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Background. As the malignant tumor with the highest incidence in teenagers, osteosarcoma has become a major problem in
oncology research. In addition to surgical management, the pharmacotherapeutic strategy for osteosarcoma treatment is an
attractive way to explore. It has been demonstrated that biochanin A has an antitumor capacity on multiple kinds of solid tumor,
including osteosarcoma. But the precisemechanism of biochaninA against osteosarcoma is still needed to be discovered.Objective.
To identify the potential therapeutic targets of biochanin A in treating osteosarcoma. Methods. In present study, an integrated
approach including network pharmacology and molecular docking technique was conducted, which mainly comprises target
prediction, network construction, gene ontology, and pathway enrichment. CCK8 test was employed to evaluate the cell viability of
MG63 cells.Western-blot was used to verify the target proteins of biochaninA.Results. Ninety-six and 114 proteins were obtained as
the targets of biochaninAandosteosarcoma, respectively. TP53, IGF1, JUN,BGLAP,ATM,MAPK1,ATF3,H2AFX,BAX,CDKN2A,
and EGF were identified as the potential targets of biochanin A against osteosarcoma. Based on the western-blot detection, the
expression of BGLAP, BAX, and ATF3 in MG63 cell line changed under the treatment of biochanin A. Conclusion. Biochanin A
can effectively suppress the proliferation of osteosarcoma and regulate the expression of BGLAP, BAX, and ATF3, which may act
as the potential therapeutic targets of osteosarcoma.

1. Introduction

Biochanin A is an O-methylated isoflavone and is present in
chickpea, red clover, alfalfa, and cabbage. Recent reports have
mentioned that biochanin A can play a role as a protective
factor against osteoporosis, cancers, virus infection, and
inflammation, based on its estrogen-like effect, which is also
classified as phytoestrogen [1–4]. Along with reports of the
antitumor effect of phytoestrogens, biochanin A has also
been demonstrated to have an antitumor effect on pharynx
squamous carcinoma, hepatocellular carcinoma, pancreatic
cancer, prostate cancer, and colon malignancy [2, 5–8].

Osteosarcoma is the most common primary sarcoma of
bone in children and young adults with an incidence of 4.4
per million in 0-24-year-old population [9]. Since 80% of

osteosarcoma patients have metastatic or micrometastatic
diseases at diagnosis, the treatments of osteosarcoma patients
are always complicated and few clinical methods can reach
the remission [9, 10]. The overall 5-year cumulative survival
rate of limb salvage surgery and amputation was 14.6%.
Therefore, the chemotherapy is getting more important
in the remission of osteosarcoma. Encouragingly, latest
research reveals that biochanin A could repress osteosarcoma
though regulating cell proliferation, apoptosis, invasion, and
migration [11]. However, which precise mechanism and
related signal pathways are involved in this process is still
unknown. In order to reveal the comprehensive mechanism
of biochanin A’s antitumor effect, new integrated method
is needed, whereas the combination of Omics costs so
much.

Hindawi
Evidence-Based Complementary and Alternative Medicine
Volume 2019, Article ID 1410495, 10 pages
https://doi.org/10.1155/2019/1410495

http://orcid.org/0000-0002-3387-5255
http://orcid.org/0000-0002-4161-7643
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/1410495


2 Evidence-Based Complementary and Alternative Medicine

Network pharmacology is a classic bioinformatics’
method, which was conducted to discover the underneath
mechanism between drugs and known targets [12]. In the
latest years, network pharmacology has been employed
to predict the potent targets and pathways of a certain
compound in several diseases, especially in the cancer which
has an intimate association with signal transduction [12, 13].
Based on the algorithm of network pharmacology, the targets
of biochanin A and pathways related to osteosarcoma were
analyzed comprehensively in present study, in order to
identify the potential therapeutic target and demonstrate the
mechanism of biochanin A in treating osteosarcoma.

2. Material and Methods

2.1. Target Proteins of Biochanin A. The simplified molecu-
lar input line entry specification (SMILES) information of
biochanin A was imported into SuperPred (http://prediction
.charite.de) [14] to obtain the Anatomical Therapeutic Chem-
ical (ATC) code and the target proteins of biochanin
A were predicted by searching the Traditional Chinese
Medicine Systems Pharmacology Database and Analysis
Platform (TCMSP, http://lsp.nwu.edu.cn/tcmsp.php) [14],
STITCH (http://stitch.embl.de) [15], and GeneCards data-
base (https://www.genecards.org/) [16]. Only human target
proteins were documented and the information of these
targets was downloaded as well.

2.2. Potential Targets in Osteosarcoma. All the proteins
associated with osteosarcoma were obtained from Dis-
GeNET (http://www.disgenet.org) [17] and the Search Tool
for the Retrieval of Interacting Genes (STRING) database
(https://string-db.org/) [18]. After amalgamation of the pro-
teins from these two databases, 114 proteins were retrieved
from this process. The gather of 114 proteins would be
considered as the cluster of potential targets to regulate the
biological behavior of osteosarcoma.

2.3. Protein-Protein Interaction Data. The protein-protein
interaction (PPI) data was obtained from STRING database,
which provides information regarding the predicted and
experimental interactions of proteins. Furthermore, STRING
database defines PPI with confidence ranges for data scores
(low confidence: scores <0.4; medium 0.4-0.7; high: >0.7).
PPIs with the sum of the scores > 0.7 were picked up for
further research in the present study.

2.4. Network Construction. Three networks were constructed
including biochanin A–targets network, targets of osteosar-
coma PPI network, and biochanin A-targets-osteosarcoma
network. The biochanin A–targets network was established
by linking the biochanin A with its targets retrieved from
TCMSP, STITCH, and GeneCards database. Targets of
osteosarcoma PPI network were constructed by connecting
the proteins which interact with other proteins based on the
information of PPI from STRING database and DisGeNET
database. On the basis of the previous two networks, the
biochanin A–targets-osteosarcoma network was established
by reserving the proteins which mediate the biochanin A

regulating the biological behavior of osteosarcoma and inte-
grating the PPI of these reserved proteins.The three networks
above were visualized by Cytoscape (http://cytoscape.org).

2.5. Gene Ontology and Pathway Enrichment. Gene Ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis were performed with
the Database for Annotation, Visualization and Integrated
Discovery (DAVID, https://david.ncifcrf.gov/, ver. 6.8) [19].
GO terms and pathways with False Discovery Rate (FDR)
<0.01 were defined as enriched terms and pathways. The
OmicShare tools (http://www.omicshare.com/tools), which
are a free online platform for data analysis, were used to chart
the bubble plot in KEGG enrichment analysis.

2.6. Preparation of 3D Structure Ligands of Biochanin A
and Target Protein Activity Pockets. The biochanin A was
searched in Pubchem (https://pubchem.ncbi.nlm.nih.gov) to
get the 3Dmolecular structure and saved as “SDF” file format.
The target proteins acquired from biochanin A–targets-
osteosarcoma network were considered as the key targets in
biochanin A treating osteosarcoma. The human structures
of these target proteins were collected from the protein data
bank (PDB) (http://www.rcsb.org) as potential targets for
docking.

2.7. Molecular Docking and Comprehensive Score. The whole
work of docking was conducted using the commercial
software Discovery Studio 2.5 (BIOVIA, San Diego,
USA). First, the X-ray crystal structures of protein targets
were preprocessed. Hydrogen was added to the model,
and its orientation was optimized using the CHARMM
(https://www.charmm.org/) force field energy minimization
while all nonhydrogen atomswere not allowed tomove. Every
protein was defined as a receptor, and the proteins' active sites
were found from the receptor cavities using the Discovery
Studio tool. Then, the docking protocol was performed to
show the interaction of components in Discovery Studio
with the differential proteins using LibDock. As LibDock
can provide 10–100 predicted LibDockscores from different
docking poses for each compound in a binding pocket of
a protein, we only considered the best LibDockscore. The
protein with the highest LibDock score was considered as
the target of biochanin A with the most possibility.

2.8. Cell Cultures and Cell Viability Assay. Human osteosar-
coma cell lines MG63 (ATCC� CRL-1427�) were cultured in
DMEM medium supplemented with 10% fetal bovine serum
(FBS), 100U/ml penicillin, and 100mg/ml streptomycin at
5% CO2, 37∘C for incubation. Cells lines were lysed using
0.25% trypsin solutions in combination with 0.02% EDTA
and applied for studies when growing to 60-70%. Each group
of cells was prepared as monolayer culture and seeded in 96-
well plates at 5 × 103 cells/ml. Preincubate the plate for 24 h in
a humidified incubator. Add 10𝜇l of various concentrations
of biochanin A (Nature-Standard, Shanghai, China) to the
plate at 6 h, 12 h, 24 h, and 48 h, respectively. 10𝜇l of CCK8
reagent (Beyotime, Nantong, China) was subsequently added
to eachwell for 4 h incubation.Theoptical density (OD) value
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Figure 1: The network shows biochanin A and its 96 targets (pink hexagons represent the target proteins).

was measured at 450 nm in a microplate-reader. The whole
process was repeated for three times.

2.9. Western-Blot Assay. Total protein from each group was
extracted and the concentration was determined using con-
centration Bradford reagent. Protein samples (100𝜇l) from
each group were obtained and separated by sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and
transferred on to polyvinylidene fluoridemembrane (PVDF).
The membrane was then blocked in 5% skim milk solution
containing TBST for 1 h at room temperature. Each group
of membrane was subsequently treated with dilutions of
primary antibody specific for BGLAP (Abcam, Cambridge,
USA), ATF3 (Abcam, Cambridge, USA), BAX (Cell Signaling
Technology, Danvers, USA), CDKN1A (Cell Signaling Tech-
nology, Danvers, USA), and TP53 (Cell Signaling Technol-
ogy, Danvers, USA) or endogenous reference GAPDH and
incubated at 4∘C overnight. After that, it was washed for 3
times with TBST and treated with horseradish peroxidase
conjugated secondary antibodies for 1-hour incubation at
room temperature. The blots were then developed using
chemiluminescence for colorimetric detection. The band was
scanned for absorbance.

3. Results

3.1. Biochanin A Target Network. As can be seen in Fig-
ure 1, ninety-six proteins can be identified as the targets of
biochanin A. There are 25 targets identified from TCMSP
database, 11 targets identified from STITCH database, and 75
targets identified fromGeneCards database, respectively. The
details of these 96 target proteins of biochanin A were listed
in Table S1. The gather of targets from three databases would
be considered as the cluster of biochanin A targeted proteins.

3.2. Osteosarcoma Target Network. By searching the Dis-
GeNET and STRING database, 114 proteins were docu-
mented as the disease specific targets of osteosarcoma.
These 114 proteins are defined as the osteosarcoma related
proteins and the interaction between these proteins were
demonstrated in Figure 2. Among these 114 proteins, thirteen
proteins, including CHEK2, TP53, RB1, VEGFA, EGFR,
RUNX2, MDM2, MMP2, MET, DHFR, TNFRSF11A, JUN,
and RFC1, were reported to participate in the pathological
process of osteosarcoma directly. The other 101 proteins can
regulate the 13 directly related proteins and associate with
osteosarcoma indirectly.
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Figure 2: PPI network of osteosarcoma targets (blue squares represent targets related to osteosarcoma; red hexagons represent other human
proteins which are directly interacting with the osteosarcoma targets).

3.3. PPI Network of Targets for Biochanin A against Osteosar-
coma. To further discover the mechanism of biochanin A
against osteosarcoma, the target proteins of osteosarcoma
were linked with the target proteins of biochanin A. The
PPI network of targets for biochanin A antiosteosarcoma
was constructed by integrating Figures 1 and 2 and result
was shown as Figure 3. After the integration, ten proteins
were reserved as the key targets in biochanin A treat-
ing osteosarcoma. These proteins are insulin like growth
factor 1 (IGF1), Jun protooncogene (JUN), bone gamma-
carboxyglutamate protein (BGLAP), ATM serine/threonine
kinase (ATM), mitogen-activated protein kinase 1 (MAPK1),
activating transcription factor 3 (ATF3), H2A histone family
member X (H2AFX), BCL2 associated X (BAX), cyclin
dependent kinase inhibitor 2A (CDKN2A), and epidermal
growth factor (EGF), respectively.

3.4. Module Analysis. The GO enrichment analysis and
KEGG enrichment analysis were also completed to evaluate
the module in this study. The GO enrichment analysis plot
was shown in Figure 4. It can be found that response
to drug, steroid metabolic process, and steroid hormone
mediated signaling pathway and DNA-templated positive
regulation of transcription are highly associated with this
module. As shown in Figure 5, the top 15 of enriched KEGG

Table 1: The docking score of each target protein with biochanin A.

protein LibDock Score
ATM 72.042
TP53 106.505
H2AFX N/A
BAX 69.179
CDKN2A N/A
EGF 79.287
IGF1 77.817
MAPK1 90.931
JUN 78.29
ATF3 67.019
BGLAP N/A

pathways were displayed. These pathways are mostly related
to pathways in different kinds of cancers.

3.5. Best Docking Combination to Biochanin A. The docking
process was performed to screen out the exact targets of
biochanin A suppressing osteosarcoma. All the docking
sketch maps of target proteins with biochanin A are shown
in Figure 6. The LibDock Scoresof the 11 target proteins were
shown in Table 1 as well. As we can see from Table 1, TP53
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has the highest LibDock score indicating that biochanin A is
most likely to bind the TP53 and function as an osteosarcoma
repressor.The other proteins may have certain affinity to bind
biochanin A, but this affinity is not enough strong to compete
with TP53.

3.6. Effect of Biochanin A on Cell Viability of MG63. To
analysis the effect of biochanin A on cell viability of MG63
cells, we treated them with various doses of biochanin A and
detected the cell activity using CCK8 technique. The results
shown in Figure 7 indicate that, under the concentration
of 4𝜇M, biochanin A could inhibit the MG63 cell survival
significantly. According to this result, 4𝜇M and 8𝜇M were
used for the subsequent experiment.

3.7. Effect of Biochanin A on Target Proteins in Osteosarcoma.
As shown in Figure 8, the expression of BAX and ATF3 was
significantly increased after the induction of 8𝜇M biochanin
A in MG63 cells, and the expression of TP53 was decreased.
The BGLAPwas also repressed by biochanin A, but the result
showed no significance. As can be seen in Figure 9, the
relationship map of the biochanin A and target proteins was
charted based on the results of target proteins’ expression.

4. Discussion

Osteosarcoma is the most common malignant tumor in
orthopedics with poor prognosis and high mortality [9].
Because of the early metastasis of osteosarcoma, surgical
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Figure 6:The sketchmap of the biochanin A binding to TP53 is showed in the left part of this figure, and the magnified details of the binding
were showed in the right part of this figure.
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treatment was too late to eliminate all the sarcoma cells
[10, 12]. Therefore, chemotherapy is an irreplaceable therapy
which significantly prolongs the survival of osteosarcoma
patients. In view of the insufficient effect, considerable side
effects, and chemoresistance of chemotherapeutic drugs, it is
of great value to discover a new effective drug to improve the
chemotherapy of osteosarcoma.

Biochanin A is a natural compound found in Tri-
folium pratense L and can work as phytoestrogen in some
physiological and pathologic process in vivo [3]. Unlike
some other phytoestrogen’s facilitating roles in gynaecologic
cancer, biochanin A has an antitumor effect on pharynx
squamous carcinoma, hepatocellular carcinoma, pancreatic
cancer, prostate cancer, and colon tumor in addition [1,
2, 5–8]. As a result, biochanin A may inhibit cancer in
other mechanisms. Recently, a study has demonstrated that
biochanin A can suppress the proliferation of osteosarcoma

by arresting the cells in G0/G1 stage, but the underneath
mechanisms were not discussed [11].

In present study, network pharmacology was employed to
dock the targets of biochaninAwith the important functional
signal nodes of osteosarcoma. By searching the TCMSP,
STITCH, and GeneCards database, 96 potential targets of
biochanin A were identified. At the same time, 114 target
proteins from DisGeNET database and STRING database
were defined as the key nodes in regulating the osteosarcoma.
In these proteins, there were 11 intersection proteins between
biochaninA targets and osteosarcoma related targets, namely,
TP53, IGF1, JUN, BGLAP, ATM, MAPK1, ATF3, H2AFX,
BAX, CDKN2A, and EGF.

After the bioinformatics analysis and reviewing the relate
articles, interestingly, we found that most of these 11 interme-
diate target proteins have a close relationship with the double
strand DNA break (DSB). DSB self-surveillance escaping is a



8 Evidence-Based Complementary and Alternative Medicine

CDKN2A

BAX

TP53ATF3

BGLAP

caspase3

Biochanin A

H2AFX

IGF1

EGF

JUN

MAPK1

ATM

／＃（3

O

OH

HO

O

Figure 9:The relationshipmap of the biochaninA and target proteins.The red arrow represents an activate regulation. Proteins in red indicate
that the expression level of the protein is increased, while in green they indicate the expression level of the protein is decreased.

main mechanism in the development of osteosarcoma that
cancer cells can neglect the DSB self-surveillance escaping
duplicates with DNA damage [20]. As a result, errors in DNA
accumulate andmore oncogenic variation of gene will appear
to promote the proliferation of osteosarcoma.

TP53, also called p53, is a core protein functioning in
the DNA damage self-surveillance, which can arrest the cell
in G1 phase if there is a defect in DNA completeness and
continuity [20]. As one of the key signaling pathway, the
RAS/ERK/c-JUN signaling pathway plays a key role in the
downstream regulation of DSB. JUN and MAPK1 are the
main components of this pathway. When the DSB occurs,
ATM will be recruited and phosphorylate the H2AFX on
Ser 139, which is the earliest response to DSB [21, 22].
The phosphorylated H2AFX stabilizes the binding of TP53
binding protein (P53BP1) with DSB [23]. Then the P53BP1
binds to the core region of TP53 with BRCA1 C-terminus
(BRCT) domain in tandemwith carboxyl terminal of P53BP1,
activating the transcription of TP53 [23]. CDKN2A is also a
biomarker of DSB, which elevates after DNA damage [24].
CDKN2A also plays a role as TP53 stabilizer [25]. CDKN2A
can bind to MDM2 and TP53 and inhibits MDM2’s TP53
degradative function. Lack or inactivate of CDKN2A may
lead to decreasing level of TP53. Other oncogenic signaling
pathways are also involved in the effect of biochanin A on
osteosarcoma. Both IGF1 and EGF have a growth hormone-
like function [26, 27]. They can bind to their receptor and
active downstream MAPK signaling pathway [28]. TP53
could be upregulated by this pathway and MAPK1 and JUN
proteins play a role as key signal nodes in this pathway as well
[29]. But by testing the concentration of these proteins, we did

not observe the obvious changes in the expression of TP53,
IGF1, JUN, ATM, MAPK1, H2AFX, CDKN2A, and EGF.

BGLAP, also known as osteocalcin, is a small and highly
conserved protein, which was identified in the mineralized
matrix of bone [30]. In previous study, expression of BGLAP
can be upregulated by the activation of the TP53 and
CDKN2A signaling pathway [31]. Han et al. have demon-
strated that, as a biomarker of bone, the expression of BGLAP
was decreased in dying or undifferentiated MG63 cells [32].
In this study, after the treatment of biochanin A, a decreasing
trend of BGLAP level can be seen from the western-blot,
which may also indicate the death of osteosarcoma cells.

ATF3 was found to mediate anticancer activity in several
malignant tumors [33, 34]. It can also activate MAPK signal-
ing pathway and increasing the expressing of TP53 [35]. Our
research highlighted that biochanin A treatment can lead to
an increasing of ATF3. Combined with previous researches,
biochanin A may play an antitumor role in osteosarcoma by
the ATF3 pathway.

BAX, essential in the release of caspase 3, was reported
with a strong connection with osteosarcoma [36]. Apoptosis
of cancer cells induced by TP53 needs to bemediated by BAX
[37, 38]. Zhao et al. have mentioned that biochanin A can
contributed to the increasing of BAX in osteosarcoma. In this
study, we also found that the expression of BAXwas increased
after the application of biochanin A, which is consisted with
previous studies.

Molecular docking is the most widely used method for
calculating protein-ligand interactions, and we used the Lib-
Dock program in Discovery Studio 2.5 software to investigate
the probable binding modes.The results show that biochanin
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A has a high affinity for TP53. Combining the results in this
study with the network pharmacological analysis, it can be
seen from figure 9 that the biochanin A has an antiosteosar-
coma effect andmay associate with DSB response, whichmay
also partly explain why the osteosarcoma cells were arrested
in G0/G1 phase in the previous report. But the effect of
biochanin A on TP53 was not discussed in this study, and
more researches are needed to unveil whether biochanin A
can bind to TP53 and the expression of BGLAP, BAX, and
ATF3 was regulated through TP53 pathway.

5. Conclusion

In present study, we predicted and concluded the mechanism
of biochanin A treating osteosarcoma by using the network
pharmacology approach. Based on the analysis above, we
supposed that biochanin A can suppress the proliferation of
osteosarcoma and regulate the expression of BGLAP, BAX,
and ATF3, which are involved in regulating DSB response,
differentiation and cell death of osteosarcoma. Present study
can promote our understanding and provide a new sight for
the researchers to further demonstrate the mechanism of
biochanin A treating osteosarcoma.
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