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Abstract: Those with disabilities who have lost their legs must use a prosthesis to walk. However,
traditional prostheses have the disadvantage of being unable to move and support the human gait
because there are no mechanisms or algorithms to control them. This makes it difficult for the wearer
to walk. To overcome this problem, we developed an insole device with a wearable sensor for
real-time gait phase detection based on the kNN (k-nearest neighbor) algorithm for prosthetic control.
The kNN algorithm is used with the raw data obtained from the pressure sensors in the insole to
predict seven walking phases, i.e., stand, heel strike, foot flat, midstance, heel off, toe-off, and swing.
As a result, the predictive decision in each gait cycle to control the ankle movement of the transtibial
prosthesis improves with each walk. The results in this study can provide 81.43% accuracy for gait
phase detection, and can control the transtibial prosthetic effectively at the maximum walking speed
of 6 km/h. Moreover, this insole device is small, lightweight and unaffected by the physical factors
of the wearer.

Keywords: k-nearest neighbor; wearable sensor; gait analysis; gait phase detection; transtibial prosthesis

1. Introduction

Gait analysis is widely known and researched because it has benefits in many fields.
For example, in the medical field, gait analysis is often used to look for various diseases
caused by walking disorders [1,2]. In addition, the engineering field can be used to
analyze human leg and foot locomotion to detect the gait phase and improve prostheses’
performance [3]. There are two essential things in gait phase detection. The first thing is a
method of collecting gait information, and the second thing is a method used to identify
the gait phase.

Gait phase detection based on a vision system is a method that uses a camera to
analyze body movements during walking. In general, a camera is used to measure the
characteristics of hip, knee, and ankle angles. In addition, a vision system is usually used
with the force plates to increase the efficiency of detecting the gait phase. Varol et al.
presented a study on controlling a transfemoral prosthesis using a kNN algorithm with
a predominant weighting scheme and a weighting threshold, using seven cameras and
two force platforms. The two force plates measured the ground reaction force to increase
the effectiveness of real-time recognition of a person’s walking intent who would stand or
walk at one of three different speeds, including slow (~1.04 m/s), normal (~1.22 m/s), and
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fast (~1.51 m/s) [3]. However, this method is only required in a laboratory or controlled
environment, so it is unable to be used in daily life. Therefore, detecting the gait phase
should be performed with a wearable device that can easily detect the walking distance.

A wearable device uses an inertial measurement unit (IMU) [4–7]. There are many
techniques for IMU usage [4]: Huang et al. presented a lightweight convolutional neural
network (CNN) model with an attention mechanism for detecting gait characteristics using
wearable IMU sensors [5]. In addition, Mahoney et al. presented an artificial neural network
(ANN) model that classifies the type of stride with an accelerometer and gyroscope (IMU)
affixed to the user’s left ankle [6]. Furthermore, Wu et al. demonstrated the feasibility of
predicting ground reaction force by using IMU sensors mounted below the walking surface
with long short-term memory (LSTM) models [7]. However, errors will occur when using
an IMU with speed and location data due to interference and signal drift. Additionally,
there are still limitations in terms of training data in machine learning.

One of the most popular ways to detect the gait phase is to have a pressure sensor
on the bottom of the wearer’s foot to analyze the ground reaction force (GRF) during
walking [8–10]. Methods used to identify the gait phase include the center of pressure
(COP). The ratio of COP values is used to divide the walking cycle and identify the point of
weight movement between the two feet [8]. In addition, a support vector machine (SVM)
can identify the gait phase too. The SVM is a neural network for supervised learning. It
learns from a sample set of input and output values and can detect discrete walking steps
trete withinside the round movement of dynamic human walking [9]. A pressure sensor
is sometimes used with IMU to increase detection efficiency. Nagashima et al. predicted
plantar force during gait to detect walking distance with a deep neural network (DNN).
The DNN is used to learn the non-linear relationship between the measured sensor data
and future sensor force data by using a trained network [10]. However, when detecting the
gait phase, problems are often found in the wearer’s physical condition, such as the sensor
position, stride speed, and weight [11]. In addition, there are still problems with processing
and control delays, making the prosthesis control ineffective.

In terms of the machine learning approaches and their performances in the studied
papers, most of the papers [12,13] have used kNN as their machine learning approach
to classify the gait cycle pattern. Most of these studies compared the output of the kNN
algorithm with those of other approaches. In [12], for the classification of three gait patterns
through GRFs data, artificial neural network algorithms (ANN) were used for comparison
with the k-nearest neighbor approach. kNN showed the best accuracy of 85%, slightly
higher than the ANN at 80%. Another paper [13] has shown five-class classification with
SVM, decision tree (DT), ANN, naive Bayes (NB), and kNN. The overall classification
accuracy was 97.9% for SVM, 90.1% for DT, 100% for ANN, 97.2% for NB, and 100% for
kNN. Thus, in this study, we choose the kNN algorithm for gait classification because the
kNN outperforms all other approaches in terms of accuracy.

In this paper, we present a k-nearest neighbor algorithm that can detect a real-time
gait phase among seven phases, i.e., stand, heel strike, foot flat, midstance, heel off, toe-off,
and swing phase, by using a wearable sensor located in an insole sheet which can be worn
with all types of shoes. Furthermore, it can control the prosthesis via Bluetooth with little
delay. The wearable device small, lightweight, and unaffected by the physical factors of
the wearer.

2. Materials and Methods
2.1. Hardware Description

The insole device developed in this study consists of three main components, as shown
in Figure 1a. Firstly, five plantar force sensors (FSR-402, Interlink Electronics, Camarillo,
CA, USA) are attached to the bottom of the insole sheet (S1–S5) to receive the force exerted
on the foot as you walk [14,15]. The sensor positions are shown in Figure 1b, though they
change according to the shape of the wearer’s foot. Next, notice the ~6 v battery that is the
power supply for the device, and lastly, notice the microcontroller board which is used to
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process the force data and send each force data to the computer for further analysis. We
put these three components on a right leg, as shown in Figure 1a.
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Figure 1. (a) The equipment of the wearable sensor device to receive data during walking. (b) Five
sensors’ positions in the insole sheet.

The first step is the procedure for collecting the five sensor values during human
walking. The sensor values are transmitted using wires through a computer. It is necessary
to collect data with wires because using a wireless data storage method would cause a
delay in data transmission and might cause the loss of essential force data. Therefore, it
is necessary to collect the sensor value data with wires, and a complete set of parameters
is required to observe each sensor’s rate of change. A wire we used was a micro-USB
type B connecting to USB 2.0 Type-A with a length of 3 m, which was connected to the
microcontroller board to send data to the computer.

2.2. Participants and Experimental Procedures

The gait experiment was conducted on two adult females and three males, 26± 3 years
of age, who were 165 ± 3 cm in height and 53 ± 2 kg. In terms of recorded data, all
participants were tested while standing still for 10 s and then walked on a treadmill at
speeds from 1 to 8 km/h. There are seven phases of the gait cycle that we were interested
in collecting—stand, heel strike, foot flat, midstance, heel off, toe-off, and swing—as shown
in Figure 2. The recorded data were sent to a PC using the JAVA telemetry viewer to collect
the sensor values while walking. It can collect 100 sensor values per second.
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Figure 3 shows an example of measured signals from five sensors (S1–S5), which are
raw force sensor signals, unfiltered. During the walking test, it can be seen that each
sensor received the same pattern in each walking cycle. The collected force sensor signal
was analyzed and filtered through MATLAB to divide the force sensor signal into seven
segments. The seven segments are the seven phases of the walking cycle that we were
interested in collecting. We divided the sensor signal using a sampling rate of 20 Hz, and
we performed the mean range of the data at each sampling to divide each data into seven
segments, as seen in Figure 4. After filtering through MATLAB, some data were used as a
training dataset labeled in the machine learning kNN, and some data were used to find
the best k value that is most suitable for our algorithm. We used the Arduino IDE and the
classified intent onboard ESP-WROOM-32 with Bluetooth 4.2 MCU module and 16 Mb flash
memory. This work obtained the ethics committee approval from the human research from
Suranaree University of Technology (License EC-64-30 COA number 67/2564). This work
was supported by Suranaree University of Technology (SUT), Thailand Science Research
and Innovation (TSRI), and the National Science Research and Innovation Fund (NSRF)
(NRIIS number 42852), and all participants provided written consent for this study prior
to participation.
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2.3. K-Nearest Neighbor Classification

K-nearest neighbor (kNN) classification is one of the simplest machine learning algo-
rithms based on the supervised learning technique. It is widely used in data classification,
pattern recognition, picture classification, and other fields [16]. The kNN algorithm stores
the entire training dataset and reclassifies the data points according to the distance between
every two points for k neighbors using the Euclidean distance function. This distance
function is often modified by scaling the attribute so that the spread of the attribute values
across dimensions is approximately the same. This formula can calculate the closeness of
all training data points to the data points one is trying to label and use the mean of the
nearest neighbor k to predict as expressed in (1).

Dist(p, q) = Dist(q, p) =

√
n

∑
i=1

(qi − pi)
2 (1)

One of the many issues that affect the performance of the kNN algorithm is the choice
of the hyperparameter k. If k is too small, the algorithm would be more sensitive to
overfitting data points. If the value of k is too large, then the model will be inflexible. For
example, if k = N (the total number of data points), the model will just dumbly blanket-
classify all the test data as the mean of the training data. Moreover, the number of k should
be odd to avoid decision problems in the case of two equal classes.

In this study, we collected walking data using five pressure sensors (S1–S5) to train
in the k-nearest neighbor algorithm. The training data has seven groups named stand,
heel strike, foot flat, midstance, heel off, toe-off, and swing. Each class has 70 labeled
training sets, so the total is 490 labeled training sets. Additionally, we performed experi-
ments to see which k value is the most suitable for our algorithm and provides the most
effective prediction.

2.4. Distance Weighted kNN Algorithm

A distance weighted kNN algorithm or weighted voting is weighted based on cal-
culated similarity. This means that more similar data have a more significant impact on
answer formulation than less similar data, solving the problem of prediction errors due to k
being too high or too low. As defined in the equations below, it makes the computational
model more accurate. Each of our scores has to be weighed in each class. For neighbor k,
we sort the distances in ascending order, e.g., d1, . . . , dk, where d1 is the smallest distance,
dk is the furthest distance, and di is the original distance of each point. Then, whatever
type of total weights the most, let the test point be that class.

wi =

{
dk−di
dk−d1

i f k 6= 1
1 i f k = 1

(2)

After completing the implementation of this equation, a new distance weighted value
of each class will be acquired, and then we can see which group or which class has the
largest distance weighted value. Finally, the algorithm predicts that the test point is of
that class. Thus, in this paper, we used this distance-weighted kNN to help in terms of
improving predictive performance and making walking cycle detection better. Moreover,
using a distance-weighted k-nearest neighbor can reduce the number of errors during
prediction and make the kNN algorithm work even faster.

2.5. Calibration System

In research analysis of gait cycles or gait phases, physical problems of the wearer
are often identified, such as the wearer’s weight affecting the gait cycle detection. This is
because most of the algorithms rely primarily on the force of the sensor to detect the gait
phase correctly. The weight of the wearer affects the strength of the sensor, and may cause
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false detection [17,18]. We have added a calibration system to our wearables to solve this
problem. It automatically adjusts the weight on the sensor at the touch of a button.

The schematic of the gait analysis system with a calibration system for controlling
the transtibial prosthetic is illustrated in Figure 5 Our devices have LED lights that show
all three working states. A red LED means that our wearable device is still unable to
connect via Bluetooth with the prosthetic foot. The green LED means the wearable device
is successfully connected to the prosthetic foot, and the orange LED indicates that the
calibration is in progress. In the process of calibration, when the switch is turned on, the
wearer must be in the standing position and press the button. Then, the orange LED is
turned on, which means the calibration system is working. Then, the wearer waits until the
orange LED turns green. Then, the wearer can start walking. The data of each force sensor
are taken to the k-nearest neighbor algorithm to predict the gait cycle phase. Then, the
predicted data are transmitted to the prosthetic foot for control via a Bluetooth connection.
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3. Results and Discussion

The experiments were conducted on a self-collected dataset that consists of the sensor
values gathered from five individuals. One-hundred and forty samples were created for
a single person. This, there are in total 700 samples. We split the data into training and
testing sets. The training set has 70% of the complete data (490 labeled training sets), and
the testing set has 30% of the dataset (210 labeled training sets). Then, each sensor value
was analyzed and taken into the kNN process to predict seven gait phases, i.e., stand,
heel strike, foot flat, midstance, heel off, toe-off, and swing, using the Euclidean distance
function.

The experimental results can be divided into four essential parts. First is the optimal k
value for our kNN algorithm, find each gait stage’s classification accuracy with optimal
k, the walking speed that affected the accuracy of kNN prediction, and the time delay for
controlling transtibial prosthesis via Bluetooth connection.

Figure 6 shows the prediction accuracy result of the kNN algorithm with different
k values. As seen in Figure 6, the selected k value significantly impacts the accuracy of
the gait phase prediction in the k-nearest neighbor algorithm. In the beginning, the value
of k = 1 had a prediction accuracy of 80.95%, k = 3 had a prediction accuracy of 81.43%,
and k = 5 had a prediction accuracy of 76.19%. After that, it can be seen that the larger
the k value, the lower the prediction accuracy. Hence, the most suitable value of k in the
k-nearest neighbor algorithm is k = 3. That means our kNN algorithm will retrieve every
three data points closest to the test point by using the Euclidean distance equation.
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Table 1 shows the gait classification accuracy for each gait phase using k = 3. It can be
seen that the swing phase had the highest forecast accuracy (100.00%) because the swing
phase is distinguished by its distinct signal. The feet are elevated in the swing action, and
just a small amount of force is imparted to the sensors at the bottom of the foot. That means
the sensors in S1, S2, S3, S4, and S5 will be subjected to a small amount of force. As a result,
the swing phase is simple to learn and has high prediction accuracy via machine learning.

Table 1. Gait classification accuracy with k = 3.

Gait Cycle Precision Recall F1-Score Accuracy (%)

Stand 0.750 0.700 0.724 70.00
Heel Strike 0.875 0.933 0.903 93.34

Foot Flat 0.880 0.733 0.800 73.33
Midstance 0.606 0.667 0.635 66.67
Heel Off 0.846 0.733 0.786 73.33
Toe Off 0.778 0.933 0.848 93.34
Swing 1 1 1 100.00

The second highest prediction accuracy was a tie for heel strike and toe-off, for which
we achieved 93.34%. Both phases are equally accurately predicted because both have the
same sensor value characteristics, just in different positions. In other words, both the heel
strike phase and the toe-off phase have similar sensor signal formats, but the heel strike
phase is a gesture of placing weight on the heel, so the signal strength of S5 is noticeably
higher than that of the other sensors (S5 >>S1, S2, S3, S4). Similarly, the toe-off phase is
a gesture of putting weight on the toe, causing the signal strength of S1 to be noticeably
higher than the signal strength of the other sensors (S1 >>S2, S3, S4, S5).

The stand and midstance phase prediction accuracies were 70.00% and 66.67%, respec-
tively. This is because these two phases have the same characteristics, e.g., foot position,
ankle angle, and force plantar load. Moreover, they have the same force acting on the S1
≈ S2 ≈ S3 ≈ S4 ≈ S5. For this reason, machine learning finds it difficult to predict these
phases because the two datasets are similar to each other. However, since both phases have
the same angle of motion of the ankle, it does not affect the algorithm in the control of
prosthetic feet.

The last are foot flat and heel off phases. Both phases had a prediction accuracy
of 73.33%. As humans are very fast walkers, both phases are part of the junction phase
between the primary phase. The main phases are heel strike, midstance, and toe-off, but
the foot flat phase is the junction phase between heel strike and midstance. Similarly, the
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heel off phase is the junction phase between midstance and toe-off. The wearer’s walking
speed increasing may cause cross-phase prediction of these two junction phases to occur.

Cross-phase prediction is one of the error predictions. Predicting the phases in the
gait cycle is usually done in the following order: heel strike, foot flat, midstance, heel off,
toe-off, and swing. “Cross-phase prediction” is predicting the gait cycle phases earlier than
the actual phase. For example, if now it is heel strike phase and the next phase that should
be predicted is foot flat, the algorithm could predict midstance instead. It can be seen that
the algorithm predicts one phase too early, which is called cross-phase prediction.

Overall, the predictive accuracy of each phase of human gait is an essential variable in
prosthetic foot control because the prosthesis is designed to control the angle of the ankle
to move up or down according to the phase that machine learning can predict. The highest
prediction accuracy of each phase will make the prosthetic foot control be more smooth and
more effective. However, suppose the prediction is low accuracy, or there is a prediction
error or cross-phase prediction. In that case, the prosthetic foot will not be able to move as it
should and will make the wearer of this prosthetic leg unable to walk easily. In the overall
results of our individual gait classification accuracy, each phase has a prediction accuracy
within the range that the prosthesis could be efficiently controlled without problems.

Nevertheless, the walking speed will affect the prediction performance of the kNN
algorithm. Walking speed is one of the major issues in research detecting gait events [19–22].
Most algorithms tend to cross-predict or are unable to predict at all. Therefore, in this work,
we focus on real-time gait phase detection research using wearable sensors for the transtibial
prosthesis that can only support normal human walking or approximately 1.4 m/s.

In the experiment on walking speed, we tested the accuracy of predicting gait cycles at
different speeds by having subjects walk on a treadmill. The speed ranged from 1 to 8 km
per hour. The experimental results are shown in Figure 7. It can be seen that the accuracy
decreases as the walking speed increases. The walking speed is divided into three parts:
slow (1–2 km/h), normal (3–5 km/h), and fast walking (6–8 km/h). First of all, during
slow walking, predicting gait cycles was very accurate, in the range of about 90.00–100.00%,
because when walking at a slower speed, the gait cycle phase change will also be slow.
Furthermore, sensors at the bottom of the foot can perfectly capture the pressure of each
gait cycle. This enables machine learning to process and predict gait cycles efficiently.
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The next phase covers the range of normal human walking speeds. As seen in Figure 8,
the results show that there is still high prediction accuracy during this normal walking, but
worse than for slow walking. The accuracy of this range is in the range of 85.14–97.43%. For
the fast walking speed, the accuracy is 30.71–70.81%. The accuracy in this range of walking
speeds is significantly worse compared with slow and normal walking. At a walking
speed of 6 km/h, the prediction accuracy is just 70.81% because the model can predict
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only primary phases, such as heel strike, midstance, heel off, stand, and swing; and much
cross-phase prediction occurs, e.g., of foot flat and heel off phases.
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The kNN algorithm results in cross-prediction of foot flat and heel off phases. This
will not have much impact on transtibial prosthetic control because the primary phase is
still predictable. Foot flat and heel off phases just will help control the transtibial prosthesis
for smooth flow of walking. When the walking speed reaches 7–8 km/h, it can be seen
that the prediction accuracy gradually decreases. As at such speeds, the kNN algorithm
predicts foot flat and heel off phases incorrectly, including wrongly predicting the main
phases, which would significantly affect foot control. As a result, the prosthetic foot could
not move according to the gait phases as it should. From the previous results, it can be
concluded that walking speed affects the gait cycle prediction algorithm. The faster the
wearer walks, the more errors in the predictions [23,24]. As a result, the kNN algorithm in
this paper can control the prosthetic foot effectively at up to 6 km/h.

Figure 8 shows the results of each gait phase prediction at a walking speed of 6 km/h.
There were errors at the start of the gait cycle known as cross-phase prediction at this speed.
Most likely, the algorithm will begin to predict erroneously in the foot flat phase. Foot flat
is often predicted as midstance, and heel off is often predicted as toe-off due to the walking
speed. The walking speed makes the sensor installed in the insole area unable to receive
the value in that phase immediately. This makes the processing of kNN algorithms through
the microcontroller board unpredictable. At this speed, it can be seen that most gait phase
predictions are accurate, and the accuracy of gait cycle prediction is very high. However,
cross-phase prediction occurs between foot flat and heel off phases at this speed, which are
junction phases between the primary phases. That would not affect transtibial prosthetic
foot control. For the speed of 7–8 km/h, the kNN algorithm made a lot of prediction errors
in multiple phases, including junction and primary phases. That means the kNN algorithm
cannot operate at this walking speed and would be unable to control a prosthetic foot. Thus,
our algorithm can support a maximum human walking speed of 6 km/h. It can control a
prosthesis effectively at that speed.
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For the real-time implementation—controlling a transtibial prosthesis—two esp-
wroom 32 microcontroller boards were used. One was attached to the leg with a wearable
device to run the kNN algorithm for phase prediction and send the phase shift data of
the gait cycle to the esp-wroom 32, which was attached to the transtibial prosthetic leg to
receive data and use the data of phase change to control the prosthesis. We sent the data via
Bluetooth connection, causing a delay and the computation time shown in Figure 9. The
black line represents when the actual data were sent from the insole device to the prosthesis
for control. The red line indicates when the prosthesis responded to the signal sent by
the insole device. The brown dashed line represents the range of responses to the signals
produced by the prosthetic foot.
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With the actual data transmission time and the length of time the prosthesis takes to
respond, there is an approximately average delay of 15 ± 2 ms, which is an acceptable
delay for receiving data and would not affect the control of the prosthesis.

Excessive Bluetooth transmission delay values can significantly impact prosthetic
control if there is too much delay. Although the algorithm is very accurate at predicting
gait cycles, the prosthesis could not move according to the prediction of gait cycles if there
were a large delay [25–28]. It will make people with disabilities unable actually to use this
prosthetic leg.

4. Conclusions

A wearable device has been developed in this work. Five pressure sensors are attached
to the bottom of the insole sheet to receive the force exerted on the foot while walking.
The wearable device can perform real-time prediction of the gait cycle regarding seven
phases—stand, heel strike, foot flat, midstance, heel off, toe-off, and swing—using the kNN
algorithm. The experiment consisted of slow walking (1–2 km/h), resulting in 90–100%
prediction accuracy; normal walking (3–5 km/h), resulting in 85.14–97.43% prediction
accuracy; and fast walking (6–8 km/h), resulting in 30.71–70.81% prediction accuracy.

The insole device has a wireless data transceiver operating with a low delay of
15 ± 2 ms. This device uses little power and is small, lightweight, and wearable. Moreover,
the proposed gait analysis technique is unaffected by the physical conditions of the wearer.
Therefore, the device can be applied with a transtibial prosthesis to efficiently control it.
However, there is still a limitation: walking speed. Our algorithm can support a maximum
human walking speed of 6 km/h.

For future work, we will use a 3D vision system to assess the accuracy of the gait
detection technique proposed in the present study and also design equipment that is more
comfortable to wear.
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