immunogenicity of allogeneic MSCs to maximize the 
therapeutic benefits.

In contrast, autologous transplantation, which triggers less 
risk of immunogenic response, is an alternative. Autologous 
MSCs are easily available without identifying a suitable 
donor (81). Autologous MSCs also overcome the limitation of 
long‑term in vitro culture for allogeneic MSCs, leading to loss 
of multipotency, morphological changes, and an increased risk 
of malignancy (25,74). Nonetheless, the challenge and reliance 
on autologous MSC transplantation mean that a well‑optimized 
and established protocol for the isolation and ex vivo prepara‑
tion of MSCs will be required. Such precise standardization 
may be difficult, as several exogenous factors greatly affect 
the biological properties of MSCs (70). Autologous MSCs 
may not be suitable for treating certain genetic diseases due 
to the mutations present in stem cells. Flaws in the genetic 
sequence hinder both the immunomodulatory function and 

regenerative traits of MSCs. For example, MSCs isolated from 
patients suffering from systemic lupus erythaematosus have 
a senescent phenotype with diminished capabilities to differ‑
entiate, migrate and regulate the immune system (79,82‑84). 
Therefore, more preclinical and clinical studies are required 
to obtain more information related to the utility of MSCs as 
a therapeutic approach. Supplementary studies on the basic 
biology of MSC maintenance and the regulators of MSC 
differentiation would also provide a clearer picture of how to 
better administer MSCs as therapeutic agents in the future.

Most of the published clinical studies employing MSCs for 
diseases have specific treatments with positive outcomes. In 
neurology, ischaemic stroke patients treated with MSCs yielded 
positive results, whereby the patients showed significantly 
improved neurological and motor functions (85‑88). Among 
all of the studies conducted, serious adverse events that were 
reported included transient ischaemic attack, seizure, asymp‑
tomatic subdural haematoma/hygroma, urinary tract infection, 
sepsis, pneumonia, hyperglycaemia, neutrophilia, shingles, 
ischaemic stroke, cellulitis, muscle cramps, fracture neck 
femur, and peripheral vascular disease (89). However, these 
side effects were attributed to the procedure rather than cell 
therapy. The study also reported promising results in the field 
of cardiology. Studies have shown that diseases, e.g., dilated 
cardiomyopathy and ischaemic or nonischaemic heart failure, 
have had clinical and pathophysiological improvements; 
no serious adverse effects were reported, demonstrating the 
treatment's safety profile (19,90‑92). Patients suffering from 
cartilage lesions and/or osteoarthritis, especially in the knee, 
were reported to have a clinical improvement in pain, stiffness, 
and functionality when treated with MSCs. These results show 
the broad potential of MSCs for clinical usage with no serious 
adverse effects linked to cell therapy.

5. Therapeutic potential of MSCs

Interest in developing MSCs as therapeutic agents has not 
waned in the slightest, despite the obstacles faced, largely due 
to their immense therapeutic potential. In addition to being 
multipotent with self‑renewing capabilities, MSCs also have 
the added benefits of migrating to the injury site and promoting 
tissue regeneration (26). This phenomenon means that MSCs 
can be a form of personalized therapy (when opting for autolo‑
gous therapy) that is site‑directed, promotes tissue restoration, 
and replaces damaged cells through differentiation. It is, there‑
fore, unsurprising that scientists are so invested in advancing 
this field of research since the therapeutic agent reaches the 
targeted tissue for effective disease treatment. As MSCs have a 
natural tendency to be attracted towards damaged sites and the 
tumour microenvironment, the cells are a prime candidate for 
further investigation, as MSCs seem to be independent of the 
type of tumour, immunocompetence and delivery route (93).

Insight into the mechanism underlying the mobilization of 
MSCs to the injury site is still limited, but CXCL12‑mediated 
CXCR4 signalling is most likely involved as a pathway that 
mediates cell migration (94). Secreted chemokines can mediate 
inflammation in the tumour microenvironment, and wounds 
are responsible for attracting MSCs (95). As the chemotactic 
properties of MSCs seem to be similar to those of other 
immune cells, the established model of leukocyte migration 
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can be used as a template to study the factors involved in MSC 
migration (95). Other chemokine receptors that react to signals 
from the injury site or tumour microenvironment induce 
CCR1‑2, CXCR1‑2, CCR4, CXCR4‑6, CCR7‑10, and CX3R1 
expression in MSCs (95). In addition, cell adhesion molecules 
expressed by MSCs, e.g., CD44, CD49d, CD54, CD102 
and CD106, are thought to be involved in MSC migration to 
injury sites (26,96).

A wide variety of trophic mediators and growth factors are 
secreted to initiate tissue regeneration once MSCs arrive at the 
injury site. The pleiotropic effects conferred by MSCs towards 
damaged tissues include anti‑inflammation, immunomodula‑
tion, and enhanced cell survival and angiogenesis (97,98). 
Among these therapeutic effects, anti‑inflammation and 
immunomodulation are key elements that make MSCs an 
attractive target to study because the immune system plays 
an integral role in regulating tissue repair and regeneration 
through healing, scarring and fibrosis (99). The immunomodu‑
latory process of MSCs occurs through the secretion of several 
soluble factors that interfere with the immune system, and the 
inflammation process takes place through cell‑cell interac‑
tions (100,101). The immunosuppressive effect of MSCs was 
enhanced by increasing the binding between MSCs and 
T‑cells through intercellular adhesion molecule‑1 (ICAM‑1) 
and vascular cell adhesion molecule‑1 (VCAM‑1) (102). A 
similar phenomenon was reported when MSCs were shown to 
heighten the suppressive regulation of T‑cells and macrophages 
regarding proinflammatory macrophages (103).

The flexibility of multipotent MSCs to differentiate into 
a wide variety of cells would then allow the cells to replace 
damaged or dead cells. However, reports on this mechanism 
are inconclusive, as the engraftment of MSCs is transient, and 
instead, MSCs secrete specific factors that grow and differen‑
tiate into local precursor cells (26). The potential of MSCs in 
tissue repair and regeneration is undeniable, regardless of the 
exact mechanisms.

6. MSCs in cancer therapy

Over the years, multiple reports have been published that 
strongly suggest the mechanism of action of MSCs. These 
actions are mainly attributed to the ability to migrate to 
the injury site (104‑106), the paracrine effect of the secre‑
tome (107,108), and the immunomodulatory ability (109,110). 
The benefits of MSCs are enticing, and it is important to consider 
the potential side effects and major risk factors that are often 
associated with stem cell transplantation. There have been 
contradictory results in describing the anti‑ and pro‑tumour 
effects of MSCs. As mentioned above, the therapeutic role of 
MSCs in cancer therapy is similar to that in other diseases; 
tumours secrete similar chemoattractants to damaged tissues, 
which initiate the migration of MSCs to the target site through 
the CXCL12‑CXCR4 signalling pathway (111‑114). MSCs 
have also been reported to interact with cancer cells, directly 
and indirectly, affecting tumour development (26). Moreover, 
MSCs secrete various cytokines and growth factors, which 
alter cellular activities, e.g., cell proliferation (cell cycle), 
angiogenesis, cell survival, and immunomodulation, to indi‑
rectly influence tumour growth. For example, BMSCs were 
described to enhance the proliferation of B16‑LacZ cells and 

increase tumour size when both cell lines were coinjected into 
syngeneic mice via enhanced angiogenesis (115). In contrast, 
BMSCs were also reported to inhibit proliferation, migra‑
tion, and invasion and induce cell cycle arrest, which led to 
apoptosis of human glioma U251 cells by downregulating the 
PI3K/Akt pathway (116).

Indeed, such paradoxical results are not uncommon, as 
divergent effects on cell growth, invasion, and migration have 
been reported when MSCs sourced from the human umbilical 
cord were cocultured with glioblastoma cancer stem cells, e.g., 
direct contact between both cell lines caused an inhibitory 
response (117). At the same time, the release of soluble factors 
triggered a stimulatory reaction (117). Similar opposing 
effects were observed during an in vivo study investigating 
whether coinjection and distant injection of MSCs with 
breast tumour 4T1 cells exerted different effects on tumour 
growth (118). Coinjection supported tumour growth, while 
in the distant injection model, it inhibited tumour growth by 
promoting host antitumour immunity (118). Likewise, MSCs 
derived from umbilical cord blood and adipose tissue also had 
divergent effects on the proliferation of glioblastoma multi‑
forme. The former inhibited and promoted the proliferation 
process (119).

Several studies have found that upon being recruited 
to tumour sites, the multipotency of MSCs enables their 
self‑differentiation into carcinoma‑associated fibroblasts, 
which directly contribute to cancer progression (120‑122). 
In addition, MSCs were reported to promote tumour growth 
and angiogenesis through the secretion of proangiogenic 
cytokines, e.g., interleukin (IL)‑6, vascular endothelial 
growth factor (VEGF), and transforming growth factor‑β 
(TGF‑β) (123‑125) (Fig. 1). MSCs also enhanced the metas‑
tasis of human breast cancer cells by promoting de novo 
production of lysyl oxidase (LOX) by cancer cells (126). In 
addition, MSCs are able to modulate the production of regu‑
latory T‑cells and inhibit the activity of natural killer (NK) 
cells and cytotoxic T lymphocytes (CTLs), protecting 
breast cancer cells from the immune system (127). Similar 
immunosuppressive effects were observed when MSCs 
were reported to promote lung cancer metastasis (128). It 
was suggested that MSCs have the ability to form a cancer 
stem cell niche in vivo where tumour cells can preserve 
the potential to proliferate, thus sustaining the malignant 
process (129).

In contrast, MSCs increased the sensitivity of breast 
cancer cells to radiotherapy and impeded tumour progres‑
sion by downregulating the signal transducer and activator of 
transcription 3 (Stat3) signalling pathway (130). Another study 
found that MSCs hampered hepatic cancer growth through 
the secretion of paracrine factors that lowered the insulin‑like 
growth factor 1 receptor (IGF‑1R), phosphatidylinositol 
3‑kinase (PI3K) and Akt signalling pathways (131). In addi‑
tion, microRNA‑4461 isolated from BMSCs was reported to 
inhibit tumour pathogenesis in colorectal cell lines and tissues 
by downregulating the expression of COPB2 (132). MSCs also 
inhibited vascular growth in glioma cells by downregulating 
the platelet‑derived growth factor (PDGF)/PDGFR axis (133). 
Antiproliferative effects and apoptosis were observed when 
ovarian cancer cell lines were cocultured with conditioned 
media of MSCs derived from human bone marrow, adipose 
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tissue, and umbilical cord (134). The study found that the 
conditioned media of MSCs showed an increase in IL‑4 and 
IL‑10 but a decrease in granulocyte/macrophage colony‑stim‑
ulating factor (GM‑CSF), IL‑6, and IL‑9. It is undeniable 
that anti‑inflammatory cytokines play an important role in 
cancers (135‑137). However, controversial findings have been 
reported regarding whether cytokines support or hinder tumour 
progression (138‑141). Regardless, MSCs have been shown to 
modulate the immune response through the balanced secretion 
of proinflammatory and anti‑inflammatory cytokines (142). 
Therefore, this duality of function found in the secretome of 
MSCs and the complex cell‑to‑cell interaction between MSCs 
and cancer cells might be the reason for the conflicting reports 
regarding the role of MSCs in cancers.

Although the underlying mechanisms are not yet fully 
understood, there is a consensus that the differences in 
experimental design, e.g., tumour models used, route of 
cell administration, control group, tissue source, dosage 
use, and timing of the treatment that may affect the final 
results, should be considered (37,117‑119,143,144). Research 
should not make conclusions about the utility of MSCs in 
cancer therapy based on a single study. Instead, standard‑
ized protocols should be established to ensure that the data 
obtained are more comparable to understand the interaction 
of MSCs with cancer cells. Additionally, precautions should 

be taken before the clinical introduction of MSCs for 
treating cancers since the heterogeneous characteristics of 
MSCs are easily susceptible to different pathological condi‑
tions present in patients, which can hinder the therapeutic 
mechanisms.

7. Potential strategy in utilizing MSCs for cancer therapy

MSCs are recognized for their ability to migrate towards 
tumour sites (145,146), but the literature to support the direct 
use of MSCs to treat cancer patients remains insufficient. MSCs 
can play a prominent role in reducing cancer progression since 
efficient intracellular tracking and directed delivery to the 
targeted site improve the pharmacological properties of anti‑
cancer drugs (147,148). One of the earliest studies developing 
MSCs for the delivery of biological agents found that MSCs 
genetically modified to express interferon‑β (IFN‑β) lowered 
tumour growth and doubled the survival rate of mice compared 
to the control group (149). In addition, IFN‑β‑transfected MSCs 
administered cisplatin triggered a high level of apoptosis in 
a melanoma xenograft mouse model (150). IFN‑β‑modified 
MSCs derived from the human umbilical cord were also 
reported to induce apoptosis in MDA‑MB‑231 cells (151). 
Tumour necrosis factor (TNF)‑related apoptosis‑inducing 
ligand (TRAIL) is a promising target that selectively induces 

Figure 1. Summary of the mechanism of action of MSCs on the modulation of tumour cell growth. (A) MSCs regulate the immunomodulatory process by 
secreting several soluble factors that interfere with the immune system. MSCs also reveal their immunomodulatory potential through cell‑cell interaction 
by activating monocytes, eosinophils, basophils and neutrophils. (B) MSCs are multipotent progenitors able to migrate, home and differentiate into CAFs. 
(C) MSCs have the ability to form a cancer stem cell niche in vivo where tumour cells can preserve the potential to proliferate and sustain the malignant 
process. (D) Paracrine effects of the secretome contributes to the duality function of MSCs. For example, they decrease levels in Stat3 and IGF‑1R, and increase 
levels of IL‑4 and IL‑10 to inhibit tumour growth, while also increasing levels of IL‑6 and VEGF to promote tumour growth. https://biorender.com/ created 
the figure. MSCs, mesenchymal stem cells; CAF, cancer‑associated fibroblasts; Stat3, signal transducer and activator of transcription 3; IGF‑1R, insulin‑like 
growth factor 1 receptor; IL‑4, interleukin‑4; IL‑10, interleukin‑10; IL‑6, interleukin‑6; VEGF, vascular endothelial growth factor; PDGF, platelet‑derived 
growth factor; GM‑CSF, granulocyte/macrophage colony stimulating factor.
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apoptosis in cancer cells. TRAIL‑modified MSCs have 
been reported to exert antitumour effects in different cancer 
cell lines and a mouse melanoma model (152‑156). In addi‑
tion, MSCs have been genetically modified to deliver other 
cytokines, e.g., IFN‑γ (156), IL‑2 (157), IL‑12 (158), and 
IL‑24 (159), for antitumour effects.

Numerous studies have been conducted to explore the 
possibility of enhancing the inherent therapeutic properties of 
MSCs using genetic engineering. These studies mainly focused 
on four crucial points: improving migration, adhesion, and 
survivability while reducing the cell senescence of transplanted 
MSCs (160‑162). This phenomenon is accomplished by inserting 
a vector loaded with a constructed genetic cassette into MSCs; the 
cassette expresses certain genes constantly or can be controlled 
with a gene switch (163). For example, adipose‑derived MSCs 
(AdMSCs) were transduced with a retroviral vector to upregulate 
the expression of CXCR4. The study reported that the transduced 
MSCs showed increased motility, invasion, and placement in 
the bone marrow when injected into nonobese diabetic/severe 
combined immunodeficiency (NOD/SCID) mice (164). In addi‑
tion to CXCR4, other genes involved in MSC migration, e.g., 
aquaporin‑1, can be modified. It was reported that the overex‑
pression of aquaporin‑1 and CXCR4 promoted the migratory 
ability of MSCs via the Akt and Erk pathways (165). MSCs have 
also been genetically engineered to overexpress integrin‑linked 
kinase (ILK). The study found that genetically modified MSCs 
had 1.5‑fold higher survivability and a 32.3% higher adhesion 
rate when engrafted into an ischaemic myocardium model, with 
a higher retention rate of ~4‑fold (166). In addition, BMSCs 
and AdMSCs were reported to have increased proliferation and 
differentiation potential when engineered to overexpress Oct4 
and Sox2 (167,168). Genetic engineering has the potential to 
circumvent the current problems that limit the application of 
MSCs in clinical settings and improve their potential therapeutic 
properties. Despite the immense benefits, this technique also 
has potential drawbacks, e.g., the risk of insertional oncogenesis 
due to viral vectors to introduce plasmid DNA, adverse immune 
reactions, and high production costs (169). Great precautions 
should be taken when considering the use of genetically modi‑
fied MSCs for cancer therapy.

In addition, previous studies have established a connection 
between specific Toll‑like receptors (TLRs) and the immu‑
nomodulatory properties of MSCs (170‑172). Interestingly, a 
study reported that TLR‑4‑primed MSCs (MSC1) exhibited 
a proinflammatory phenotype, while TLR‑3‑primed MSCs 
(MSC2) secreted immunosuppressive mediators (173). Indeed, 
the polarization of MSCs into specific immunomodulatory 
phenotypes is a promising strategy as well. For example, 
macrophages cocultured with MSCs showed evidence of 
alternatively activated macrophages with high levels of CD206 
and IL‑10 but low levels of IL‑12, which displayed a higher 
level of phagocytic activity (174). Studies have also reported 
that TL‑3‑ and TL‑4‑primed MSCs preserved and enhanced 
the function of neutrophils through the combined action of 
IL‑6, IFN‑β, and GM‑CSF (175,176). Furthermore, MSC1 
was observed to recruit lymphocytes by activating T‑cells and 
secreting macrophage inflammatory protein‑1 (MIP‑1), CCL5, 
CXCL9, and CXCL9 (177). In contrast, MSCs can change 
macrophages from a TNFα‑secreting MSC1 phenotype to an 
immunosuppressive IL‑10‑expressing phenotype through a 

prostaglandin‑(PGE‑)2‑based mechanism (178). MSCs have 
also been reported to inhibit IL‑2‑induced NK cell prolif‑
eration and prevent the initiation of effector functions, e.g., 
cytotoxic activity and cytokine production, with the produc‑
tion of the soluble factors indoleamine 2,3‑dioxygenase (IDO) 
and prostaglandin E2 (PGE2) (179). MSCs influence tumour 
growth through immunomodulation, and as discussed earlier, 
the polarization of MSCs for cancer treatment warrants 
further investigation. After all, it is widely accepted that 
chronic inflammation is a critical hallmark of cancer that 
elevates the risk of malignancy (180). The anti‑inflammatory 
cytokines secreted by MSCs can circumvent these effects. 
On the other hand, tumour cells evade the immune system by 
avoiding immune recognition and developing an immunosup‑
pressive microenvironment (181), which can be overcome 
with the help of MSCs boosting the innate immune system. 
Therefore, careful and purposeful polarization will benefit 
the field of cancer therapy and facilitate manipulation of the 
immunomodulatory capacity of MSCs.

Studies have also investigated the potential of MSCs 
to act as vectors for oncolytic viruses. For example, MSCs 
were used as vectors to deliver oncolytic herpes simplex 
virus to human brain melanoma metastasis models grown 
in immunodeficient and immunocompetent mice. This study 
reported that the intervention significantly prolonged the life 
of the mice through immunomodulatory actions compared to 
the control group (182). A recent in vivo study also explored 
the possibility of using MSCs derived from menstrual blood 
as a vector for CRAd5/F11 chimaeric oncolytic adenovirus 
to treat colorectal cancer. It was reported that the chimaeric 
oncolytic adenovirus was successfully delivered and accumu‑
lated at the tumour site, and it inhibited tumour growth (183). 
A mathematical model to quantitatively predict the efficacy 
of MSCs acting as vectors for virotherapeutic agents in vivo 
has been developed, indicating that MSCs are a promising 
strategy that improves the efficacy and safety profile of the 
treatment (184).

MSCs can also be primed with anticancer drugs for 
targeted delivery due to their preferential migration towards the 
tumour site and relative resistance to cytostatic and cytotoxic 
drugs (185‑187). For example, MSCs acquire strong antitu‑
mour activity after packaging and delivering paclitaxel (PTX) 
through extracellular vesicles (188). The same study also 
demonstrated that it is possible to produce drugs with higher 
cell‑target specificity by utilizing MSCs as a factory to package 
the drugs. Similar studies reported that MSCs isolated from 
different sources were primed with PTX and tested against 
different cancer cell lines (187,189‑191). Other drugs were also 
tested for priming MSCs, e.g., doxorubicin and gemcitabine. A 
study reported similar results whereby MSCs effectively incor‑
porated the active form of the drugs and released sufficient 
quantities to produce a significant inhibition of squamous cell 
carcinoma growth in vitro (192). Researchers have explored 
the possibility of using nanoparticles to improve the payload 
and delivery capacity of MSCs (193,194). All of these studies 
indicate that MSCs are able to take up and subsequently release 
drugs in a targeted and gradual manner, which improves the 
efficacy of anticancer drugs.

Due to the short half‑life of most anticancer drugs in 
the body and their high toxicity to healthy cells, direct 
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administration of these drugs is often associated with 
unwanted side effects. For example, nausea and vomiting, 
tiredness, changes in taste, dry mouth, loss of appetite, 
constipation, and hair loss are common side effects faced by 
chemotherapy patients (195). Thus, using MSCs as vectors to 
deliver therapeutic proteins or anticancer drugs can help to 
solve this issue advantageously. MSCs can exert therapeutic 
effects locally due to selective migration and accumulation 
in tumour sites, increasing treatment efficacy and reducing 
systemic toxicity. Currently, divergent drugs are being investi‑
gated for different cancer therapeutic purposes. For example, 
MSCs were reported to enhance the therapeutic capabilities 
of tendon repair when pretreated with pioglitazone (196). 
Other studies using pioglitazone as the priming agent also 
found similar results, where pretreated MSCs had greater 
therapeutic effects on lung regeneration in an emphysema 
mouse model (197,198). Pioglitazone has been administered 
indirectly to breast cancer cells via stem‑and‑cancer cell 
interaction (199). Through this process, modified and viable 
pretreated stem cells are subsequently administered to patients, 
and pretreated stem cells are allowed to interact with cancer 
cells in the patients' bodies. Considering that pioglitazone 
has been reported to possess anticancer effects (200‑202), 

it may be beneficial to examine the possibility of priming 
MSCs with pioglitazone for cancer therapy. After all, using 
MSCs pretreated with pioglitazone as a strategy to improve 
the overall therapeutic effects, as reported in our study (199), 
remains rare. Despite the study on cardiomyogenic transdif‑
ferentiation and cardiac function (203), as mentioned above, 
MSCs pretreated with pioglitazone for cancer therapy remain 
to be characterized. A similar strategy was conducted using 
AdMSCs pretreated with a peroxisome proliferator‑activated 
receptor gamma (PPARγ) agonist to improve the regeneration 
effects in an elastase‑induced emphysema mouse model (197). 
Indeed, human umbilical cord‑derived mesenchymal stem 
cells pretreated with IL‑6 were also found to abolish the stem 
cell growth‑promoting effect on gastric cancer cells (204). The 
potential therapeutic strategies of MSCs in cancer therapy are 
summarized in Fig. 2.

Although the potential benefit is undeniable, there are 
potential risks in using MSCs for cancer treatments. These 
risks can be categorized as acute issues, e.g., inflammatory 
reaction or embolic phenomenon, intermediate issues, e.g., 
graft‑versus‑host disease (GVHD) or secondary infection, 
or long‑term issues, e.g., risk of tumour growth (142). 
It was reported in a clinical study that patients treated 

Figure 2. Potential therapeutic strategies of MSCs in cancer therapy. (A) Priming TLR‑4‑primed MSCs (MSC1) and TLR‑3‑primed MSCs (MSC2) for the 
immunomodulatory phenotype. (B) Vector delivers the oncolytic virus to the tumour site for growth inhibition. (C) Genetic engineering using viral vectors to 
introduce plasmid RNA and DNA. (D) Priming MSCs with anticancer drugs to improve their pharmacological properties. https://biorender.com/ created the 
figure. MSCs, mesenchymal stem cells; TLR, Toll‑like receptor.
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with MSCs commonly died due to infection (205). This 
phenomenon, coupled with the fact that MSCs can poten‑
tially promote tumour growth instead of inhibiting it, as 
previously discussed, makes it a risky treatment option. 
However, more studies must be conducted to provide 
future evidence and improve the therapeutic effects of 
modified MSCs in cancer treatments. These cells hold 
great potential to revolutionize the current cancer thera‑
pies that are available.

8. Concluding remarks and future perspectives

It is undeniable that stem cells are promising therapeutic 
alternatives for numerous human diseases. While the 
motivation to benefit human health is noble, researchers 
should take precautions in this field to prevent the poten‑
tial exploitation of vulnerable groups. Efforts should 
also be directed towards using MSCs in autologous and 
allogeneic transplantation, as they do not raise the same 
ethical concerns as ESCs. In addition, MSCs benefit from 
their ability to carry anticancer payloads through genetic 
manipulation or pretreatment of the cells, leading to use in 
regenerative medicine and potentially oncology. Therefore, 
it is important to obtain as much information as possible 
to ensure that stem cell‑based therapy is reliable, effective, 
efficient, safe, and affordable. It should be developed with 
the physiological condition of the patients in mind to truly 
benefit humanity.
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