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Summary

 

CD40 is a member of the tumor necrosis factor (TNF) receptor superfamily. Studies with hu-
man B cells show that the binding of CD154 (gp39, CD40L) to CD40 recruits TNF receptor–
associated factor 2 (TRAF2) and TRAF3 to the receptor complex, induces the downregulation
of the nonreceptor-associated TRAFs in the cell and induces an increased expression of Fas on
the cell surface. Combined signaling through the interluekin 4 receptor and CD40 induces an
increased expression of Fas with a commensurate increase in the level of TRAF2, but not
TRAF3, that is recruited to the receptor complex. In contrast, engagement of the membrane
immunoglobulin and CD40 limits Fas upregulation and reduces the recruitment of TRAF2,
relative to TRAF3, to the CD40 receptor complex. These studies show that the TRAF com-
position of the CD40 receptor complex can be altered by signals that influence B cell differen-
tiation.

 

C

 

D40 is a 50-kD cell surface receptor found on a wide
spectrum of cell types, including B cells and antigen-

presenting cells (1, 2). Interaction of CD40 with its cognate
ligand CD154 (gp39, CD40L), which is expressed predom-
inantly on activated CD4

 

1

 

 T cells, has profound effects on
both humoral and cellular immunity (1, 3–5). Although the
biological effects of disruption of the CD40–CD154 inter-
action have been well described, the nature of the bio-
chemical signals generated as a consequence of ligand bind-
ing remain ill-defined. The lack of an enzymatic domain in
the cytoplasmic region of CD40 suggests that signaling is
achieved through receptor-associated proteins. The TNF
receptor–associated factors (TRAFs) have been identified as
candidate CD40 signaling proteins (6–9). The TRAF fam-
ily members TRAF2 and TRAF3 have been shown to
bind to CD40 through their COOH-terminal TRAF do-
mains, whereas truncation of the NH

 

2

 

-terminal RING and
zinc fingers of TRAF2 has been shown to block CD40-
mediated NF-

 

k

 

B activation (7). Presently, it is not known
whether these molecules constitutively associate with CD40
or are induced to assemble upon stimulation with CD40 ligand.
The studies presented evaluate the dynamics of CD40 recep-
tor assembly initiated by CD154 binding. It is shown that
ligand binding to CD40 induces the recruitment of both
TRAF2 and TRAF3 to the receptor complex and triggers
the rapid downregulation of the remaining nonreceptor-
associated TRAF2 and TRAF3. Furthermore, it is shown
that engagement of the B cell receptor Ig complex or trig-

gering of the IL-4 receptor can modify the TRAF compo-
sition of CD40 receptor complex as well as alter the bio-
logical response to CD40 cross-linking.

 

Materials and Methods

 

Cell Culture.

 

The DND39 cell line, a human, EBV

 

2

 

 Burkitt
lymphoma cell line (10) was cultured in RPMI 1640 medium
(GIBCO BRL, Gaithersburg, MD) supplemented with 2 mM
glutamine and 10% FBS (Hyclone, Logan, Utah).

 

Receptor Assembly Assays.

 

The DND39 cells (2 

 

3

 

 10

 

6

 

 cells/
ml) were cultured for 15 min with and without 4 nM sCD154
(CD8–CD154; reference 11). IL-4–treated cells received 2 ng/ml
huIL-4 (Peprotech, Rocky Hill, NJ) 10 min before addition of
sCD154. For treatment with anti-human IgM (Sigma Chemical
Co., St. Louis, MO), 1 

 

3

 

 10

 

7

 

 cells were incubated with 10 

 

m

 

g/
ml anti-IgM for 24 h, followed by sCD154 for 15 min. After
stimulation, the cells were lysed in 1% Digitonin, 50 mM Hepes,
150 mM NaCl, pH 7.4, with protease inhibitors at 2 

 

3

 

 10

 

7

 

 cells/
ml. Cleared lysate was immunoprecipitated for 2 h at 4

 

8

 

C with 10

 

m

 

g/ml anti-hCD40 monoclonal antibody, either BE-1 (Ancell,
Minneapolis, MN) or S2C6 (gift of S. Paulie, Stockholm Univer-
sity, Sweden) and Protein G–Sepharose (Sigma). Precipitated
proteins were separated by SDS-PAGE, transferred to nitrocellu-
lose, and coprecipitated TRAF molecules detected with polyclonal
rabbit anti–human TRAF2 (C20) (Santa Cruz Biotechnologies,
Santa Cruz, CA) or anti–human TRAF3 (N) produced against a
peptide corresponding to residues 9–32 of the human TRAF3 se-
quence. Bound antibodies were detected with goat anti–rabbit
Ig–horseradish peroxidase (Bio-Rad, Hercules, CA) and detected
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with SuperSignal Substrate (Pierce Corp., Chicago, IL). CD40-
cleared lysates were treated with 20 

 

m

 

g/ml glutathione-S-trans-
ferase (GST)–CD40cyt and glutathione–agarose for 2 h at 4

 

8

 

C
and TRAF2 and three were detected as described above. Total
TRAF2 and TRAF3 immunoprecipitations were performed on
lysates from untreated and sCD154-treated DND39 cells using
anti-human TRAF2 antibodies produced against a peptide corre-
sponding to residues 249–266 of the human TRAF2 sequence or
the anti-TRAF3 antibodies described above.

 

Flow Cytometry.

 

Following 24-h stimulation, DND39 cells
were incubated for 20 min at 4

 

8

 

C with either a control mouse
IgG1–biotin or mouse anti–human CD95–biotin (10 

 

m

 

g/ml;
PharMingen, San Diego, CA). After washes in PBS with FCS,
antibody binding was detected with streptavidin–PE (2 

 

m

 

g/ml;
Southern Biotechnology Associates, Birmingham, AL). Cells
were analyzed on a Becton Dickinson FACScan

 



 

 flow cytome-
ter. A minimum of 10,000 cells were collected for each sample.
Residual dead cells and cell aggregates were excluded from analy-
sis by low angle and orthogonal light scatter.

 

Densitometric Analysis of TRAF Content.

 

Autoradiographs of the
Western blots from the anti-IgM experiments were scanned using
Ofoto

 



 

 2.0. The TRAF peaks were quantitated using NIH Image
1.60.

 

Results and Discussion

 

DND39 is a CD40-responsive, human Burkitt B cell
lymphoma that has been shown to increase sterile tran-
scripts from the IgE promoter (10) and be rescued from
growth inhibition by cross-linking of CD40 (12). Within
15 min of addition of a soluble, multimeric form of CD154
(sCD154) both TRAF2 and TRAF3 could be coimmuno-
precipitated with CD40. Immunoprecipitation of CD40
from nonactivated DND39s did not reveal constitutively
associated TRAF2 or TRAF3 (Fig. 1). Association of
TRAFs was maximal at a 4 nM concentration of ligand and
found to peak after 15 min of ligand addition (data not
shown). The association of the TRAF molecules with
CD40 was mirrored by a decrease in the cytosolic pool of
TRAF2 and TRAF3, which could be precipitated with a
fusion protein consisting of GST and the CD40 cytoplas-
mic domain (GST–CD40cyt; reference 6) (see Fig. 3, 

 

C

 

and 

 

D

 

). However, the reduction in the cytosolic TRAF2
and TRAF3 could only be partially accounted for by re-
cruitment of these molecules to the receptor complex.
When total cellular TRAF2 or TRAF3 was immunopre-
cipitated with anti-TRAF2 or TRAF3 antibodies, a reduc-
tion in TRAF content was observed following engagement
of CD40 (see Fig. 4). Therefore, in addition to the recruit-
ment of TRAF2 and TRAF3 to CD40, a significant
amount of the cellular TRAF2 and TRAF3 is lost from the
detergent-soluble fraction. Whether this loss is due to move-
ment of the TRAF molecules to another subcellular location
or to degradation of the TRAFs is currently being studied.

The biological response of B cells to CD40 signaling can
be enhanced or inhibited by the engagement of other recep-
tors on B cells. For example, IL-4 and CD40 engagement
synergize to induce B cell growth and immunoglobulin
isotype switching (13–15). In DND39 cells, cross-linking

of CD40 along with IL-4 can synergistically upregulate the
synthesis of the germline epsilon transcripts (10) and the
expression of Fas (see Fig. 2 

 

C

 

). Studies were performed to
determine whether at least some of the agonistic effects of
IL-4 on CD40 signaling could be due to changes in the
protein components of the CD40 receptor complex. As
shown in Fig. 2 

 

A

 

, a 10-min pretreatment of DND39 cells
with IL-4 increased the amount of TRAF2 recruited to the
CD40 complex in response to sCD154. The amount of
TRAF3 recruited to CD40 in response to sCD154 was un-
changed by the inclusion of IL-4 (Fig. 2 

 

B

 

). As shown in
Fig. 2 

 

C

 

, engagement of CD40 induced upregulation of
Fas, which was enhanced by the coadministration of IL-4.
Cells cultured in IL-4 alone expressed low levels of Fas.
Thus, short-term pretreatment of the cells with IL-4 selec-
tively increased the association of TRAF2 with the CD40
receptor complex and increased Fas expression.

Cross-linking of the B cell receptor Ig complex in B cells
has been shown to exert both agonistic (16, 17) and antag-
onistic (18) effects on CD40 signals. The latter study
showed that the cross-linking of membrane immunoglobu-
lin (mIg) on human germinal center (GC) B cells pre-
vented the CD40-induced upregulation of Fas. Similarly,
culture of DND39 with anti-

 

m

 

 inhibited the upregulation
of Fas induced by sCD154 (Fig. 3 

 

E

 

). To evaluate whether
cross-linking of mIgM altered the assembly of the CD40
receptor complex, sCD154-induced TRAF association was
investigated. As shown in Fig. 3, the association of TRAF2
with CD40 was strongly downregulated in cells that were
precultured with anti-

 

m

 

. In contrast, there was much less
effect on the levels of sCD154-induced TRAF3 recruited
to the CD40 complex in anti-

 

m

 

–treated B cells. The mean
of three experiments found that the level of TRAF2 re-
cruited to the receptor was reduced by 52%, whereas the
level of TRAF3 recruitment was only reduced by 19%.
Anti-

 

m

 

 treatment also significantly reduced the amount of
TRAF2 that could bind to the GST–CD40cyt fusion pro-

Figure 1. Stimulation with sCD154 induces recruitment of TRAF2
and TRAF3 to CD40. (A) DND39 cells (2 3 107 cells/lane) were either
left unstimulated (lanes 1, 2, 5, and 7), or stimulated with sCD154 (4 nM)
(lanes 3, 4, 6, and 8) for 15 min before lysis and immunoprecipitation
with either irrelevant mouse IgG1 (lanes 1, 3) and or with anti-human
CD40 mouse IgG1 monoclonal BE-1 (2, 4) or S2C6 (lanes 5, 6, and 7,
8), respectively. The immunoprecipitated samples were immunoblotted
for TRAF2 (arrowhead) (lanes 1–6) or for TRAF3 (indicated by asterisk)
(lanes 7, 8). This experiment is representative of 12 experiments.
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tein in the cell lysates (Fig. 3 

 

C

 

). The most likely explana-
tion is that the total TRAF2 protein expression was down-
regulated in response to anti-

 

m

 

 treatment (data not shown).
Measurement of the total TRAF2 and TRAF3 levels in the
cells found that anti-

 

m

 

 treatment reduced TRAF2 levels by
58%, whereas TRAF3 levels were reduced by 26% (Fig. 3

 

D

 

). As was observed with IL-4, anti-

 

m

 

 altered the assem-
bled receptor complex and also altered the biological re-
sponse to CD40 signaling. FACS

 



 

 analysis of CD40-induced
Fas expression (Fig. 3 

 

E

 

) found that anti-

 

m

 

 treatment re-
duced Fas upregulation by approximately three- to four-
fold. FACS

 



 

 analysis of the level of cell surface CD40 re-
vealed no difference between untreated and anti-

 

m

 

–treated
cells (data not shown).

The data presented in this study suggest that (

 

a

 

) the bind-
ing of CD154 is necessary and sufficient for the recruitment
of both TRAF2 and TRAF3 to the CD40 receptor com-
plex in human B cells; (

 

b

 

) a majority of the TRAF2 and
TRAF3 molecules are depleted from the cytoplasmic pool
upon ligand binding, some of which is recruited to the re-
ceptor with the remainder lost to either the detergent in-
soluble fraction or degraded; (

 

c

 

) IL-4, a cytokine that can
enhance biological signals by CD40, selectively increased
the amount of TRAF2 recruited to the ligand-induced
complex; and (

 

d

 

) signals from the mIg complex exerted a
selective effect on reducing the amount of TRAF2 versus
TRAF3 that can be recruited to the CD40 complex upon
ligand binding.

The molecular basis for why TRAF2 and TRAF3 are
recruited to the receptor complex after CD154 binding is

unknown. However, it is likely that receptor oligomeriza-
tion plays an important role. Goeddel and coworkers have
recently shown that the binding of TNF-

 

a

 

 to TNF-R1 in-
duced the recruitment of TRAF2 to the receptor complex
(19). Molecular modeling studies based on similarities to
TNF-

 

a

 

 and TNF-

 

b

 

, have suggested that CD154 forms tri-
mers and these trimers bind to three CD40 molecules (20,
21). It is also evident from functional studies with recombi-
nant CD154 that membrane bound or multimerized CD154
possesses much better biological activity than monomeric
CD154 (22). Finally, the fact that the GST–CD40cyt pro-
tein binds TRAF molecules also suggests that a high density
matrix of the CD40 cytoplasmic domain may mimic an ag-
gregated receptor and create sites for high affinity TRAF
binding. Thus, taken together, it may be proposed that ag-
gregation of TNF-R family members is a critical event in
TRAF recruitment.

At the present time, the mechanisms responsible for the
the rapid and extensive reduction of TRAF2 and TRAF3
after CD40 engagement are unknown. It is possible that
upon receptor engagement the TRAF molecules are rap-
idly ubiquitinated and degraded, in a fashion similar to I-

 

k

 

B
(23). Alternatively, the CD40 signal may result in move-
ment of the TRAFs to a subcellular location that is not
captured after detergent solubilization. The fact that the
majority of the TRAF2 and TRAF3 was lost from the cell
after addition of ligand has implications for signaling via the
other members of the TNF-R family, which also bind
TRAF2 (i.e., TNF-R2, LT-

 

b

 

R, and CD30) or TRAF3
(CD30 and LT-

 

b

 

R). One might anticipate that within an

Figure 2. Pretreatment with
IL-4 increases TRAF2, but not
TRAF3, recruited to CD40 and
increases cell surface Fas expres-
sion. DND39 cells (2 3 107

cells/lane) were either left un-
treated or pretreated for 10 min
with human (h)IL-4 (2 ng/ml)
(Genzyme, Cambridge, MA);
and both groups were either left
unstimulated (minus) or stimu-
lated with sCD154 (4 nM) (plus)
for 15 min. Lysates were immu-
noprecipitated for CD40 and
immunoblotted for TRAF2 (A)
or TRAF3 (B). (C) Fluores-
cence-activated cell sorting anal-
ysis of DND39 cells after treat-
ment with hIL-4 and sCD154.
DND39 cells were incubated
for 24 h with media (minus), 2
ng/ml hIL-4, sCD154, or both
(as indicated). Fas expression was
detected with anti-CD95 mono-
clonal antibody (open profile) or a
control mouse IgG1 mono-
clonal (closed profile). The mean
fluorescent intensity of the cells is
indicated in the upper righthand
corner. This experiment is repre-
sentative of four experiments.
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individual cell, the engagement of one TNF-R family
member might cause elimination of the majority of the
available TRAF molecules, leading to the desensitization of
signalling through other receptor family members.

The ligand-induced assembly of the CD40–TRAF2–
TRAF3 receptor complex in resting B cells may be trig-
gered by the release of TRAF2 and TRAF3 complexes that
are retained in the cytosol through interactions with the re-
cently identified Tank/I-TRAF (9, 24). By analogy to
studies with TNF-R2 (24), it may be that upon stimulation
with CD154, CD40 oligomerizes and creates a higher af-
finity binding site for the TRAF molecules than found on
Tank/I-TRAF. Accumulating evidence suggests TRAF2,
perhaps through NF-

 

k

 

B activation, plays a dominant role
in the early responses of resting B cells to CD40 signaling.
Early events in murine B cells are likely to be mediated by
TRAF2, because B cells from TRAF3 knockout mice re-
sponded as wild-type B cells for the upregulation of such
activation antigens as CD23 and B7-1 as well as prolifera-
tion, yet were deficient in Ig isotype switching (25). Corre-
spondingly, the DND39 cells lost their capacity to upregulate
Fas when the cytosolic pool of TRAF2 was diminished.
This loss in the ability to upregulate Fas may be due to the
decreased amount of available TRAF2, but more impor-
tantly, the altered ratio of TRAF2/TRAF3. Similar imbal-
ances in TRAF2/TRAF3 were observed in HEK 293 cells,
where overexpression of TRAF3, relative to TRAF2, blocked
the NF-

 

k

 

B activation via CD40 (7). Therefore, signals that
alter the abundance of TRAF molecules or the ratio of
TRAF molecules may qualitatively change the biological
signals through CD40.

As stimulated B cells differentiate to GC B cells, memory
B cells, and plasma cells, the function of CD40 changes. In
immature B cells, CD40 engagement rescues from apop-
tosis (26, 27), in mature B cells it induces proliferation and
differentiation (2), in GC B cells it induces Fas expression
(18, 28, 29), and in some lymphomas it induces apoptosis
(30, 31). It appears that the CD40 receptor can be rewired.
The fact that biological mediators such as IL-4 and anti-

 

m

 

treatment can both modify the recruitment of TRAF2 to
the receptor complex and alter the biological readout sug-
gests that the TRAF composition of the CD40 receptor
may contribute to the molecular basis for the rewiring.
Currently, we are attempting to establish a causal relation-
ship between the TRAF composition of the CD40 recep-
tor complex and the functional signals delivered by CD40
engagement.

Figure 3. Anti-m cross-linking reduces TRAF2 association and Fas up-
regulation induced by CD40 signaling. DND39 cells (2 3 107 cells/lane)
were incubated in media or with 10 mg/ml goat anti–human IgM for 24 h
and both groups were either left unstimulated (minus) or stimulated with
sCD154 (4 nM) (plus) for 15 min. Lysates were immunoprecipitated for
CD40 and immunoblotted for TRAF2 (A) or TRAF3 (B). (C and D)
Immunoblot analysis of cytosolic TRAF content after GST–CD40cyt im-
munoprecipitations. The lysates used for the anti-CD40 precipitations de-
scribed in A and B were further precipitated with GST–CD40cyt. 5 3
106 cells/lane were loaded for the TRAF2 blot, while the TRAF3 blot
received 2 3 107 cell equivalents per lane. (E) Fluorescence-activated cell
sorting analysis of DND39 cells after treatment with anti-IgM and
sCD154. DND39 cells were incubated for 24 h with media (minus), 10
mg/ml anti-IgM, sCD154, or both (as indicated). Fas expression was de-
tected with anti-CD95 monoclonal antibody (open profile) or a control
mouse IgG1 monoclonal (closed profile). The mean fluorescent intensity of
the cells is indicated in the upper righthand corner. This experiment is
representative of four experiments.

Figure 4. Engagement of CD40 results in the loss of immunoprecipitable
TRAF2 and TRAF3 from DND39 cells. DND39 cells (2 3 106 cells/ml)
were left untreated (minus) or treated with 4 nM sCD154 (plus) for 15 min.
After treatment, lysates were immunoprecipitated with either anti-TRAF2 or
anti-TRAF3 antibodies. 5 3 106 cell equivalents were loaded per lane.



341 Kuhné et al. Brief Definitive Report

References
1. Foy, T., A. Aruffo, J. Bajorath, J.E. Buhlmann, and R.J. No-

elle. 1996. Immune regulation by CD40 and its ligand gp39.
Annu. Rev. Immunol. 14:591–617.

2. Banchereau, J., F. Bazan, D. Blanchard, F. Briere, J.P. Gal-
izzi, C. van Kooten, Y.J. Liu, F. Rousset, and S. Saeland.
1994. The CD40 antigen and its ligand. Annu. Rev. Immunol.
12:881–922.

3. Grewal, I.S., J. Xu, and R.A. Flavell. 1995. Impairment of
antigen-specific T-cell priming in mice lacking CD40 ligand.
Nature (Lond.). 378:617–620.

4. Campbell, K.A., P.J. Ovendale, M.K. Kennedy, W.C. Fanslow,
S.G. Reed, and C.R. Maliszewski. 1996. CD40 ligand is re-
quired for protective cell-mediated immunity to Leishmania
major. Immunity. 4:283–289.

5. Kawabe, T., T. Naka, K. Yoshida, T. Tanaka, H. Fujiwara,
S. Suematsu, N. Yoshida, T. Kishimoto, and H. Kikutani.
1994. The immune responses in CD40-deficient mice: im-
paired immunoglobulin class switching and germinal center
formation. Immunity. 1:167–178.

6. Hu, H.M., K. O’Rourke, M.S. Boguski, and V.M. Dixit.
1994. A novel RING finger protein interacts with the cyto-
plasmic domain of CD40. J. Biol. Chem. 269:30069–30072.

7. Rothe, M., V. Sarma, V.M. Dixit, and D.V. Goeddel. 1995.
TRAF2-mediated activation of NF-kappaB by TNF receptor
2 and CD40. Science (Wash. DC). 269:1424–1427.

8. Cheng, G., A.M. Cleary, Z. Ye, D.I. Hong, S. Lederman,
and D. Baltimore. 1995. Involvement of CRAF1, a relative
of TRAF, in CD40 signaling. Science (Wash. DC). 267:1494–
1498.

9. Cheng, G., and D. Baltimore. 1996. TANK, a co-inducer
with TRAF2 of TNF- and CD40L-mediated NF-kappaB ac-
tivation. Genes Dev. 10:963–973.

10. Ichiki, T., W. Takahashi, and T. Watanabe. 1992. The effect
of cytokines and mitogens on the induction of C epsilon germ-
line transcripts in a human Burkitt lymphoma B cell line. Int.
Immunol. 4:747–754.

11. Hollenbaugh, D., L. Grosmaire, C.D. Kullas, N.J. Chalupny,
R.J. Noelle, I. Stamenkovic, J.A. Ledbetter, and A. Aruffo.
1992. The human T cell antigen gp39, a member of the TNF
gene family, is a ligand for the CD40 receptor: expression of
a soluble form of gp39 with B cell co-stimulatory activity.
EMBO (Eur. Mol. Biol. Organ.) J. 11:4313–4321.

12. Sumimoto, S., T. Heike, S. Kanazashi, N. Shintaku, E.Y.
Jung, D. Hata, K. Katamura, and M. Mayumi. 1994. Involve-
ment of LFA-1/intracellular adhesion molecule-1–dependent
cell adhesion in CD40-mediated inhibition of human B lym-
phoma cell death induced by surface IgM crosslinking. J. Im-
munol. 153:2488–2496.

13. Rousset, F., E. Garcia, and J. Banchereau. 1991. Cytokine-
induced proliferation and immunoglobulin production of hu-
man B lymphocytes triggered through their CD40 antigen. J.
Exp. Med. 173:705–710.

14. Defrance, T., B. Vanbervliet, F. Briere, I. Durand, F. Rous-
set, and J. Banchereau. 1992. Interleukin 10 and transforming
growth factor beta cooperate to induce anti-CD40–activated
naive human B cells to secrete immunoglobulin A. J. Exp.
Med. 175:671–682.

15. Armitage, R.J., B.M. Macduff, M.K. Spriggs, and W.C.
Fanslow. 1993. Human B cell proliferation and Ig secretion
induced by recombinant CD40 ligand are modulated by sol-
uble cytokines. J. Immunol. 150:3671–3680.

16. Lane, P., T. Brocker, S. Hubele, E. Padovan, A. Lanzavec-
chia, and F. McConnell. 1993. Soluble CD40 ligand can re-
place the normal T cell–derived CD40 ligand signal to B cells
in T cell–dependent activation. J. Exp. Med. 177:1209–1213.

17. Paulie, S., B. Rosen, B. Ehlin-Henriksson, S. Braesch-
Andersen, E. Jakobson, H. Koho, and P. Perlmann. 1989.
The human B lymphocyte and carcinoma antigen, CDw40,
is a phosphoprotein involved in growth signal transduction. J.
Immunol. 142:590–595.

18. Choe, J., H.S. Kim, X. Zhang, R.J. Armitage, and Y.S.
Choi. 1996. Cellular and molecular factors that regulate the
differentiation and apoptosis of germinal center B cells. Anti-
Ig down-regulates Fas expression of CD40 ligand–stimulated
germinal center B cells and inhibits Fas-mediated apoptosis. J.
Immunol. 157:1006–1016.

19. Shu, H.B., M. Takeuchi, and D.V. Goeddel. 1996. The tu-
mor necrosis factor 2 signal transducers TRAF2 and c-IAP1
are components of the tumor necrosis factor receptor 1 sig-
nalling complex. Proc. Natl. Acad. Sci. USA. 93:13973–
13978.

20. Bajorath, J., N.J. Chalupny, J.S. Marken, A.W. Siadak, J.
Skonier, M. Gordon, D. Hollenbaugh, R.J. Noelle, H.D.
Ochs, and A. Aruffo. 1995. Identification of residues on
CD40 and its ligand which are critical for the receptor–ligand
interaction. Biochemistry. 34:1833–1844.

21. Bajorath, J., J.S. Marken, N.J. Chalupny, T.L. Spoon, A.W.
Siadak, M. Gordon, R.J. Noelle, D. Hollenbaugh, and A.
Aruffo. 1995. Analysis of gp39/CD40 interactions using mo-
lecular models and site-directed mutagenesis. Biochemistry. 34:
9884–9892.

22. Fanslow, W.C., S. Srinivasan, R. Paxton, M.G. Gibson,
M.K. Spriggs, and R.J. Armitage. 1994. Structural character-
istics of CD40 ligand that determine biological function.
Semin. Immunol. 6:267–278.

23. Hochstrasser, M. 1996. Ubiquitin-dependent protein degra-

The authors would like to thank Dr. W. Wade for discussion during the development of this study and for
critical review of the manuscript and Dr. S. Paulie for providing the S2C6 anti-human CD40 monoclonal
antibody.

These studies were supported by a grant from Pfizer, Inc.

Address correspondence to Randolph J. Noelle at the Department of Microbiology, Dartmouth Medical
School, Lebanon, NH 03756. Phone: 603-650-7670; FAX: 603-650-6223; E-mail: rjn@dartmouth.edu

Received for publication 7 March 1997 and in revised form 28 May 1997.



342 TRAF Recruitment to the CD40 Receptor Complex

dation. Annu. Rev. Genet. 30:405–439.
24. Rothe, M., J. Xiong, H.B. Shu, K. Williamson, A. Goddard,

and D.V. Goeddel. 1996. I-TRAF is a novel TRAF-interact-
ing protein that regulates TRAF-mediated signal transduc-
tion. Proc. Natl. Acad. Sci. USA. 93:8241–8246.

25. Xu, Y., G. Cheng, and D. Baltimore. 1996. Targeted disrup-
tion of TRAF3 leads to postnatal lethality and defective
T-dependent immune responses. Immunity. 5:407–415.

26. Tsubata, T., J. Wu, and T. Honjo. 1993. B-cell apoptosis in-
duced by antigen receptor crosslinking is blocked by a T-cell
signal through CD40. Nature (Lond.). 364:645–648.

27. Merino, R., D.A. Grillot, P.L. Simonian, S. Muthukkumar,
W.C. Fanslow, S. Bondada, and G. Nunez. 1995. Modula-
tion of anti-IgM–induced B cell apoptosis by Bcl-xL and
CD40 in WEHI-231 cells. Dissociation from cell cycle arrest
and dependence on the avidity of the antibody–IgM receptor
interaction. J. Immunol. 155:3830–3838.

28. Lagresle, C., P. Mondiere, C. Bella, P.H. Krammer, and T.
Defrance. 1996. Concurrent engagement of CD40 and the
antigen receptor protects naive and memory human B cells
from APO-1/Fas-mediated apoptosis. J. Exp. Med. 183:1377–
1388.

29. Garrone, P., E.M. Neidhardt, E. Garcia, L. Galibert, K.C.
van, and J. Banchereau. 1995. Fas ligation induces apoptosis
of CD40-activated human B lymphocytes. J. Exp. Med. 182:
1265–1273.

30. Hess, S., and H. Engelmann. 1996. A novel function of
CD40: induction of cell death in transformed cells. J. Exp.
Med. 183:159–167.

31. Lens, S.M., K. Tesselaar, B.F. den Drijver, M.H. van Oers,
and R.A. van Lier. 1996. A dual role for both CD40-ligand
and TNF-alpha in controlling human B cell death. J. Immu-
nol. 156:507–514.


