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Abstract

Background: Single nucleotide polymorphisms (SNP) have proven to be powerful genetic markers for genetic applications
in medicine, life science and agriculture. A variety of methods exist for SNP detection but few can quantify SNP frequencies
when the mutated DNA molecules correspond to a small fraction of the wild-type DNA. Furthermore, there is no generally
accepted gold standard for SNP quantification, and, in general, currently applied methods give inconsistent results in
selected cohorts. In the present study we sought to develop a novel method for accurate detection and quantification of
SNP in DNA pooled samples.

Methods: The development and evaluation of a novel Ligase Chain Reaction (LCR) protocol that uses a DNA-specific
fluorescent dye to allow quantitative real-time analysis is described. Different reaction components and thermocycling
parameters affecting the efficiency and specificity of LCR were examined. Several protocols, including gap-LCR
modifications, were evaluated using plasmid standard and genomic DNA pools. A protocol of choice was identified and
applied for the quantification of a polymorphism at codon 136 of the ovine PRNP gene that is associated with susceptibility
to a transmissible spongiform encephalopathy in sheep.

Conclusions: The real-time LCR protocol developed in the present study showed high sensitivity, accuracy, reproducibility
and a wide dynamic range of SNP quantification in different DNA pools. The limits of detection and quantification of SNP
frequencies were 0.085% and 0.35%, respectively.

Significance: The proposed real-time LCR protocol is applicable when sensitive detection and accurate quantification of low
copy number mutations in DNA pools is needed. Examples include oncogenes and tumour suppressor genes, infectious
diseases, pathogenic bacteria, fungal species, viral mutants, drug resistance resulting from point mutations, and genetically
modified organisms in food.
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Introduction

Single Nucleotide Polymorphisms (SNP) are the most common

type of genetic markers and refer to a position where two

alternative bases occur at appreciable frequency (.1%) in a

population [1]. The identification of SNP is fundamental to basic

life science, human hereditary disease diagnosis and pharmacoge-

nomics [2,3]. SNP detection is also of great importance to

agriculture and animal science, addressing quantitative trait loci

(QTL) identification, marker assisted selection, genome mapping,

food traceability, parental tests, detection of genetically modified

organisms in food and feed, diagnosis of animal genetic diseases,

and disease susceptibility.

Typically, in genetic diseases caused by mutations in high

proportion of DNA, sensitivity of diagnostic assays is not a critical

factor for SNP detection. However, in cases where mutated DNA

molecules correspond to a small fraction of the wild-type DNA, for

example oncogenes or tumour suppressor genes and microbial or

viral mutations associated with drug resistance, the sensitivity of

SNP detection becomes a critical factor [4].

Estimation of allele frequency is required in a number of

applications of great interest that use pooled DNA samples, such as

monitoring minimal residual disease in the course of malignant

haematopathies and the quantitative assessment of post transplant

chimerism. Association studies of non-Mendelian complex diseases

have emphasized cost benefits of allele frequency estimation in

DNA pools [5] and raised the need for reliable, highly sensitive,

fast throughput screening assays. In addition, DNA pooling can

reduce the genotyping effort and cost. For example, in milking

ruminants, bulk milk (meaning the total amount of milk produced

and collected on a given day in a certain farm) has already been

used as a source of DNA pooled across all animals raised on the
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farm, for selective genotyping in marker assisted selection studies,

QTL detection and gene mapping projects [6,7].

Current methods of SNP detection differ in accuracy, sensitivity

and throughput. Traditional procedures such as restriction

fragment length polymorphism (RFLP), denaturation gradient

gel electrophoresis and chemical cleavage of mismatched hetero-

duplexes are labour intensive, non-automated processes and, most

importantly, lack sensitivity [4]. Therefore, a large number of

more sensitive and selective approaches for SNP detection have

been introduced in recent years. In general, each method bases

SNP detection on one of the following procedures: hybridization,

invasive cleavage, oligonucleotide ligation, and primer extension

using either allele-specific nucleotide incorporation or allele-

specific Polymerase Chain Reaction (PCR) [8]. The products of

such procedures are usually analyzed with gel separation, arrays,

mass spectrometry, or fluorescence plate reader techniques [9].

Some of these techniques have been also found suitable for the

quantification of SNP. These include fluorescence in situ

hybridization, denaturing HPLC [10], bioluminometric assay

[11], real-time PCR [3], oligo-ligation assay, Invader assayTM

(Third Wave Technologies Inc), DNA chips [12] and Pyrose-

quencing [13]. To date, however, there is not a generally accepted

golden standard method for SNP quantification, and, in general,

currently applied methods give inconsistent results in selected

cohorts.

Real-time PCR has been extensively used for the detection and

quantification of SNP in DNA pools. Detection and quantification

limits of this technique vary among individual SNP, ranging

between 1% to 25% [14,15]. Nevertheless, such limits are not

adequate in cases of testing blood for early detection of cancer,

monitoring disease progression and assessing response to therapy

[16,17], where sensitivity at levels greater than 1:1000 might be

required.

Ligase Chain Reaction (LCR) is another DNA amplification

method developed as an alternative to PCR [18]. LCR evolved as

a very promising diagnostic technique that is often utilized in

conjunction with a primary PCR amplification. LCR employs a

thermostable ligase and allows the discrimination of SNP. Two

complementary pairs of DNA oligonucleotides are utilized and

exponential signal amplification analogous to PCR is achieved.

However, although conventional LCR is characterized by highly

specificity of ligation, background ligation in the absence of

template may still occur at a low level [19]. In order to prevent this

template-independent ligation, another LCR protocol, gap-LCR,

has been developed [18,20]. Gap-LCR utilizes a DNA polymerase

to seal a gap at the site of point mutation between adjacent

oligonucleotides and a DNA ligase, to seal the nick between them

[18,4,20]. However, the fact that, to this date, both LCR and gap-

LCR are gel based separation methods limits their use for high

throughput applications [21].

In recent years, new methods that combined LCR with

detection systems thereby alleviating the laborious gel separation

problem have been reported. For example, labelling of LCR

oligonucleotides with biotin and digoxigenin, combined with an

ELISA-based detection system permitted sensitivity increase and

ease of LCR applications [22]. Increased sensitivity was also

attained when asymmetric gap-LCR products were detected by

microparticle enzyme immunoassay [23]. A gap-LCR assay has

also been combined with a fluorescence polystyrene microsphere

measurement platform that allows multiplex analysis of SNP [24].

Despite several reports of improvements in LCR detection

systems, these refer mainly in the sensitivity of SNP detection and

not the quantification potential of LCR. Only recently, a semi-

quantitative real-time gap-LCR assay, coupled with PCR, for the

sensitive detection of p53 mutation at low levels in surgical margins

of tumours was reported [19]. In this case, oligonucleotides labelled

with FAM and TAMRA were used for visualization of the LCR

products during amplification [19]. This assay required modifica-

tion of the real-time platform to accommodate excitation of FAM at

494 nm and detection of TAMRA emission at 605 nm. In addition,

purification and quantification of the PCR amplicons was required

before they could be used as templates for the LCR.

The objective of this study was to develop a quantitative real-

time LCR-based method for the sensitive detection and accurate

quantification of SNP in DNA pools suitable for routinely

performed high throughput diagnostics. This novel protocol

combined the advantages of LCR detection with the use of a

DNA binding fluorescent dye to allow quantitative real-time

analysis. The effect of different parameters, such as reaction

components, thermocycling conditions and oligonucleotide ther-

modynamic properties, in the specificity and efficiency of this real-

time LCR protocol were studied. Modifications of the method

(gap-LCR) were also introduced and evaluated. An ovine SNP

associated with susceptibility to scrapie was used as a model in this

study. Scrapie is a fatal degenerative disorder of small ruminants’

central nervous system that belongs to the transmissible spongi-

form encephalopathies. More specifically, a mutation at codon 136

of the ovine PRNP gene, which changes from GCC to GTC,

coding alanine (A136) and valine (V136), respectively, and increases

susceptibility to the disease, was detected and quantified in plasmid

and genomic DNA pools. The allele V136 was selected because it is

usually detected at very low frequencies depending mainly on the

breed of sheep. In the present study, milk samples from the highest

milk producing and most prolific Greek dairy sheep breed, Chios,

were examined, where a 0.4% V136 frequency across the

population has been reported [25].

Materials and Methods

Sample collection and individual genotyping
Individual milk samples were taken from 60 ewes of the Chios

dairy breed of sheep raised in 5 different flocks at the northern part

of Greece. Milk samples were collected in 50 ml tubes in the

milking parlour, under aseptic conditions, and were immediately

placed in isothermic boxes and transferred to the laboratory. Milk

sampling took place during the routine milking process in the farm

and no animals were treated, handled or otherwise inconve-

nienced.

Genomic DNA was isolated from these milk samples using a

commercial kit, NucleospinH Blood (Mackerey-Nagel, Duren,

Germany), modified properly for milk conditions [26]. All samples

were genotyped for the PRNP gene using a RFLP analysis protocol

[27], modified by using a different upstream primer PrPov1:

GTCAAGGTGGTAGCCACA. The specificity of RFLP analysis

was verified by sequencing 21 of these samples.

Preparation of plasmid and genomic standard pools
Primers CLPRNP-F (59-CAT GAA GCA TGT GGC AGG

AGC TG-39) and CLPRNP-R (59- ACC ACT ACA GGG CTG

CAG GTA GAC-39) were used to amplify a 261 base pair (bp)

fragment of the PRNP gene of a previously detected heterozygous

ewe, containing the mutant V136 and the wild-type A136 allele.

The amplicons were cloned into PCRHII-TOPOH vector

(Invitrogen, Karlsruhe, Germany). Plasmid DNA was extracted

using the Nucleospin Plasmid kit (Macherey-Nagel, Düren,

Germany) and linearized with NotI-HFTM (New England Biolabs

Inc., MA, USA). Selection of clones containing V136 or A136 was

based on restriction analysis using BspHI (New England Biolabs

Quantitative Real-Time LCR
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Inc., MA, USA). The concentration of plasmid DNA samples was

determined by spectrophotometry. Stocks from two selected

plasmid clones (V136 and A136) were diluted with 10 mM Tris

buffer to obtain solutions containing 1011 copies/ml. DNA pools

with a total number of 5?109 copies/ml, defined as mutant DNA

frequencies of 100%, 25%, 6.25%, 1.56% and 0.39%, were

generated by serial dilutions of mutant V136 plasmid DNA in 1:4

ratios with the wild-type A136 plasmid DNA. These pooled

plasmid DNA samples were used to obtain a standard curve, in

order to assess linearity and amplification efficiency, variability,

dynamic range of quantification, and detection limit of the method

described below.

In addition, genomic DNA pools were prepared from extracted

samples containing the V136 polymorphism at different pre-

determined frequencies (50%, 25%, 6.25%, 1.56%, and 0.39%).

These were created by mixing equimolar genomic DNA extracts

from homozygous V136 (mutant DNA) and A136 (wild-type)

individuals that were quantified by spectrophotometry. For each

frequency, four different DNA pools were prepared using extracts

from different individuals. These genomic DNA pools were used to

test the accuracy of quantification of the method described below.

Method description for SNP detection and quantification
Basic protocol. A quantitative real-time LCR protocol was

developed to assess the prevalence of mutant (V136) polymorphism

in extracts from DNA pools (genomic or plasmid) and natural

extracts from individual ovine milk samples. The full process is

illustrated in Figure 1.

Prerequisite for accurate quantification of mutant DNA by real-

time LCR was the different templates to be equimolar. For this

reason, after the isolation of genomic DNA, a real-time PCR

which amplified a genomic region containing the SNP was

introduced (Figure 2). Due to the PCR amplification plateau

effect, it was expected that the final PCR products would be

equimolar irrespectively of the initial DNA concentration of the

different DNA extracts. The use of a DNA intercalating dye

(EvaGreen) permitted the monitoring of concentration of the PCR

products [28,29]. For this purpose, two primers, PRNPf (GGCC-

TTGGTGGCTACATGCTGGGA) and PRNPr (CCCTTGG-

TGGTGGTGGTGACTGTGTG) targeting a 216 bp PRNP

genomic region were designed. One ml of plasmid or extracted

DNA was added to a 20 ml reaction mixture. The PCR reactions

were optimized for standard cycling conditions with an initial

denaturation step at 95uC (3 min), followed by 42 cycles of

denaturation at 95uC (30 s) and annealing at 65uC (1 min), using

the Mx3005P QPCR system (Stratagene Co., La Jolla, CA).

Optimal reaction conditions for PCR were determined as follows:

0.5 units of PlatinumH Taq DNA polymerase (Invitrogen, The

Netherlands), 2 ml PCR buffer (10X), 200 mM each dATP, dCTP,

dGTP, and dTTP, 2 mM MgCl2, 1 ml DNA-specific fluorescent

dye EvaGreenTM (Biotium, Hayward, CA, USA) (20X), 0.2 mM

PRNPf and 0.2 mM PRNPr gene specific primers (Table 1), and

water up to 20 ml. All samples were run in triplicates. The plateau

of the amplification curve for each sample was required to lie

within three standard deviations of the mean. Samples with a

plateau that deviated from the mean by more than three standard

deviations were excluded from the real-time LCR trials and were

re-amplified in a subsequent PCR.

A treatment of PCR products with Exonuclease I and Antarctic

Phosphatase followed in order to digest all single stranded DNA

(PCR products and primers) and dephosphorylate the remaining

dNTPs respectively (Figure 1). Specifically, 10 ml of PCR product

Figure 1. Schematic representation of the entire process for SNP detection and quantification.
doi:10.1371/journal.pone.0014560.g001

Figure 2. Real-time PCR amplification curves of genomic DNA isolated from different animals.
doi:10.1371/journal.pone.0014560.g002

Quantitative Real-Time LCR
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were treated by adding 2 units of Exonuclease I (Exo I, New

England Biolabs Inc., MA, USA), 15 units of Antarctic

Phosphatase (New England Biolabs Inc., MA, USA), 1.5 ml of

Antarctic Phosphatase buffer (10X) and 1.8 ml water. The

enzymatic treatment was performed at 37uC for 90 min followed

by incubation at 68uC for 45 min to deactivate the enzymes.

Dilution (1/400) of the real-time PCR products in TE (10 mM

Tris-HCl pH = 7.4) were used as templates for the ensuing real-

time LCR. A schematic representation of the cycling steps for real-

time LCR is shown in Figure 3. The process involved the use of

two pairs of oligonucleotides, each consisting of a discriminating

oligonucleotide and a 59 phosphorylated oligonucleotide, which

were complementary to one of the denatured target DNA strands

(PCR product). During the annealing/ligation step the oligonu-

cleotides annealed to the target DNA strands but also produced

heterodimeres. Real-time monitoring was possible by utilizing a

DNA-specific fluorescent dye and introducing a denaturation step

for the paired oligonucleotides, at the highest possible tempera-

ture, where the LCR amplicons remained as heterodimers. A

fluorescence measurement followed in order to quantify the

amplicons produced in each cycle.

For the oligonucleotide design, initial melting simulations for

each candidate LCR oligonucleotide and LCR-product with their

respective complements were performed on the DINAMelt

web server at http://www.bioinfo.rpi.edu/applications/hybrid/

hybrid2.php [30]. Input parameters for Na+, Mg++ and oligonu-

cleotide concentrations were 75 mM, 1.75 mM and 0.4 mM,

respectively. Oligonucleotides LCPR1, LCPR2, LCPR3s,

LCPR4s (Table 1), were designed for the basic real-time LCR

protocol. Oligonucleotides LCPR1, LCPR4s were phosphorylated

at their 59-end. In order to avoid interference of oligonucleotide

heterodimers with fluorescence measurements, care was taken to

select oligonucleotide pairs which produce an LCR amplicon with

high Tm (i.e. 80uC), whereas their respective Tm was at least 10uC
less (Table 1). Another important issue addressed during

oligonucleotide design was the avoidance of false ligation of the

hybridized oligonucleotides on a mismatched wild-type DNA

molecule during the paired oligonucleotides’ denaturation step.

The possibility of these hybridization events to occur is reduced if

the Tm of the oligonucleotides is low. However, reduction of length

for all 4 oligonucleotides would also reduce the Tm of the LCR

amplicon. Therefore in an effort to reduce false ligation during the

paired oligonucleotides’ denaturation step, only one out of the two

oligonucleotides (either the discriminating or the 59 phosphorylat-

ed one) able to hybridize on a mismatched wild-type DNA

molecule was designed to have lower Tm, i.e. LCPR3s and

LCPR4s (Table 1).

For the basic protocol, two ml of PCR product were added to a

30 ml reaction mixture. The following reaction reagents were

determined: 10 units of Taq DNA ligase (New England Biolabs

Inc., MA, USA), 3 ml buffer (10X) from the Taq DNA polymerase

buffer [200 mM Tris-HCl (pH = 8.4), 500 mM KCl] (Invitrogen,

The Netherlands), 0.525 ml of respective Taq DNA ligase buffer

(10X), 0.125 mM NAD+, 1.5 ml DNA-specific fluorescent dye

EvaGreenTM (Biotium, Hayward, CA, USA) (20X), 0.4 mM of

each LCPR1, LCPR2, LCPR3s, LCPR4s oligonucleotide and

water up to 30 ml. During the setup all reagents and the 0.2 ml

thin-wall tubes were kept in bench-top coolers. In addition, the

Table 1. Oligonucleotides used in the different real-time LCR
trials.

Oligonucleotide Sequence 59R39 Tm
a

LCPR1 b CACTTCCCAGCATGTAGCCAC 68.6uC

LCPR2 GTGGCTACATGCTCGGAAGTGT 69.6uC

LCPR3S AAGAGGCCTGCTCATGA 66.7uC

LCPR4S b CATGAGCAGGCCTCTT 65.0uC

LCPR2G GTGGCTACATGCTCGGAAGTG 68.9uC

LCPR3G AAGAGGCCTGCTCATG 65.0uC

LCPR3L CAAAATGTATAAGAGGCCTGCTCATGA 69.8uC

LCPR4L b CATGAGCAGGCCTCTTATACATTTTG 68.9uC

The nucleotides which complement to the mutant SNP target are underlined on
the discriminating oligonucleotides.
aThe melting temperature Tm was estimated using the DINAMelt web server
(http://www.bioinfo.rpi.edu/applications/hybrid/hybrid2.php).

b59 phosphorylation on the ligating oligonucleotide.
doi:10.1371/journal.pone.0014560.t001

Figure 3. Schematic representation of the cycling steps for real-time LCR. LCR oligonucleotides are defined with colure purple for LCPR1,
turquoise for LCPR2, green for LCPR3s and red for LCPR4s. PCR product used as LCR template is defined in deep blue.
doi:10.1371/journal.pone.0014560.g003
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Taq-ligase buffer was split into small aliquots in order to avoid

multiple thawing that may affect the efficiency of the process.

Thermocycling was applied using the Mx3005P QPCR system

(Stratagene Co., La Jolla, CA, USA). Specific conditions included

three initial steps consisting of a PCR-amplicon denaturation step

at 92uC (30 s), an annealing/ligation step at 54uC (6 s) and a

second denaturation step at 92uC (30 s), followed by 39 LCR

cycles, each one consisting of an annealing/ligation step at 54uC
(6 s), a paired oligonucleotides’ denaturation step at 75uC (30 s),

where fluorescence measurement also was taken place, and an

LCR product denaturation step at 87uC (20 s). At the end of

amplification, a denaturation/renaturation cycle was included by

heating at 95uC (5 min) followed by cooling at 74uC (3 min) to

promote LCR-amplicon duplex formation, and at 37uC (1 min)

for oligonucleotide duplex formation. A melting curve analysis

followed. The EvaGreenTM was detected in the FAM channel

using a gain setting of 8. The analysis of fluorescence data was

conducted using the MxPro-Mx3005P software (Version 4.00;

Stratagene, La Jolla, CA, USA). The baseline was adaptive and

the threshold fluorescence levels used to derive threshold cycle (Ct)

values were determined automatically. All individual samples were

run in triplicates. Non-template controls containing all reagents

minus the DNA template were included, to monitor the progress

of template-independent ligation.

For the estimation of mutant DNA frequencies (%) standard

curves were produced by plotting the threshold cycle values (Ct

values) versus the logarithm of % frequency of mutant (V136) DNA

in the standard plasmid DNA pools.

Alternative protocols. The basic protocol described above

was termed protocol 1. Several variations to this protocol were also

considered, based on changed parameters. These variations are

summarized in Table 2. Specifically, protocols 2 to 6 were as

protocol 1 but with different thermocycling conditions (duration of

paired oligonucleotides’ denaturation step or duration of

annealing/ligation step or different paired oligonucleotides’

denaturation step temperatures) (Table 2). Protocol 7 was a

modification of protocol 1 in which the Taq DNA ligase and its

respective buffer (10X) were replaced by 10 units of PFU ligase

(Stratagene, La Jolla, CA, USA) and 0.525 ml PFU buffer (10X).

Protocol 8 was a modification of protocol 1 in which LCPR3L and

LCPR4L oligonucleotides were used instead of LCPR3s and

LCPR4s. LCPR3s and LCPR4s were homologous to LCPR3L

and LCPR4L but with different Tm. Protocols 9 and 10 were two

modifications of protocol 1 in which nucleotide gaps were

introduced between the adjacent oligonucleotides hybridized to

the target DNA (PCR product). Protocol 9 was a ‘‘gap-T-LCR’’,

involving a thymine (T) gap between the adjacent hybridized

oligonucleotides that corresponded to the CRT mutation of

codon 136 of the PRNP gene. Protocol 10 was a ‘‘gap-A-LCR’’,

which involved a respective adenine (A) gap corresponding to the

complementary strand of the DNA target. Both gap-LCR

protocols (protocols 9 and 10) were run under the same reaction

conditions as the protocol 1, except for the addition of 1.8 units of

PlatinumH Taq DNA polymerase (Invitrogen, The Netherlands)

and 0.1 mM of the mutant-complementary insertion nucleotide;

dTTP was used for gap-T-LCR and dATP for gap-A-LCR. In

addition, in the case of gap-T-LCR (protocol 9), the LCPR2G

oligonucleotide was used instead of LCPR2, whereas in the case of

gap-A-LCR (protocol 10) the LCPR3G oligonucleotide replaced

LCPR3s (Table 1).

Statistical Analysis
Detection and quantification limits. All protocols

described above were evaluated based on limits of detection

(LOD) and limits of quantification (LOQ) of V136, as defined in

[31]. Specifically, the LOD was defined as the lowest ratio of

mutant to wild-type DNA that can be determined to be different

from the wild-type DNA, whereas the LOQ can be defined as the

lowest ratio of mutant to wild-type DNA above which quantitative

results may be obtained [31].

In the present study, LOD and LOQ were determined using the

Ct values obtained from the wild-type templates of 25 individual

Table 2. Different real-time LCR protocols tested.

Assay DNA-Ligase
Duration
of ligation

Duration of
oligonucleotide
denaturation

Temperature of
oligonucleotide
denaturation

Mean Ct-values
of wild type
samples (SD) LODf LOQf Efficiency

Protocol-1a,e Taq-DNA 6 s 30 s 75uC 25.02 (0.32) 0.085 0.35 80%

Protocol- 2a Taq-DNA 6 s 35 s 75uC 23.71 (0.40) 0.16 0.85 82%

Protocol-3a Taq-DNA 6 s 40 s 75uC 23.1 (0.38) 0.23 1.13 81%

Protocol-4a Taq-DNA 12 s 30 s 75uC 23.24 (0.41) 0.15 0.88 83%

Protocol-5a Taq-DNA 24 s 30 s 75uC 20.49 (0.34) 0.21 0.99 82%

Protocol-6a Taq-DNA 6 s 30 s 74uC 25.56 (0.55) 0.097 1.14 70%

Protocol- 7a PFU-DNA 6 s 30 s 75uC 30.10 (0.41) 0.098 0.39 70%

Protocol-8b Taq-DNA 6 s 30 s 75uC 26.40 (0.32) 0.34 1.07 83%

Protocol- 9c Taq-DNA 6 s 30 s 75uC 52.12 (0.56) 0.14 0.40 31%

Protocol- 10d Taq-DNA 6 s 30 s 75uC 37.39 (0.30) 0.11 0.34 51%

Different thermocycling conditions, DNA ligases, length of oligonucleotides, gap modifications were examined. All trials were performed with the Mx3005P QPCR
platform. Gap-A and gap-T LCR protocols used PlatinumH Taq DNA polymerase.
aOligonucleotides used LCPR1, LCPR2, LCPR3s, LCPR4s.
bOligonucleotides used LCPR1, LCPR2, LCPR3L, LCPR4L.
cOligonucleotides used LCPR1, LCPR2G, LCPR3s, LCPR4s.
dOligonucleotides used LCPR1, LCPR2, LCPR3G, LCPR4s.
eOptimal real-time LCR protocol.
fThe LOD and LOQ values are in % frequencies
doi:10.1371/journal.pone.0014560.t002
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samples. These Ct-values were first tested for normality using the

Kolmogorov-Smirnov and Shapiro-Wilk tests. Both tests showed

that Ct-values followed a normal distribution. Subsequently, LOD

and LOQ were calculated according to the following formulae:

LOD~Xwt+3swt

LOQ~Xwt+10swt

where Xwt is the mean Ct value and swt is the standard deviation

of the wild-type DNA Ct measurements. In practical terms, LOD

was set at the concentration that gives a signal equal to three times

the standard deviation of the wild-type sample measurements [32].

The three-standard deviation criterion represents a 99.73%

probability that the value is above the background level. Similarly,

LOQ was set at ten times the standard deviation of the wild-type

sample measurements, representing a corresponding probability

higher than 99.99% [32]. Finally, LOD and LOQ were expressed

as mutant-type frequencies (%) by fitting a standard curve

generated by the standard plasmid DNA pools.

Further protocol comparisons were made between average Ct-

values from the analysis of samples with the lowest known mutant

(0.39% V136) frequency, used for the determination of the

standard curves, with samples with 100% wild-type (A136)

frequency. A t-test was used in this regard. All protocols shown

in Table 2 were tested.

Linearity and efficiency. Linearity and efficiency of the

protocols were assessed using a standard curve constructed by the

amplification of plasmid standard pools with a total number of

5?109 copies/ml including different mutant DNA frequencies,

ranging from 100% to 0.39%. Efficiency (E) was calculated using

the equation: E = 10 (21/slope) -1; slope was estimated directly by

the MxPro-Mx3005P software (Version 4.00; Stratagene, La Jolla,

CA, USA).

Determination of reproducibility. To assess the reproduci-

bility of the basic real-time LCR protocol, the intra-assay and

inter-assay coefficients of variation (CV) were evaluated, based on

the measured mutant V136 frequencies (%) in the DNA pools. For

intra-assay CV calculation, standard plasmid pools were applied in

eight replicates at each concentration level of the mutant V136, in

one trial run. For inter-assay CV calculation, the plasmid standard

pools were applied three-fold in three different trial runs

performed on different days using freshly prepared reagents.

Accuracy of quantification using genomic DNA pools and

natural samples of individual animals. The accuracy of the

basic real-time LCR protocol for mutant DNA quantification was

assessed by testing the genomic DNA pools prepared from

extracted samples containing the V136 polymorphism at different

pre-determined frequencies (50%, 25%, 6.25%, 1.56%, and

0.39%). For each frequency, four different DNA pools were

tested. Furthermore, each of these pools was tested in four

replicates and the V136 frequency was calculated by plotting the

mean Ct value in a standard curve created by the plasmid stan-

dard pools (100%, 25%, 6.25%, 1.56%, and 0.39%) that were

included in the same trial. A linear regression analysis of the

estimated mutant (V136) log10 frequencies on the actual (known)

log10 frequencies was performed to test the quantification

accuracy.

In addition, all 60 individual animal samples that had been

genotyped with RFLP analysis were re-tested with the basic real-

time LCR protocol in order to detect and quantify V136 mutant

DNA.

Results and Discussion

Real-time PCR amplification and treatment with
Exonuclease I and Antarctic Phosphatase

The first step introduced was a real-time PCR, which amplified

a genomic region containing the SNP in order to develop the

template needed for the ensuing LCR protocols. DNA quantifi-

cation became possible using the intercalating DNA dye, Eva-

Green [28,29]. Previously, in a real-time PCR platform the

intensity of fluorescence was found to be proportional to the total

amount of the DNA in the tube [28]. In the present study, real

time PCR amplification curve plateaus indicated that equimolar

PCR products were amplified, as approximately 99.9% of the

samples gave fluorescence plateau intensities with low variability

(CV = 11%), irrespectively of their original DNA concentrations;

the latter were substantially different, as evidenced by their

respective Ct values that ranged from 26.1 to 30.9 cycles,

suggesting a difference in DNA quantity of up to 27.8-folds

(efficiency 100%) (Figure 2). A very low number of samples,

approximately 0.1%, showed plateaus outside the 63 SD range

from the mean and were not included in the ensuing LCR trials.

Thus, with the incorporation of this real-time PCR step, the vast

majority of samples could be subsequently tested reliably in the

real-time LCR, irrespectively of their original DNA concentration.

Furthermore, in order to assess the effect of different

concentrations of extracted DNA on the final real-time LCR

results, 3 serial 10-fold dilutions of a heterozygous A136/V136

genomic DNA extract were tested; DNA extract dilutions had

been prepared using TE (10 mM Tris-HCl, pH = 7.4). Real-time

amplification results showed different Ct values, as expected due to

different dilutions, but similar fluorescence plateaus (data not

shown). In all cases, the basic real-time LCR protocol determined

the correct (50%) percentage of V136, showing that the method is

not dependent on the initial DNA concentration of the extract.

Hence, the method may be applicable to cases where minute

amounts of DNA are available (e.g. forensics, cancer biopsies with

limited number of cells etc).

In addition, the necessity of PCR-product treatment with

Antarctic Phosphatase and Exonuclease I was demonstrated by

running LCR trials using real-time PCR products that had not

been previously treated with these enzymes (data not shown). The

samples that had not been subjected to this treatment, showed very

high Ct variability and low mean-Ct value compared to the treated

samples. Lower Ct values obtained from PCR products that had

not been treated with Antarctic phosphatase and Exonuclease I

could be attributed either to polymerization events during the

LCR due to the presence of residual Taq polymerase and dNTPs,

or possible presence of ssDNA amplicons that could provide a

template for false ligation events during the LCR setup. Both

events were avoided by the simultaneous treatment with Antarctic

phosphatase and Exonuclease I, which permitted the dephosphor-

ylation of residual dNTPs and degradation of PCR primers along

with potential ssDNA amplicons. Therefore the need for

incorporating a laborious purification step of the PCR product

was alleviated.

Evaluation of the method for SNP detection and
quantification

Impact of different parameters on detection and

quantification limits. Results pertaining to the impact of the

different parameters, as illustrated by the ten protocols, are shown

at Table 2. It became obvious that the extent of SNP

discrimination depended mainly on the thermocycling condi-

tions. Trials with different thermocycling parameters (Protocols 1
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to 6) showed that the duration of annealing/ligation and paired

oligonucleotides’ denaturation steps, along with the temperature of

paired oligonucleotides’ denaturation step, were determining

factors for the specificity of ligation. These parameters changed

the Ct values of the wild-type samples and, therefore, LOD and

LOQ were affected. Higher time duration of annealing/ligation

and paired oligonucleotides’ denaturation steps, increased

(worsened) both LOD and LOQ (Table 2). These results could

be attributed to non-specific ligation events during these steps.

Such events can occur due to false ligation of oligonucleotides

hybridized on mismatched wild-type DNA molecules [19] as well

as sticky-end ligation of the paired oligonucleotides [18]. Both

non-specific ligation events pose limitations on the LOD and LOQ

of the real-time LCR because they lead to non-specific

background signals. Therefore, short time period for both steps

is crucial. Minimum duration of annealing/ligation (6 s) and

paired oligonucleotides’ denaturation (30 s) steps (protocol 1)

proved to be the optimum for obtaining low LOD and LOQ

values. Additional control trials showed that, when the paired

oligonucleotides’ denaturation step temperature was reduced from

75uC (protocol 1) to 74uC (protocol 6), the LOD and LOQ values

were considerably increased (Table 2). At lower oligonucleotides’

denaturation step temperatures than the proposed one (75uC), the

ligase has more time to exhibit non-specific activity due to the

presence of oligonucleotides hybridized on mismatched wild-type

DNA molecules. The initial selection of temperatures for real-time

LCR cycling steps was based on melting simulations for each

candidate LCR oligonucleotide and LCR product, with their

respective complements. The most important criteria for

temperature selection were maximum concentrations of LCR

amplicon heterodimers and minimum concentrations for

oligonucleotide heterodimers during fluorescence measurement

(Figure 4). Nevertheless, as results of the present study illustrated,

delicate adjustments of temperature and duration of this step are

important for optimum sensitivity of SNP discrimination in DNA

pools.

In an effort to reduce false ligation during the paired

oligonucleotides’ denaturation step, one out of the two oligonu-

cleotides able to hybridize on a mismatched wild-type DNA

molecule (i.e. LCPR3s and LCPR4s) was designed to have lower

Tm. It was expected that these shorter oligonucleotides, would not

be able to efficiently hybridize on either strand of the target-DNA

Figure 4. Melting curve profile of the LCR products. The first peak represents the melting of oligonucleotide dimers and the second the
melting of LCR products. Selected temperatures for LCR steps are indicated by arrows.
doi:10.1371/journal.pone.0014560.g004
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during the paired oligonucleotides’ denaturation step and

therefore contribute to the decrease of LOD and LOQ. This

hypothesis was supported after substitution of LCPR3s and

LCPR4s (protocol 1) with the homologous longer oligonucleotides

LCPR3L and LCPR4L (protocol 8) (Table 1) which resulted in an

almost three-fold increase of LOD and LOQ (Table 2).

Moreover, substitution of Taq DNA ligase (protocol 1) by PFU

thermostable ligase (protocol 7) did not lead to any considerable

improvement regarding LOD and LOQ values (Table 2). This

result was contrary to others previously reported, which suggested

that PFU DNA ligase had higher fidelity than Taq DNA ligase

[33].

In the present study calculated LOD and LOQ values for both

protocols 9 and 10 (gap-T and gap-A) were not better than those

of the protocol 1 (Table 2). Only the LOQ calculated for protocol

10 was slightly lower (0.34 versus 0.35). The theoretical advantage

of gap-LCR is the avoidance of sticky-end ligation [18]. This is

explained by an initial extension of the discriminating oligonucle-

otide by a DNA polymerase which precedes the ligation process.

According to the present results, reduction of sticky-end ligation

was also possible in the basic protocol (protocol 1) due to

performing the setup at low temperatures by keeping reagents and

thin wall tubes in bench-top coolers during the real-time LCR

setup. This observation was supported by some preliminary real-

time LCR trials (not shown) with a setup at room temperature

which led to an increase of sticky-end ligation, as indicated by

decreased Ct values of the non-template controls.

Further gap-LCR trials were performed with proofreading

polymerases [PFX Platinum (Invitrogen, The Netherlands),

PhusionH (New England Biolabs Inc., MA, USA) and VentH
(New England Biolabs Inc., MA, USA)] in an effort to improve the

SNP discrimination capability of the LCR (results not shown).

These enzymes exhibit a 39R59 exonuclease proofreading activity.

It was expected that proofreading activity at the site of point

mutation would exclude the incorporation of a mismatched

nucleotide during the gap filling and, thus, improve the specificity

of gap-LCR applications. In this case, phosphorothioate (PTO)

and locked nucleic acid (LNA) modifications of LCR oligonucle-

otides were also introduced to avoid degradation of their 39

termini [34,35]. However, PTO modifications led to increased Ct-

variability and LOD, possibly due to interference with the catalytic

domain of the ligase in a way that impairing the fidelity of the

process. Furthermore, LNA modifications resulted in partial

oligonucleotide degradation and sample amplification failure.

These results demonstrate that proofreading polymerases are not

suitable for real-time gap-LCR protocols.

Comparisons made between average Ct-values from the analysis

of samples with the lowest known mutant (0.39% V136) frequencies

and 100% wild-type (A136) samples, showed that differences were

statistically significant (P,0.05) for all protocols except from

protocol 8 (which used different oligonucleotides). When signifi-

cant, results meant that V136 detection was possible at this

frequency. The lowest P-value was observed for protocol 1

(P = 0.001), followed by protocols 9 and 10 (P = 0.003 and 0.002).

This result suggested that, in 999 in 1,000 cases, protocol 1 would

effectively detect V136, when the frequency of the latter was

0.39%. In practical terms, detection of this deleterious mutation

would be possible in a flock of sheep, using their pooled DNA,

even when only 1 in 250 animals was carrier of the mutant DNA.

Linearity and Efficiency. Real-time LCR protocols 1 to 8

showed similar efficiency at the satisfactory level of 80% (Table 2).

The absolute magnitude of this parameter is difficult to assess due

to lack of literature reports on LCR efficiency. The possible

explanation for the observed, lower than 100% LCR amplification

efficiency is the formation of oligonucleotide pairs during the

annealing/ligation step, which reduces their availability for

annealing to the target-DNA. For both gap-LCR protocols

(protocols 9 and 10), the amplification efficiency was much

lower compared to the others (Table 2). The complexity of gap-

LCR necessitating the simultaneous activity of both enzymes

(ligase and polymerase) is the probable cause of this reduction in

efficiency.

In all protocols, there was a linear relationship between Ct

values and V136 frequencies, manifested by a very high (.0.97) R2

value of the regression of the latter on the former (Figure 5). In

all cases, regression slopes were very close to unity and inter-

cepts were practically zero, attesting to the high accuracy of

quantification.

Based on LOD, LOQ, linearity and efficiency was concluded

that all variations introduced did not further improve the basic

protocol. Therefore, the latter (protocol 1) is our protocol of

choice. Only protocol 10 improved slightly LOQ, but since it

required additional consumables (Taq DNA polymerase), it is not

recommended.

Determination of reproducibility. The experimental intra-

and inter-assay variability obtained using plasmid standard pools

with different V136 frequencies is summarized in Table 3. Good

reproducibility is an essential requirement of quantitative assays.

The low intra- and inter-assay variability of the basic real-time

LCR protocol obtained in the present study is comparable with

other quantitative DNA amplification methods based on real-time

PCR [36].

Accuracy of quantification using genomic DNA pools and

natural samples of individual animals. The ability of the

basic real-time LCR protocol to accurately quantify mutant DNA

was assessed using genomic DNA pools that were artificially

prepared to contain different mutant DNA frequencies (50%,

25%, 6.25%, 1.56%, and 0.39%). Estimates of the V136

frequencies were calculated by plotting the mean Ct values in a

standard curve created by plasmid standard pools. Linear

regression analysis of the estimated mutant (V136) log10

frequencies on the actual (known) log10 frequencies showed a

high linear relationship between the two sets of values

(R2 = 0.9749, Figure 6). Slope and intercept of the regression

were not significantly different from 1 and 0, respectively

(P.0.05). These results attest to the predictive capacity of the

basic real-time LCR protocol developed in the present study.

Furthermore, these results are comparable to those obtained with

plasmid standards, described previously, suggesting that the

method is quantitative at both types of pools. This is the first

time, to our knowledge, that a quantitative LCR protocol was

applied to the quantification of mutant DNA at the full range of

LCR sensitivity.

All 60 genotyped individual animal samples were re-tested with

the basic real-time LCR protocol in order to detect and quantify of

V136 mutant DNA. With the basic real-time LCR protocol it was

possible to determine the individual animal genotypes in all sixty

milk samples. One animal was homozygous V136, five were

heterozygous V136 and 44 were homozygous A136. The mean

(standard deviations in parenthesis) Ct value obtained for the

homozygous V136 sample was 15.06, for the heterozygous V136

samples was 16.75 (0.35) and for the homozygous A136 samples

was 28.34 (0.64). The percentage of V136 calculated by the

standard curve created using plasmid standard pools was 111% for

homozygous V136 and 47.03% for the heterozygous V136 samples.

Moreover, these genotyping results were consistent with RFLP

genotyping of the same animals, which in turn was verified by

sequencing 21 of them (data not shown). Therefore, the basic real-
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Figure 5. Amplification plots of mutant DNA (V136) detection in plasmid standard pools. (A) FAM fluorescent signals and (B)
corresponding standard curve generated from plasmid standard pools with pre-defined mutant DNA concentrations. From left to right, curves
represent 100%, (blue lines with circles), 25% (red lines with squares), 6.25% (green lines with triangles), 1.56% (grey lines with diamonds) and 0.39%
(yellow lines with stars), V136 frequencies (the 95% confidence limits for the standard curve are shown as hashed lines). Wild-type (A136) samples are
also included in the reaction and are placed in the far right (A) and are denoted by triangles in (B). Reactions were performed with 8 replicates. The
threshold cycle (Ct) values (B) are plotted against the logarithm of the mutant DNA frequency (%).
doi:10.1371/journal.pone.0014560.g005
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time LCR protocol developed in the present study proved suitable

for individual genotyping, too.
Application in an alternative real-time platform. In

addition to the Mx3005P QPCR system (Stratagene Co., La

Jolla, CA, USA), the basic real-time LCR protocol was also

evaluated in a Mini OpticonTM System (Biorad, Milan, Italy).

LOD and LOQ values, efficiency and linearity of the assay were

similar in the two systems. Nevertheless, the optimum time of

oligonucleotides’ denaturation step for the second thermocycler

was 15 s, instead of 30 s in Mx3005P QPCR. As discussed above,

this may be attributed to different temperature stabilization times

required by the two systems for accurate fluorescent measure-

ments. Furthermore, the optimum dilution of real-time PCR

product used as target DNA was 1/100 (compared to 1/400 in the

first system). This may be due to different software requirements

between the two systems in establishing the baseline.

The utility of this result lies on the fact that the basic real-time

LCR protocol developed in the present study is applicable to

different platforms, although minor adjustments might be needed.

However, such adjustments can be made by the user. This is an

advantage of the present method over the semi-quantitative

protocol proposed previously [19], which required intervention by

the system manufacturer to modify the optics configuration.

Conclusion
A real-time LCR protocol was developed for accurate SNP

detection and quantification in DNA pools. This method offers

several important advantages that include high sensitivity,

excellent specificity and reproducibility. In addition, a large

number of samples can be processed. The latter is important since

the main aim of this study was the development of a practical

method for large-scale assessment of the prevalence of human or

animal SNP in DNA pools. A model application of the method is

the quantification of PRNP polymorphisms, such as the undesir-

able V136 in bulk milk, in order to quantify the scrapie risk in ovine

milk and its dairy products. This process may enable labelling and

marketing of potentially ‘scrapie free’ dairy products. The value of

a system able to sensitively detect prion protein mutations on DNA

pools is of particular interest, since increasingly strict regulations

on food safety and public hygiene require new, practical and

animal friendly methods for large scale implementation.

The real-time LCR protocol developed in the present study has

high potential for future use in automated, high throughput

formats, which could allow application in a wide range of interests

including detection and quantification of oncogenes or tumour

suppressor genes, infectious diseases, pathogenic bacteria, fungal

species, viral mutants, drug resistance resulting from point

mutations, genetically modified organisms in food and QTL.
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