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Quantum sensing of strongly coupled light-matter
systems using free electrons
Aviv Karnieli1†, Shai Tsesses2†, Renwen Yu3†, Nicholas Rivera4,5, Zhexin Zhao3, Ady Arie6,
Shanhui Fan3, Ido Kaminer2*

Strong coupling in light-matter systems is a central concept in cavity quantum electrodynamics and is essential
for many quantum technologies. Especially in the optical range, full control of highly connected multi-qubit
systems necessitates quantum coherent probes with nanometric spatial resolution, which are currently inacces-
sible. Here, we propose the use of free electrons as high-resolution quantum sensors for strongly coupled light-
matter systems. Shaping the free-electron wave packet enables the measurement of the quantum state of the
entire hybrid systems. We specifically show how quantum interference of the free-electron wave packet gives
rise to a quantum-enhanced sensing protocol for the position and dipole orientation of a subnanometer emitter
inside a cavity. Our results showcase the great versatility and applicability of quantum interactions between free
electrons and strongly coupled cavities, relying on the unique properties of free electrons as strongly interacting
flying qubits with miniscule dimensions.
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INTRODUCTION
Strong coupling between light and matter systems (1, 2) occurs
whenever the rate of their energy exchange exceeds their combined
energy loss (3, 4), resulting in hybrid light-matter eigenstates called
polaritons (5). This ubiquitous phenomenon has been observed in a
wide range of material systems and photon energies (6–10), and in
extreme cases, the coupling energies can even reach or exceed the
matter and photon energies (11–13). Strong coupling is a deeply in-
grained property of cavity quantum electrodynamical (CQED)
systems, central to various quantum technologies including
quantum computation (14, 15), simulation (16), communication
(17), and sensing (18, 19). The latter allows for quantum-enhanced
measurement of displacement (20) or frequency (21), as well as ac-
curate reconstruction of the quantum state, if the probe itself is
quantum (22).
Current methods for characterizing strongly coupled systems are

usually based on optical probes, measuring, e.g., reflection (5),
transmission (6), luminescence (23), or scattering (9). That said,
the finite spatial extent of a photon (set by the diffraction limit),
as well as its transverse polarization, inherently limits information
that can be read off of a single emitter (9), such as its position or
dipole orientation. Hence, optical probes are typically limited to
measuring ensembles of strongly coupled systems. A way to fully
characterize strongly coupled systems would have to simultaneously
have sufficient spatial resolution while coherently probing the
quantum state of the full light-matter system.
In recent years, free electrons have become increasingly appeal-

ing in integrated photonic and nanophotonic systems (24, 25),

owing to their subnanometer spatial resolution, allowing detailed
probing of subwavelength optical fields. Furthermore, advances in
electron energy loss spectroscopy (EELS) reaching few millielectron
volt resolution (26) has recently allowed the measurement of the
Rabi splitting of cavity polaritons (27, 28). Besides their unmatched
spatial resolution, free electrons can also serve as quantum-coherent
probes. Ultrafast electron microscopy experiments demonstrated
coherent interactions of free electrons and light (29–34) and were
also used to probe its quantum photonic nature (35–38).
On the other hand, the idea to use free electrons for coherent

interactions with bound electrons was only proposed recently
(39). This idea spawned substantial interest and follow-up work
(39–44), for example, the proposal to use free electrons for measur-
ing the quantum state of bound-electron systems (40, 42). However,
nowork so far investigated the coherent and simultaneous quantum
interaction of a free electron with strongly coupled systems of light
and matter. These interactions can bring insight on inaccessible
regimes of CQED (for example, ultrafast imaging of rapid Rabi os-
cillations), with the vision of deep-subwavelength quantum sensing
protocols of strong coupling and the coherent measurement of
quantum states of hybrid light-matter systems.
Here, we show how a free electron can be used as a new type of

quantum sensor, directly inferring the quantum information em-
bedded in a strongly coupled light-matter system. We demonstrate
how a free electron can sense the parameters of the system Hamil-
tonian, including the complex relative phase of the coupling coeffi-
cients. With this capability, we propose a quantum-enhanced
sensing protocol for measuring the position and dipole orientation
of an emitter inside a cavity. Using shaped free-electron wave
packets, we exemplify a scheme to measure the polaritonic
quantum state, comprising both the emitter and the field within
the cavity. Our results showcase the great versatility and applicabil-
ity of quantum interactions between free electrons and strongly
coupled light-matter systems, relying on the unique properties of
the free electron as a strongly interacting flying qubit with miniscule
dimensions. We note that the related, complementary paper of Lim
et al. (43) was released simultaneously with our work.
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RESULTS
Theoretical model
We first describe our unified theory for the quantum three-particle
interaction of a free electron, a bound electron, and a photon in a
single-mode cavity. Assuming that the bound-electron system is a
two-level emitter, we can readily use the Jaynes-Cummings (JC) (45,
46) and the free-electron bound-electron resonant interaction
(FEBERI) (39–41, 47) models for its coupling to the cavity
photon and the free electron, respectively. The coupling of the
free electron and the cavity photon is generally captured by the
quantum photon–induced near-field electron microscopy
(QPINEM) (35, 37, 48, 49) model. This simplified interaction sce-
nario can be extended to include a wide range of models for the
emitter-cavity system, including the quantum Rabi model (50, 51)
in the case of ultrastrong light-matter coupling (52), the Dicke
model (53) in the case of an emitter ensemble, or the Hopfield
model (54) for collective matter excitations. The latter model can
be used instead of the JC model, for example, in dielectric micro-
and nanocavities, thus generating a larger Rabi splitting.
By definition, the optical cavity (mode energy ℏω) can be occu-

pied by integer multiples of photons, while the two-level emitter
(with an energy level difference equal to ℏω) can only be found in
the manifold of its two energy eigenstates. In the absence of strong
coupling, the free electron can exchange energy quanta with either
the cavity mode or the emitter, thus increasing or decreasing its
energy by integer multiples of ℏω and giving rise to a typical two-
sided infinite energy ladder spectrum (illustrated in Fig. 1A). We
denote the dimensionless coupling constants between the free

electron and the emitter as gea (from here onward, a subscript “a”
will stand for a two-level “atom,” although any type of two-level
emitter can be considered, and the subscript “e” will denote the
free electron) and between the electron and photon as gep (where
the subscript “p” denotes the photon). The coupling between the
emitter and the cavity is given by the vacuum Rabi frequency Ωap,
arising from the JC model. The resulting three-particle interaction
and its three interaction parameters are summarized in Fig. 1.
Figure 1A presents an illustration of the strongly coupled light-

matter system of a single emitter and a single-mode cavity probed by
a quantum free electron. The example in Fig. 1A is of a molecular
emitter placed between a plasmonic nanoparticle and a mirror (9).
Our model can be implemented using various other optical cavities,
such as dielectric microcavities (10, 55, 56), photonic crystal cavities
(57–59), or other plasmonic nanocavities (9, 60–65). Our results
below will be focused on deep-subwavelength cavities (9, 57–64)
having a large Rabi splitting on the order of 0.1 eV (9, 62–64)
[these values were recently observed using EELS (28)] and whose
large field confinement can readily compensate the typical free-elec-
tron–photon momentum mismatch. We first consider an ideal,
lossless cavity for the sake of simplicity. In the last section of this
paper, we show that the incorporation of cavity losses needs not
alter the main conclusions of our work.
The JC model results in an anharmonic energy ladder of the

strongly coupled system within the cavity, wherein each bare cavity
energy level is split into two hybrid, light-matter branches: upper
and lower polaritons (see inset Fig. 1A). The system has a ground
state ∣g,0⟩ and excited states jn+i ¼ ðjg; ni+ je; n � 1iÞ=

ffiffiffi
2
p

of

Fig. 1. Coherent free-electron interactionswith strongly coupled cavity systems. (A) A free-electronwave function passes by a cavity hosting a single-mode light field
and a single emitter [here, without loss of generality, illustrating a molecule in a nanoparticle-on-gold configuration (9)]. The couplings between the electron and light,
electron and matter, and matter and light, are gep, gea, and Ωap, respectively. These coupling constants characterize three distinct physical phenomena that are typically
considered in isolation: QPINEM is characterized by gep; FEBERI is characterized by gea; CQED is characterized by Ωap. Here, these effects occur simultaneously and are
coupled to each other. Insets show the cavity polariton states and the energy spectrum in the JC model used to describe the interaction of a two-level system with a
single-mode cavity. (B) Effective Feynman diagrams illustrating the free-electron (blue solid lines) interaction with the cavity polaritons (violet and green wavy lines):
Spontaneous emission, absorption, and scattering of polaritons are depicted. Note the anharmonic energy changes experienced by the free electron. (C) Proposed
experimental setup in ultrafast transmission electron microscopy (UTEM), with input/output (I/O) quantum light impinging at, or extracted from, the sample where
quantum interference will be manifested in the measured electron energy loss spectrum (EELS) .
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frequencies ωn+ ¼ nω+
ffiffiffi
n
p
Ωap, where n = 1,2, … is the number of

photons in the cavity. The separation between polariton energies
(the Rabi splitting) as a function of the Rabi frequency is depicted
in the inset of Fig. 1A. When interacting with the cavity, the free
electron spontaneously emits and absorbs polaritons and performs
stimulated emission of polaritons and scattering (most dominantly
of the same branch), as depicted by the Feynman diagrams in
Fig. 1B. In contrast with the conventional case of free-electron in-
teraction with a bare cavity (35), here, the resulting free-electron
energy ladder displays uneven spacings, owing to the many possible
energy transitions between different polaritonic states.

In what follows, we use a split-step numerical simulation solving
for the dynamics of our three-particle system under the interaction
Hamiltonian. The three parts of the system are the free electron
[energy ladder operators bq; byq for electron recoil ℏq (35)], the
emitter (raising and lowering operators σ+, σ−), and the cavity
photon (annihilation and creation operators a, a†). These are
coupled by the interaction Hamiltonians
Hep ¼ iv

Ð
dqgepðqÞab

y
q þ h:c: (electron-photon coupling),

Hea ¼ iv
Ð
dqgeaðqÞσ� b

y
q þ h:c: (electron-emitter coupling), and

Hap = Ωapσ+a + h.c. (emitter-photon coupling). The three

Fig. 2. Electron energy loss and quantum interference following spontaneous polariton emission. (A) Schematic depiction of the coherent interaction between a
free electron and a strongly coupled cavity, with the electron coupled simultaneously to the light and the emitter. The polariton emission probability then demonstrates
interference between the two interactionmechanisms. (B) Simulated EELS (log scale) presented formultiple combinations of the three coupling constants, where gep and
gea are both real valued and positive. The structure of the anharmonic JC energy ladder (Fig. 1A) is recovered, showing distinct polaritonic branches. Note the asymmetry
(marked in white arrows) between polariton branches when gep and gea have similar magnitudes: As depicted in (A), this effect originates from quantum interference
between the two emission channels. (C) Simulation of spontaneous polariton emission peaks as a function of the relative phase ϕ between gep and gea for the case ∣gep∣ =
∣gea∣ = 0.1 andΩap = 0.1ω (see Eq. 1). The first-order polariton emission agrees with the perturbative analytic solution (Eq. 2). Our full simulations unveil similar oscillation
also in the higher-order polariton emission. Cavity length of 50 nm, photon wavelength of 532 nm, zero emitter-cavity detuning, initial electron energy E0 = 200 keV, and
energy uncertainty of the zero-loss peak (ZLP) of 50 meV.
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complex coupling constants gep, gea, and Ωap are given by

gepðqÞ ¼
e
h� ω

ð

dze� iqzEzðre; zÞ ð1AÞ

geaðqÞ ¼
1
h� v

ð

dze� iqzVeaðre � ra; zÞ ð1BÞ

Ωap ¼ �
1
h�
d� EðraÞ ð1CÞ

In the above definitions, e, v, and z are the electron charge, ve-
locity, and propagation coordinate, respectively; EðrÞ is the cavity
mode envelope EðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ω=2ε0

p
uðrÞ, where u(r) is a normalized

mode function; re and ra are the free electron and emitter transverse
positions (transverse to z) inside the cavity; d is the transition dipole
moment of the emitter; andVea is an electrostatic interaction poten-
tial between the free electron and the emitter (39–41). The above
interaction Hamiltonians and couplings are given in their momen-
tum-space form; for the position-space representation, see the
“Real-space interaction Hamiltonians” section in Materials and
Methods. Sections S1 to S3 contain the full derivation of the dynam-
ics of the three-particle system.
From here onward, and without loss of generality, we shall

assume the Rabi frequency Ωap to be a positive real number. Of par-
ticular importance are the complex electron-photon and electron-
emitter coupling strengths, gep and gea, which describe the two
mechanisms that contribute to free-electron–polariton interaction.
In this work, unless explicitly stated otherwise, we consider typical
values of electron-photon couplings gep of the order of 10−3 and
maximal electron-emitter couplings gea of the order of 10−4 to
10−3 (see the “Typical coupling values” section in Materials and
Methods for details). Below, we harness the quantum interference
between these two coupling constants and their dependence on
electron and emitter positions within the cavity, which enable
quantum sensing schemes using the free-electron probe.

Sensing complex coupling strengths through quantum
interference
Resolving the magnitudes and relative phases of the coupling con-
stants for the two mechanisms that contribute to electron-polariton
interaction is what ultimately enables quantum sensing with free
electrons, and it is therefore our first objective. The basics of this
effect are portrayed in Fig. 2A. A free-electron wave packet interacts
with a strongly coupled light-matter system. The free electron can
coherently interact with the cavity polaritons through its coupling
with both the photon and the emitter. These two couplings can
create transitions of the initial electron-polariton states into the
same final state. When this happens, the two transition amplitudes
(coming from these two coupling mechanisms) can interfere.
More generally, these types of interference effects—on which we

base our proposed quantum sensing protocols—can also include a
synchronized excitation of the system by external light before the
free-electron probe. This can be realized, for example, in ultrafast
transmission electron microscopy (UTEM), as depicted in
Fig. 1C. In such experiments, a free electron is synchronously pho-
toemitted by a laser pulse and then focused at the sample plane con-
taining the strongly coupled cavity. Quantum light can either be

coupled into or out of the cavity, to excite or to be extracted from
the system, respectively. Following the interaction, the free electron
is subject to the EELS measurement, where the interference effect is
manifested.
To theoretically demonstrate this interference effect, we turn to

our fully quantum simulation. In Fig. 2B, we plot the simulated
EELS spectra following spontaneous polariton emission for differ-
ent coupling regimes, showcasing how a free electron can coherently
couple to several polaritonic branches simultaneously. In general,
we observe that when the Rabi frequency Ωap is increased, the
EELS peaks split by 2ℏΩap (see Fig. 2B), with the peaks correspond-
ing to the generation of upper and lower polaritons, respectively.
When one coupling dominates, i.e., ∣gep∣≫∣gea∣ (Fig. 2B, ii, iii, and
vi) or ∣gep∣≪∣gea∣ (Fig. 2B, iv, vii, and viii), the amplitude of each
peak is approximately proportional to the square modulus of the
dominant coupling constants. In this regime, the free electron
excites the upper and lower polaritons with comparable efficiency,
and thus, both polariton peaks are approximately equal in
amplitude.
However, we can consider the case when the two couplings gep

and gea are comparable in magnitude, which may be possible to
obtain when the free-electron–light coupling is weak [of the order
of 10−3 to 10−4; see (66)] and when the transition dipole moment
exceeds tens of debye. In this case, an asymmetry appears between
the excitations of the upper and lower polaritons (see Fig. 2B, i, v,
and ix). Because the upper and lower polariton eigenstates are en-
tangled superpositions of bare photonic and emitter states (with
phase differences of 0 and π, respectively), the emission of upper
polaritons is favored when gep and gea are in phase (gep = gea), as
depicted in Fig. 2A. The relative phase between the two coupling
constants is important as it determines the quantum interference
of the final free-electron energy states. The phase can be adjusted
in several ways: by changing the emitter dipole orientation, by
changing the relative position between the free-electron probe
and the emitter, and by changing the free-electron probe position
inside the cavity field. Another way of actively adjusting quantum
interference is to consider a preshaped electron, as discussed in an
ensuing section and in section S6.
To further investigate this effect, without loss of generality, we

set gep = ∣g∣ and gea = ∣g∣eiϕ and simulate the EELS as a function
of the relative phase ϕ. The results are depicted in Fig. 2C that
shows interference in the EELS peaks corresponding to spontane-
ous emission of upper and lower polaritons, evident in all the polar-
iton branches. This conclusion can also be arrived at analytically by
means of first-order perturbation theory (see section S5) with an
initial quasi-monochromatic electron of wave function ψel(E) =
∫dteiEt/ℏψ(z − vt) (in the energy domain), yielding a loss probability
of

plossðEÞ ¼ 2jgj
2
jψelðEþ h� ωþÞj2cos2

φ
2

þ 2jgj2jψelðEþ h� ω� Þj2sin2
φ
2

ð2Þ

Equation 2 shows a good agreement with the simulation results
for the emission of the first polariton pair. The numerical simula-
tion reveals a further phase offset and loss of visibility in the
quantum interference at higher-order processes (seen in the
second and third polariton pair emission, although they are
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considerably less efficient than the first-order process), owing to
their nonlinear dependence on the complex coupling coefficients.

Quantum-enhanced sensing protocol of emitter position
and dipole orientation inside a strongly coupled cavity
Equipped with the capability to coherently sense the electron-polar-
iton coupling, we now propose a way to exploit the resulting
quantum interference to characterize strongly coupled systems
with superior spatial resolution. Determining the position of sub-
nanometer emitters inside a cavity using an optical probe is a chal-
lenging task because of the diffraction limit. When using a free-
electron probe for this task, it is crucial to analyze the signal-to-
noise ratio (SNR) to find the detection limits. The SNR is limited
by the (usually low) inelastic scattering cross section between the
electron and the emitter (40, 41), by thermal noise (dark counts)
in the electron detector (67, 68) and by Poissonian shot noise in
the electron detector signal originating frommore dominant inelas-
tic scattering processes. To overcome the challenges coming from
these noise sources, we propose to use quantum interference
effects within EELS to allow quantum-enhanced sensing (18, 69)
of the emitter position and even its dipole orientation. Specifically,
we show in this section how energy-filtered imaging (70–73)
enables to extract this information with the spatial resolution of
electron microscopes.
Our sensing protocol relies on the quantum interference of the

electron wave function with itself and on the spatial dependence of
gep, gea, and Ωap. The same quantum enhancement (QE) factor
appears in two ways: (i) enhancement of the absolute signal level,
as compared to imaging a bare emitter in the absence of strong cou-
pling (important for surpassing detector thermal noise) and (ii) en-
hancement of SNR in the presence of shot noise, as compared to a
measurement that does not exploit quantum interference. Examples
for such measurements are the loss signal from either polariton
branch alone P1± and the total polariton loss signal Ptot = P1+ +
P1−. When the electron-photon coupling is much stronger than
the electron-emitter coupling, these observables will not exhibit in-
terference, and the emitter signal will be obscured by the shot noise.
Below, wewill compare the SNRof the total polariton loss signal Ptot
with the difference between polariton loss signals, Pdiff = ∣P1+ −
P1−∣, and show the advantage gained from quantum interference,
which plays a role only for Pdiff.
Figure 3 (A and B) illustrates the proposed experimental scenar-

io. We consider a nanoscale emitter coupled to an optical cavity and
located at ra. A free-electron beam at a varying lateral position re
scans over the whole system, as can be done routinely in scanning
transmission electron microscopes. We are interested in showing
how the resulting spatially dependent EELS can demonstrate en-
hanced sensing for different emitter locations. We first reiterate
that the total electron energy loss probability Ptot, which integrates
over the two polariton EELS peaks, shows no interference effects (as
discussed in section S6.C). Rather, the sensing protocol we describe
relies on the difference Pdiff = ∣P1+ − P1−∣ between the upper and
lower polaritonic electron loss probabilities. In Fig. 3, we assume
that the scan is performed using an ensemble of N identical mono-
energetic electrons with an initial wave function ψel(E) and intro-
duce Poissonian noise in the calculated energy-filtered images, as
is usually the case for electron spectrometer cameras (74). Each elec-
tron interacts independently with a ground-state cavity ∣g,0⟩, i.e., the
time between consecutive electrons is much larger than the cavity

polariton lifetime. After the interaction, we measure EELS and
observe the first two polariton peaks (similarly to Fig. 2B). The dif-
ferential signal Pdiff is analytically calculated using first-order per-
turbation theory (see detailed derivation in section S6) and is
proportional to an interference term between the two emission
mechanisms, namely

PdiffðrejraÞ ¼ 2jRe½gepðreÞg
�
eaðre � raÞ�jerf

h� ΩapðraÞ
ffiffiffi
2
p
Δε

� �

ð3Þ

In the above equation, we assume that ψel(E) is Gaussian, Δϵ is
the electron energy uncertainty, and erf denotes the error function
(as discussed in the final section of this paper, incorporation of
cavity losses may broaden the EELS peaks beyond Δϵ, depending
on the cavity lifetime). In the more common case where the elec-
tron-photon coupling is larger than the electron-atom coupling
(here, we again consider gep of the order of 10−3 and a maximal
value of gea of 10−4), the signal in Eq. 3 resembles a homodyne am-
plification wherein the strong electron-photon interaction gep takes
the role of a local oscillator, gea acts as the amplified signal, and the
free electron acts as the beam splitter.
The QE factor of the difference signal Pdiff of Eq. 3, over the total

signal Ptot, is given by

QE ¼
jgepj
jgeaj
jcos½argðgepg

�
eaÞ�jerf

h� Ωap
ffiffiffi
2
p
Δε

� �

ð4Þ

The above equation has implicit dependence on the electron and
emitter positions through the coupling coefficients. Maximal QE is
achieved at ra = re and when gep and gea are in phase (we note that the
latter requirement can be relaxed by using a generalized sensing
protocol using shaped free electrons and an excited emitter, reach-
ing themaximal value of QE for any value of argðgepg

�
eaÞ. For details,

see the subsequent section, section S6.D, and eq. SI16.16). Figure 3C
plots Eq. 4 against the ratios ∣gep/gea∣ and ℏΩap/Δϵ for an ideal case
of argðgepg

�
eaÞ ¼ 0 or π. The white dashed line marks the transition

to QE > 1, requiring that the electron-photon coupling will be stron-
ger than the electron-emitter coupling (∣gep∣ > ∣gea∣), and that the
two polariton peaks could be resolved by EELS, namely, that
ℏΩap > Δϵ. When losses are present, the latter condition should
be amended such that the Rabi splitting is larger than the total
broadening caused by both the electron energy uncertainty and po-
lariton linewidths (as discussed in the final section and in
section S7).
To illustrate the quantum-enhanced signals, Fig. 3 (D and E)

depicts two-dimensional (2D) scan images of the total (Fig. 3D)
and differential (Fig. 3E) signals, as calculated analytically, and in
the presence of shot noise. A ratio of ∣gep∣/∣gea∣~10 was assumed,
as well as an out-of-plane emitter dipole moment (i.e., pointing
along the electron propagation direction), with argðgepg

�
eaÞ ¼ 0

and N = 109 electrons. If one were to use the total signal Ptot for
imaging, then the emitter signalN∣gea∣2 would have been completely
obscured by the background shot noise

ffiffiffiffi
N
p
jgepj (Fig. 3D, i). For a

bare emitter (Fig. 3D, ii), the total signal level is more than an order
of magnitude weaker compared to the quantum-enhanced differ-
ence signal. The difference signal (Fig. 3E), on the other hand,
enjoys an enhancement factor given by Eq. 4 (see section S6 for der-
ivation), allowing an increase by ∣gep∣/∣gea∣~10 in SNR [Fig. 3E (i)
compared to Fig. 3D (i)] and in absolute signal level (compared
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to Fig. 3D, ii). Figure 3E(ii to vi) depicts the enhanced signal for
different emitter positions. The emitter is easier to detect when it
and the electron probe are placed near the center of the cavity re
= ra = 0, where both ∣gep∣ and Ωap are maximal. The contrast
reduces for emitters positioned away from the center. In the
absence of strong coupling (i.e., Ωap ≃ 0), the difference signal
Pdiff of Eq. 3 vanishes, whereas the total signal Ptot remains the
same. This fact indicates that strong coupling plays an essential
role in our quantum sensing scheme: Only in its presence can we
resolve the desired quantum interference.
The emitter position is not the only observable, whose detection

can be enhanced by the quantum interference: The proposed differ-
ential measurement is also sensitive to the emitter dipole orienta-
tion (direction of its transition dipole moment), as explored in

details below. This effect relies on the fact that the phase of the
complex electron-emitter coupling gea depends on the emitter’s
dipole orientation (see section S4) and that the enhancement (Eq.
4) is sensitive to this phase dependence through the
cos½argðgepg

�
eaÞ� term.

To show the quantum-enhanced detection of the emitter dipole
moment orientation, we performed numerical simulations of line-
scan imaging according to the above sensing protocol. We first
assume an in-plane emitter dipole moment. For an in-plane
dipole, the free-electron–emitter coupling gea is real valued, and
its spatial dependence resembles the derivative of a Lorentzian func-
tion (see section SI4) that vanishes at the emitter position. For the
homodyne-like QE, we require that argðgepg

�
eaÞ ¼ 0 or π (see Eq. 3),

and thus for an enhanced in-plane dipole signal, gep must also be

Fig. 3. Free-electron quantum-enhanced sensing of emitter position inside a strongly coupled cavity. (A) Schematic depiction of our quantum sensing protocol (re,
free-electron probe position; ra, emitter position). (B) Spatially dependent coupling strengths (explicit expression for gea given in section S4) as a function of the electron
position xe and for a specific emitter displacement (here, the emitter is located 12 nm from the cavity center, and its transition dipole was oriented along the z direction).
(C) QE as a function of the coupling ratio ∣gep/gea∣ and the strong coupling normalized by electron energy uncertainty ℏΩap/Δϵ, according to Eq. 4. White dashed line
marks the transition to QE > 1. (D and E) Analytically calculated 2D scan images in the presence of shot noise, assumingN = 109 electrons withmaximal ratios of ∣gep/gea∣ =
10 and ℏΩap/Δϵ = 4.7 (at re = ra = 0). White dashed circlesmark the cavitymode transverse envelope, andwhite arrowsmark the point-like emitter position. (D) Total signal
Ptot for two different cases: (i) an emitter situated at a cavity center and (ii) a bare emitter (no cavity). In (i), the emitter signal is obscured by the background noise, and in
(ii), the absolute signal level is an order of magnitude weaker than the quantum-enhanced signal. (E) Difference signal Pdiff for different emitter positions with increasing
distance from the cavity center. Comparing (E, i) with (D, i) and (D, ii), both the SNR and the absolute signal level are enhanced by a factor of ∣gep/gea∣ = 10. SNR degrades as
the emitter moves away from the center (ii) to (vi).
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real. As mentioned above, this requirement on argðgepg
�
eaÞ can be

relaxed by generalizing the sensing protocol (as detailed in the
next section and in section S6.D). In Fig. 4A, we plot the absolute
value of Pdiff(re∣ra) (solid curves), scanning the free-electron probe
position re along the radial direction of the optical cavity for differ-
ent emitter locations ra along the same radius. The enhancement
with respect to a bare emitter signal (black dashed curves) increases
markedly when the maximal value of gep is increased, as shown
in Fig. 4B.
When the emitter dipole moment is out of plane, gea is generally

weaker and becomes purely imaginary with a spatial dependence
that resembles a Lorentzian function (see section S4). If gep is real
valued, then this time argðgepg

�
eaÞ ¼ π=2, and thus according to Eq.

3, the differential signal vanishes. In Fig. 4 (C and D), gep is chosen
instead as purely imaginary to ensure quantum-enhanced sensing.
Thus, similar to the case of Fig. 4B, Fig. 4 (C and D) presents strong
quantum-enhanced signals Pdiff relative to the bare emitter signal.
The smallness of gea for an out-of-plane dipole allows for a strong
homodyne-like amplification already for a much weaker value of
gep. In Fig. 4E, we plot the position-averaged quantum-enhanced
signal Pdiff as a function of emitter dipole orientation angle Θ and
as a function of the phase of the electron-photon coupling gep, dem-
onstrating the direct sensitivity to the emitter dipole orienta-
tion angle.
We end this subsection by noting that similar interference fea-

tures could be predicted by a semiclassical theory, where one replac-
es the free-electron probe by a continuous charge density and the
light-matter system by a classical dipole inside an optical cavity.

The interference is then manifested in the difference signal Pdiff,
as optical interference of the reflected field back-acting on the
free electron. However, such a model is inherently limited as it
cannot capture important quantum features that we use in other
sensing protocols, as in the ensuing section (Fig. 5). These
include coherent free-electron wave function shaping (Fig. 5A),
quantum state interrogation (Fig. 5, B and C), photon statistics, en-
tanglement between the free-electron probe and the polaritonic
system, decoherence of quantum information, and higher-order
effects (Fig. 2). For these reasons, we choose here to provide a
fully quantum description to all of our quantum sensing protocols.

Sensing of polariton quantum states
The quantum interference effects we used thus far were for a
strongly coupled light-matter system initially in its ground state.
However, these effects can also be used when the system is excited
to a certain hybrid quantum light-matter state. In principle, the
excited state can be reconstructed by free-electron measurements
through preshaping of the electron wave packet, followed by elec-
tron energy measurement. To do this, consider two (or more) pos-
sible polaritonic transitions. Interference between the different
transition amplitudes is manifested in the electron energy spectrum
and allows access to the complex amplitudes of the initial polariton
state. Because the polariton is not directly measured, it is necessary
to avoid entanglement between the free electron and the polariton
following the transitions of interest. Because we measure only the
final state of the free-electron wave function, we discard any infor-
mation regarding the final state of the polaritons, such that

Fig. 4. Quantum sensing of emitter dipole orientation by free electrons. (A toD) Numerical simulations of the free-electron energy loss probability difference Pdiff as a
function of electron beam position re, scanned along the radial direction of the optical cavity (see schematics in Fig. 3A) for four different emitter locations ra: 2 nm (blue
curve), 6 nm (red curve), 10 nm (orange curve), and 14 nm (purple curve). The black dashed curve represents a reference loss probability of a bare emitter (no cavity)
located at ra = 2 nm. In (A), the dipole moment of the emitter is assumed to be along the radial direction (in plane). Here, we also assume a transversely Gaussian cavity
mode profile, resulting in the spatial dependencies of the coupling constants as gepðreÞ ¼ ηexpð� r

2
e=2σ

2Þ and ΩapðraÞ ¼ 0:1expð� r2a=2σ
2Þ, with σ = 10 nm and η = 0.001.

Panel (B) is the same as (A) but with η = 0.03, resulting in a 30-fold increase in QE. Panels (C) and (D) are the same as (A) and (B) but for an emitter dipolemoment along the
z direction (out of plane). In (C) and (D), we assume η = 0.001i and 0.03i, respectively, where an imaginary value for gep is needed in this case to enable quantum-enhanced
sensing. Cavity length of 10 nm, photon wavelength of 532 nm, zero emitter-cavity detuning, initial electron energy E0 = 200 keV, and energy uncertainty of 50 meV. (E)
Analytically calculated quantum-enhanced signal Pdiff (averaged over electron position and normalized) as a function of emitter dipole orientation angle, Θ (top inset),
and the phase of the electron-photon coupling gep for ∣gep∣ = 0.001 and ∣d∣ = 3.8 debye.
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quantum decoherence may limit the amount of information to be
extracted about the polaritonic initial state. This can be avoided,
however, by considering transitions from different initial states
that share the same final polariton state, such as the ground state.
To exemplify this concept, consider the polariton state

jψcavi ¼ cos
θ
2 j1þi þ eiζsin θ2 j1� i, defined by the angles ζ and θ.

This qubit state is of practical interest for quantum information pro-
cessing using CQED (17), constituting an entangled state of the
emitter and photon. Alternatively, one could write this state explic-
itly as a bipartite entangled state ∣Ψ⟩ = c+∣1g⟩ + c−∣0e⟩ and ask
whether the electron can infer the complex-valued coefficient c±.
We wish to measure the parameters ζ and θ using a preshaped
free electron in a superposition of two energies,
jψeli ¼

1ffiffi
2
p jE0i þ 1ffiffi

2
p jE0 � 2h� Ωapi having an envelope ψel(E). The

shaped free electron probes the system (Fig. 5A). We consider the
case of polariton absorption (electron energy gain) for which the
final state of the cavity is ∣g,0⟩ for both transitions. We calculate per-
turbatively the energy gain probability upon absorption of the single
polariton by the electron, yielding (for the typical case of ∣gea∣ ≪
∣gep∣ = ∣g∣)

pgainðEÞ ¼
1
4
jgj2sin2

θ
2
jψelðE � h� ωþ 3h� ΩapÞj2

þ
1
4
jgj2ð1þ sinθcosζÞjψelðE � h� ωþ h� ΩapÞj2

þ
1
4
jgj2cos2

θ
2
jψelðE � h� ω � h� ΩapÞj2

ð5Þ

The values of θ and ζ of the cavity state ∣ψcav⟩ can thus be inferred
from the gain probabilities. The above example is numerically ver-
ified using our simulation, as depicted in Fig. 5B, where we plot the

electron energy gain spectra for the above initial states and with dif-
ferent values of the angles θ and ζ, demonstrating the expected in-
terference. This simple scheme could also be used to reconstruct a
single-polariton mixed state ρcav. In addition, superpositions of
higher-order polaritonic states such as α∣n+⟩ + β∣n−⟩ could be re-
constructed using a similar interference mechanism, which neces-
sitates nth order polariton absorption and an initial electron energy
separation of 2

ffiffiffi
n
p

h� Ωap. To measure correlations between polari-
tonic states of different occupation numbers, one needs to consider
transitions that leave the cavity at an intermediate joint state and
adapt the free-electron wave packet shape accordingly.
As a final remark, we note that the sensing protocol based on

shaped free electrons can also resolve the temporal dynamics of ul-
trafast Rabi oscillations, using a temporal delay between the emitter
excitation and the electron arrival time in a UTEM setup (as depict-
ed in Fig. 1C). In this case, the phase angle of the excited quantum
state scales as ζ = 2Ωapτ, with τ denoting the arrival time delay,
where the modulation is seen on the central gain peak at E = ℏω
− ℏΩap. Further, and as detailed in section S6.D, by controlling
the time delay (or, equivalently, the relative phase in the initial
free-electron energy superposition state), one can extract from the
three energy gain peaks both real and imaginary parts of the
product gepg

�
ea, which was used to obtain the quantum-enhanced

signal of Eq. 3. In this manner, the condition on argðgepg
�
eaÞ for

achieving QE can be lifted altogether.

The effect of cavity losses
In realistic systems, and particularly in strongly coupled nanoplas-
monic systems, losses due to finite cavity lifetimes can be substan-
tial. We show in the “Incorporation of polaritonic losses” section in
Materials and Methods, that losses do not affect the main

Fig. 5. Sensing the quantum state of cavity polaritons using free electrons. (A) Schematic depiction of the interaction between a bi-energetic free electron (energy
separation 2ℏΩap) and a strongly coupled cavity hosting a single-polariton superposition state cosθ/2∣1+⟩ + eiζ sin θ/2∣1−⟩. The energy gain peaks can then reveal the
quantum state of the cavity. (B) Simulation of single-polariton absorption peaks, as a function of the angles θ and ζ defining the polariton state. Left (right): Energy gain
peaks for two values of fixed ζ (θ) as a function of θ (ζ). The central peak demonstrates interference with respect to both θ and ζ, while the outer peaks correspond to
interferencewith respect to θ. (C) Cross sections of the simulation scans in (B) (marked inwhite dashed lines) for a fixed value of θ (left) and ζ (right). Cavity length of 50 nm,
photon wavelength of 532 nm, zero emitter-cavity detuning, initial electron energy E0 = 200 keV, energy uncertainty of 50 meV, and coupling constants gep = 0.1, gea = 0.
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conclusions presented in the above sections. For the quantum
sensing of emitter position and dipole orientation based on sponta-
neous polariton emission, Eq. 10 in Materials and Methods shows
that the EELS peaks are broadened by the cavity linewidth, while the
transition amplitudes are still proportional to the coherent sum and
difference of the two complex coupling constants, as in Fig. 2A. To
resolve the two polariton loss peaks and obtain QE, one needs to
make sure that the Rabi splitting is not only larger than the electron
energy uncertainty (as in Eq. 4) but also larger than the combined
energy width broadened by the cavity linewidth.
Losses need not compromise the sensing of polaritonic states, too:

Eqs. 11-12 show that this quantum sensing protocol, based on polar-
iton absorption, is applicable also in the presence of losses, as long as
the peaks can be resolved considering the linewidth broadening dis-
cussed above. A preshaped electron wave function can still coherently
recover the polariton state, and the additional broadening due to
losses causes no fundamental change in our results.

DISCUSSION
We showed how free electrons can be used as a new type of quantum
sensor for strongly coupled cavity systems. By means of numerical
simulations and analytic calculations, we demonstrated that electron
energy spectroscopy can be used to measure quantum interference
between polariton emissionmechanisms. Moreover, shaped free elec-
trons can coherently sense the polariton quantum state inside an
excited cavity. The latter can be beneficial for readout of quantum in-
formation encoded in cavity polaritons (17) and its subsequent trans-
mission using free electrons (40–42, 75, 76). Using the same
mechanism, shaped free electrons can also resolve the temporal dy-
namics of ultrafast Rabi oscillations through the phase angle that
scales as ζ = 2Ωapτ, with τ denoting the electron arrival time delay.
Our work proposed a quantum sensing protocol for measuring

the spatial displacement and the dipole orientation of nanoscale
emitters strongly coupled to a cavity, leading to QE of both the de-
tected signal and its SNR. The enhancement is attributed to two
main factors: the strong coupling and entanglement between the
emitter and the photon, as well as the free electron’s ability to co-
herently and simultaneously interact with both constituents of the
light-matter system.
We expect that quantum sensing of strongly coupled cavities

using free electrons could be experimentally observed in modern
electron microscopes and particularly in UTEMs (29, 30, 34, 77–
79). Progress in scanning electron microscopes can now also use ul-
trafast microscopy techniques and EELS (80), thus broadening the
possible electron energy range for the proposed experiments. State-
of-the-art energy filters can be used to prepare electrons with tens of
millielectron volt energy spread, with certain EELS systems reaching
as low as fewmillielectron volt resolution (26, 81) [as used to resolve
strong coupling in recent experiments (27, 28)]. Furthermore, a
PINEM-type interaction (82, 83) followed by energy filtering
could be used to prepare the desired shaped electron required for
sensing of polariton quantum states.
The parameters assumed throughout the text are now becoming

accessible by progress reported in recent experiments pursuing ef-
ficient electron interactions with quantum photonic states of light
(37, 84) reaching the single-electron–single-photon regime (84).
While it was shown experimentally that free electrons can maintain
quantum coherence upon interacting with light (29, 30, 84, 85), we

still need polariton lifetimes and decoherence rates slower than the
Rabi frequency to ensure that the EELS peaks could be resolved.
Further improving the spectral resolution of future electron micro-
scopes can be used to resolve smaller Rabi splitting, as in the case of
single emitters embedded in dielectric nano- and microcavities.
As an extension to our work, phase-matched interactions (85) of

free electrons with strongly coupled microcavities could lead to
single-photon nonlinearities and photon blockade in electron-
photon interactions, as we recently reported (86). Going beyond
quantum sensing, we envision quantum information processing
and quantum communication between free electrons and cavities
(87) to become an important application for our theory. In that
sense, the additional polaritonic degree of freedom—for example,
an external coherent control over the emitter state—can extend
the possibilities of the emerging field of free-electron quantum
optics, which until recently considered interactions of free electrons
and bare cavities. The techniques reported in our manuscript, to-
gether with recent studies on the use of free electrons to entangle
distant cavities (87) or matter qubits (41), could be used to entangle
distant cavity polaritons as well when postselecting on the final elec-
tron energy. Postselection using coincidence detection of photons
and free electrons could now be made possible, thanks to a recent
experimental realization of coincidence measurements following a
quantum PINEM interaction (88). Furthermore, it will be interest-
ing to investigate ensemble sensing (18) using multiple entangled
qubits, where we envision the cavity being prepared in a polaritonic
N00N state to reach the Heisenberg limit. Alternatively, the use of
multiple-electron pulses and even entangled multiple-electron
states (35, 89) may prove useful for increasing the coupling strengths
and realizing entanglement-enhanced sensing.

MATERIALS AND METHODS
Real-space interaction Hamiltonians
The system Hamiltonian in free-space can be written as

H ¼ H0 þ Hprop þ HJC þHFEBERI þ HQPINEM ð6Þ

where

H0 ¼ h� ωayaþ
h� ω
2
σz þ E0 ð7Þ

is the free Hamiltonian (E0 denotes the electron carrier energy,
about which we Taylor-expand its kinetic energy operator), and

Hprop ¼

ð

dzψyðzÞð� ih� v@zÞψðzÞ ð8AÞ

HJC ¼ � d�� E�ðraÞσ� ay � d� EðraÞσþa ð8BÞ

HFEBERI ¼

ð

dzψyðzÞðV�eaðre � ra; zÞσ� þ Veaðre � ra; zÞσþÞψðzÞ

ð8CÞ

HQPINEM ¼

ð

dzψyðzÞ i
ev
ω
Ezðre; zÞa � i

ev
ω
E�zðre; zÞa

y
h i

ψðzÞ ð8DÞ

are, respectively, the free-electron propagation Hamiltonian, the JC
Hamiltonian, the FEBERI Hamiltonian, and the QPINEM
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Hamiltonian. Here, ψ(z), ψ†(z) are the real-space annihilation and
creation operators for the free electron in second quantization; v is
the carrier electron velocity; d is the (c-number) emitter transition
dipole; EðrÞ is the (c-number) cavity mode field envelope; re and ra
are, respectively, the (c-number) transverse positions of the electron
and the emitter inside the cavity; z and −iℏ∂z the electron longitu-
dinal position and momentum, respectively; σ± the emitter raising
and lowering Pauli operators; a, a† are the cavity mode ladder op-
erators; and Vea(r) = − d · ∇VCoul(r) is the effective potential of the
FEBERI interaction, with VCoul(r) = e/4πϵ0∣r∣ denoting the
Coulomb potential (e is the electron charge and ϵ0 is the vacuum
permittivity).

Typical coupling values
Unless stated otherwise, we consider typical values of electron-
photon couplings gep of the order of 10−3 based on the theoretical
and experimental study of Yang et al. (66) calculating electron
energy loss probabilities. We also note that in different geometries,
electron-photon couplings as high as 1 were experimentally ob-
served (84). We further consider maximal electron-emitter cou-
plings gea of the order of 10−4 to 10−3 for a transition dipole
strength of 3.8 debye for the molecule used in (9), with the exact
value depending on the transition dipole orientation, electron
beam focusing, and relative distance (impact parameter) between
the electron and the emitter [for explicit expressions, see section
S4 and (39–41)]. To test the effects of stronger electron-photon cou-
pling, gep of 0.1 was used in Figs. 2 and 5.

Incorporation of polaritonic losses
To incorporate losses, we solve our model dynamics perturbatively
where the evolution of the density matrix ρ is governed by the Lind-
blad equation

_ρ ¼ �
i
h�
½H0; ρ� þ γ

X

i
LiρL

y
i �

1
2
γLyi Liρ �

1
2
γρLyi Li ð9Þ

whereH0 is the unperturbed Hamiltonian of the whole system, with
Lindblad jump operators L+ = ∣0⟩⟨1+∣ and L− = ∣0⟩⟨1−∣ for the JC
model (90), having a decay rate γ. The perturbation is introduced
via the superoperatorV ¼ � i

h- ½H1; ð�Þ�, where H1 is the interaction
Hamiltonian between the free electron and the polaritons. Unlike
previous derivations in the literature involving EELS from slowly
decohering qubits (40, 44), here, we may not neglect the Lindbla-
dian during the interaction time. By moving to Liouville space
and formulating a Dyson series in terms of the superoperators, we
calculate the spontaneous emission probabilities and the absorption
probabilities as in the previous sections. The full derivation appears
in section S7. For the spontaneous polariton emission case, we find
that

pðEÞ ¼
ð

dεjψelðEþ εÞj
2
�
1
2
jgepþ geaj

2 1
π

h� γ=2
ðh� ωþ h� Ω � εÞ2þðh� γ=2Þ2

þ
1
2
jgep � geaj

2 1
π

h� γ=2
ðh� ω � h� Ω � εÞ2þðh� γ=2Þ2

�

ð10Þ

For the polariton absorption case, exciting a polariton at t = t0 to
the state jψipol ¼ cos

θ
2 j1þi þ eiζsin θ2 j1� i, we have (again for ∣gea∣

≪ ∣gep∣ ≡ ∣g∣)

pðEÞ ¼
jgj2

2
cos
θ
2
cþðEÞ þ sin

θ
2
eiζc� ðEÞ

�
�
�
�

�
�
�
�

2

ð11Þ

where

c+ðEÞ ¼
ð
dε
2π

ψelðE � εÞe
iεt0=h-

h� ðω+ΩÞ � ε � ih� γ
2

ð12Þ

Note added in proof: The authors would like to acknowledge the
contributions of the following works to this field: Varketina et al.
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