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Abstract
Drug resistance in cancer, especially in leukemia, creates a dilemma in treatment 
planning. Consequently, studies related to the mechanisms underlying drug resistance, 
the molecular pathways involved in this phenomenon, and alternate therapies have at-
tracted the attention of researchers. Among a variety of therapeutic modalities, mesen-
chymal stem cells (MSCs) are of special interest due to their potential clinical use. 
Therapies involving MSCs are showing increasing promise in cancer treatment and anti-
cancer drug screening applications; however, results have been inconclusive, possibly 
due to the heterogeneity of MSC populations. Most recently, the effect of MSCs on differ-
ent types of cancer, such as hematologic malignancies, their mechanisms, sources of 
MSCs, and its advantages and disadvantages have been discussed. There are many pro-
posed mechanisms describing the effects of MSCs in hematologic malignancies; how-
ever, the most commonly-accepted mechanism is that MSCs induce tumor cell cycle 
arrest. This review explains the anti-tumorigenic effects of MSCs through the suppression 
of tumor cell proliferation in hematological malignancies, especially in acute myeloid 
leukemia.
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INTRODUCTION

Acute myeloid leukemia (AML) is a type of blood malig-
nancy which involves cells that differentiate into white blood 
cells. AML starts in the bone marrow (BM). It comprises 
a heterogeneous group of disorders characterized by the rapid 
expansion of immature myeloid cells (blasts) in the BM. 
The inability of current therapies to eradicate blasts and 
chemotherapy refractoriness are the major causes underlying 
AML progression/relapse. The high rate of mortality due 
to AML reinforces the need for a greater understanding 
of the leukemic BM microenvironment and alternative meth-
ods for treating this disorder. Stem cell therapy is one of 
the best candidates to treat such hematological malignancies. 
There are different types of stem cells, including embryonic 
stem cells (ESCs), fetal stem cells, mesenchymal stem cells 
(MSCs), and hematopoietic stem cells (HSCs) that con-
tinuously replenish certain tissues. Among the different types 
of stem cells, MSCs have been specifically considered for 

clinical applications. Since the discovery of MSCs, various 
studies were performed to understand their physiology, func-
tion, and behavior [1]. Therefore, it is generally reported 
that MSCs have multi-lineage potential and are capable of 
differentiating into various types of cells [2]. The multi-line-
age capacity of MSCs makes them promising therapeutic 
targets and one of the most indispensable sources of cell 
therapy and regenerative medicine resources. Despite com-
prehensive research performed over the past 10 years, it 
is still unknown whether MSCs have tumor-promoting or 
tumor-suppressing effects. Research is required before MSCs 
can be used for the treatment of hematologic malignancies. 
In this review, we give an overview of studies regarding 
the use of MSCs in the treatment of AML as an example 
of an evolving model of myeloid malignancies (Table 1).

CHARACTERIZATION AND APPLICATION OF MSCS

The pioneering work of Caplan in 1991 introduced the 



Blood Res 2019;54:165-174. bloodresearch.or.kr

166 Ezzatollah Fathi, et al. 

Table 1. Studies reporting that MSCs affect hematologic malignancy by inhibiting/promoting tumor growth.

Author MSCs type Tumor model Findings Proposed mechanism

Manabe 
et al. [70]

Human bone 
marrow-MSCs

B-Acute lymphoblastic leukemia 
(patient cells)

Prevent of leukemic cells apoptosis Prevention of apoptosis by 
secreting soluble factors and 
cytokines

Garrido 
et al. [71]

Human stromal 
cell line

AML (patient cells) Improvement of leukemic cell 
survival 

Inhibition of drug-induced 
apoptosis of AML cells in direct 
cell-to-cell contact

Ramasamy 
et al. [72]

Human bone 
marrow-MSCs

Chronic myeloid leukemia (K562 
and BV173 cell lines) and acute 
myeloid leukemia (KG1a cell 
line)

Induce leukemic cell growth via 
reducing apoptosis

Formation of a leukemic stem cell 
niche to preserve the 
self-renewal ability of cancer 
cells

Liang et al. 
[33]

Human bone 
marrow-strom
al cell line 

Acute myeloid leukemia (U937, 
HL-60, and HL-60/VCR cell lines)

Induction of specific gene 
expression, leading to cell cycle 
arrest

Induction of apoptosis via 
modulation of Bcl-2 and active 
Caspase-3

Zhu et al. 
[73]

Human adipose 
tissue-MSCs

Acute myeloid leukemia (HL-60 
cell line) and chronic myeloid 
leukemia (K562 cell line)

Inhibit cancer cell proliferation Induction of cell cycle arrest 
through cytokine secretion such 
as DKK1

Wei et al. 
[74]

Leukemia 
patient’s bone 
marrow-MSCs

Chronic myeloid leukemia 
(K562 cell line)

Inhibit leukemic cell growth and 
apoptosis

Induction of apoptosis via 
phosphorylation of the Akt and 
bad proteins 

Tian et al. 
[34]

Human 
umbilical cord 
blood-MSCs

Acute myeloid leukemia (HL-60 
cell line) and chronic myeloid 
leukemia (K562 cell line)

Inhibit leukemic cell growth Potent proliferation inhibition of 
leukemic cells via activation of 
p38 MAPK signaling pathway 

Secchiero 
et al. [75]

Human bone 
marrow-MSCs

Lymphoma (BJAB and SKW6.4 
cell lines)

Inhibit lymphoma cell growth Modulation of the lymphomas 
stromal network by inducing an 
increase of intra-tumor necrosis

Han et al. 
[76]

Human bone 
marrow-MSCs 
and CML 
patient’s bone 
marrow-MSCs

Chronic myeloid leukemia 
(K562 and patient cells)

Increase anti-apoptotic ability of 
cancer cells

Regulation of apoptosis-related 
protein expression and 
activation of the Wnt signaling 
pathway

Yuan et al. 
[77]

Human 
umbilical cord 
blood-MSCs

T-Acute lymphoblastic leukemia 
(Jurkat cell line)

Inhibit Jurkat cell proliferation Potential shielding effect of MSCs 
on leukemia cells by activating 
notch signaling

Naderi 
et al. [78]

Human bone 
marrow-MSCs

Acute lymphoblastic leukemia 
(patient cells)

Protect of leukemic cells from 
apoptotic cell death

Inhibition of tumor suppressive 
activity by PGE2 secretion and 
activation of cAMP-PKA signaling 
pathway

Song et al. 
[26]

Mouse bone 
marrow-MSCs

B-lymphoma (A20 cell line) Inhibit leukemia/lymphoma cell 
growth

Cell cycle arresting of lymphoma 
cells due to reduction of 
interleukin (IL)-10 secretion 

Lee et al. 
[79]

Human adipose 
tissue-MSCs

Acute lymphoblastic leukemia 
(Reh, CCRF-CEM, SUP-T1, and 
CCRF-HSB2 cell lines)

Induce leukemia cell growth Induction of cancer cell growth by 
increasing the luciferase activity

Fathi et al. 
[30]

Rat bone 
marrow-MSCs

Chronic myeloid leukemia 
(K562 cell line)

Promote apoptosis and change 
cell cycle distribution of leukemic 
cells

Induction of apoptosis by 
secreting the TIMP-1 and 
CINC-1 cytokines and via BAX 
and caspase-3 cascade pathways

terms stroma and MSCs to the scientific community and 
indicated that MSCs are able to differentiate into the adipo-
cyte cell lineage [3]. MSCs, as well as other types of adult 
stem cells, are characterized by self-renewal capability, clo-
nogenic efficiency, and multi-lineage differentiation 
capacity. In general, MSCs are isolated by their capacity 
to adhere to culture-dish plastic surfaces. Cells can be ex-
panded in culture plates and immunologically characterized 
by a specific panel of markers. Because of the lack of unique 
and definitive cellular markers, the characterization of MSCs 
remains difficult. For this reason, the International Society 
for Cellular Therapy suggested three minimal criteria for 

the characterization of MSCs: (a) plastic adherence, (b) ex-
pression of markers related to mesenchymal cells such as 
CD73, CD90, and CD105, and lack of hematopoietic-related 
cells such as CD34, CD45, CD11b or CD14, CD19 or CD79, 
and HLA-DR expression, and (c) their tri-lineage differ-
entiation potential into adipocytes, osteoblasts, and chon-
drocytes (Fig. 1) [4]. MSCs, which are present in adult tissues 
and organs such as adipose tissue, liver, kidney, heart, pla-
centa, amniotic fluid, amnion, and BM, among others, are 
undifferentiated cells that have the capacity to differentiate 
into a broad range of different cell types, including adipo-
cytes, neuron-like cells, osteocytes, chondrocytes, and other 
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Fig. 1. Multi-lineage differentiation and cell surface markers of MSCs.

Fig. 2. Therapeutic implications of MSCs in the treatment of leukemia.

connective tissues [5-9]. Earlier, it was demonstrated that 
MSCs can only differentiate into mature cells of the same 
organ, but recent findings have shown that these cells can 
also differentiate into other cell types, and even into the 

cells making up endoderm, mesoderm, and ectoderm [10]. 
Also, due to their plasticity, self-renewal, and relatively 
non-immunogenic properties, MSCs are potentially consid-
ered for regeneration, transplantation, and treatment of cer-
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Fig. 3. Schema for the dual roles of MSCs in hematologic malignancy. 
MSCs have both anti-tumorigenic and pro-tumorigenic effects, as they 
tend to not only inhibit tumor growth but also promote tumor growth 
by suppressing tumor cell apoptosis.

tain diseases such as ischemia, multiple sclerosis, cartilage 
and bone pathologies, cardiac events, auto-immune dis-
orders, cancer, genetic diseases, and blood malignancies [11, 
12]. Of the forementioned diseases, hematological abnormal-
ity and blood malignancy have gained more attention for 
cell transplantation with MSCs (Fig. 2) [13]. Some studies 
indicated that MSCs could release multiple angiogenic 
growth factors and cytokines/chemokines. These ob-
servations suggest that MSCs may have potential as a useful 
cell source for therapeutic angiogenesis [14]. Following these 
findings, Fernandez-Garcia et al. (2015) reported that adipose 
tissue derived-MSCs (ADSCs) improve the homing of donor 
HSCs and progenitor cells into recipient BM, facilitating 
the stable reconstitution of transplanted recipients with in-
fused hematopoietic grafts [15]. These results open new per-
spectives for the application of ADSCs in HSCs therapy. 
Furthermore, the therapeutic potential of MSCs in veterinary 
medicine has been demonstrated since 2003 and MSC-based 
therapies have used in more than 500 dogs and 2,500 horses 
[16]. However, there are concerns regarding these cells and 
the risks linked to their therapeutic use are still unclear, 
particularly in the context of patients affected by pre-existing 
cancer [17]. It was reported that interactions between cancer 
cells and MSCs are of fundamental importance in stimulating 
both the development and invasiveness of tumors. As men-
tioned above, MSCs have specific features that make them 
candidates for cell therapy. One of the known roles of these 
cells was indicated by their use for the treatment of a hemato-
logical disorder [17]. 

ROLE OF MSCS IN HEMATOLOGIC 
MALIGNANCY PROGRESSION

Cancer cells involve a set of abnormalities, including un-
controlled cell growth, cell invasion, genetic instability, and, 
finally, tumor development and metastasis. Therefore, a vari-
ety of promising new therapies for cancers, such as im-
munomodulation and cell therapy, are being developed. 
Ongoing studies propose that MSCs are good targets for cell 
therapy in a variety of cancers. The effects of MSCs on 
cancer cells are yet to be controversial [13]. Some studies 
indicated inhibitory effects, while others reported pro-
liferative activity. For instance, in an in vitro study, it was 
shown that MSCs have tumoricidal effects on breast and 
lung cancer cell lines [18]. Furthermore, the co-culture of 
MSCs and melanoma cancer cell line cells revealed the pro-
motion of cell proliferation [19]. It was also shown that 
MSCs cause tumor growth when injected into mice with 
prostate cancer [20]. It seems that MSCs, through signaling 
pathways, can suppress both proliferation and apoptosis of 
cancer cells [21, 22]. This dual role of MSCs can be described 
as a “double-edged sword”. Therefore, understanding MSCs’ 
dual roles in tumor cell proliferation and apoptosis is 
required. Identifying the function of MSCs in hematologic 
malignancies such as lymphoma and leukemia may be appli-
cable to hematologic cancer treatment. Regarding some stud-

ies involving hematologic malignancies, it has been shown 
that MSCs are capable of promoting or inhibiting tumor 
growth by suppressing apoptosis, or proliferation of tumor 
cells, respectively (Fig. 3) [1, 13, 18, 23]. Although few inves-
tigations have reported that MSCs can directly promote the 
proliferation or apoptosis of malignant cells, the predominant 
hypothesis is that MSCs suppress both proliferation and apop-
tosis [24, 25]. Thus, the efficacy of the use of MSCs in treat-
ment of hematologic malignancies is poorly understood, and 
the mechanisms underlying the pro-tumorigenic and anti-tu-
morigenic effects of these cells act are currently unclear 
[26]. Some studies suggest mechanisms that have inhibitory 
effects on hematologic malignancies. In general, the mecha-
nisms mentioned include the possible use of MSCs as a deliv-
ery vehicle [27], inhibition of vascular growth [28], or to 
arrest the cell cycle [26, 29]. 

ANTI-TUMORIGENIC EFFECTS OF MSCS

Various studies indicated that MSCs can interfere hemato-
logic malignancies via inhibiting the proliferation of tumor 
cells. Various sources of MSCs have been utilized for this 
purpose. These sources include BM, which was the first 
source of MSCs discovered for clinical applications; umbilical 
cord blood; and adipose tissue [30]. MSCs derived from these 
sources are known to have similar surface antigen expression 
phenotypes, and immunosuppressive properties [31]. Our 
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experimental results showed that the antitumor effects of 
MSCs are not dependent on their tissue source and origin. 
Besides the cell source used, the number of MSCs and cancer 
cells seeded for co-culture is another important 
consideration. In other words, culture conditions, especially 
the concentration of MSCs, are known to significantly affect 
proliferation rate, morphology and secreted factors [32]. 
Moreover, it has been reported that antitumor effects in 
solid tumors are observed to associate with a higher number 
of MSCs [23]. This dependency is yet to be suggested for 
hematologic malignancies. There are many proposed mecha-
nisms describing the effects of MSCs on cancer cells; how-
ever, the most commonly-accepted mechanism is that MSCs 
induce tumor cell cycle arrest. Most studies related to effect 
of MSCs on AML cells were carried out using U937, HL-60, 
and HL-60/VCR cell lines instead of primary cells. In this 
regard, Liang et al. (2008) reported that direct contact of 
U937, HL-60, and HL-60/VCR AML cells with human BM 
fibroblast stromal cells (HFCLs) causes inhibition of cell pro-
liferation and induction of apoptosis. In their study, it was 
shown that upon co-culture with HFCLs, the percentage 
of AML cells in the G1 phase was higher and that of AML 
cells in the S phase cells was lower than those without 
HFCL cell-coculture [33]. In other words, Liang et al. (2008) 
suggested cell cycle G0/G1 blockage by transcriptional activa-
tion of specific genes [33]. In parallel, MSCs were found 
to inhibit the self-renewal ability of tumor cells. In this 
regard, Tian et al. (2010) demonstrated that umbilical cord 
(UC)-MSCs cause proliferative inhibition of HL-60 cells due 
to G0/G1 arrest. In addition, in this study, p38 mi-
togen-activated protein kinase (MAPK) was suggested as a 
potent suppressor of cell proliferation and tumorigenesis in 
this cell line [34]. In another investigation, Li et al. (2018) 
showed that UC-MSCs inhibited the proliferation of HL-60 
and THP-1 cells as AML cell lines. Their results indicate 
varying effects of UC-MSCs on various types of AML cell 
lines associated with secreted cytokines and the expression 
of cytokine receptors on the cells [35]. They suggested differ-
ent mechanisms, such as secretion of certain substances or 
paracrine signals, for the antitumor effects of UC-MSCs, be-
sides cell cycle arrest, but the exact mechanism was not 
determined in their study.

FAVORABLE AND POSSIBLY-INVOLVED 
MECHANISMS OF MSCS FOR INHIBITION OF 

HEMATOLOGIC MALIGNANCY

MSCs as delivery vehicles
As promising delivery vehicles, MSCs can be used for 

cancer cell therapy (Fig. 4) [36, 37]. These cells are easily 
accessible, quickly cultured in vitro, and transplanted [38]. 
Moreover, MSCs are known to possess hypo-immunogenic 
characteristics and can migrate to tumor sites [39]. It has 
been reported that the cytotoxic effects of MSCs may be 
helpful if they could identify tumor sites and migrate to 
it [40]. However, there have been a number of challenges 

in adapting the homing ability of MSCs for targeted delivery 
[41]. Furthermore, MSCs can also be used as gene therapy 
carriers [42]. In the same way, several studies have used 
MSCs to deliver genes and other factors, such as IL-12 [43], 
IL-24 [44], and IFN- [45] to tumor sites. Moreover, at the 
cellular level, MSCs exert most effects through extracellular 
vesicles (EVs), including microvesicles and exosomes [46]. 
These EVs are lipid membrane-bound vesicles secreted from 
MSCs. EVs contain a variety of molecules such as microRNAs, 
RNA, and proteins that have originated in MSCs, and these 
contents can be transferred to other cells, such as cancerous 
cells [47]. In one study by Hendijani et al. (2015), it was 
reported that MSC EVs produced an anti-proliferative effect 
on leukemic cells, and a cytotoxic effect in combination 
with doxorubicin, demonstrating an anti-leukemic potential 
of exosome-derived MSCs [48].

Inhibition of vascular growth
In recent studies, it was shown that tumor growth resulted 

from proangiogenic characteristics of MSCs. However, it has 
been documented that MSCs can impair vessel growth or 
angiogenesis under certain conditions. They can migrate to 
endothelial cell-derived-capillaries to produce reactive oxy-
gen species (ROS) [49]. Following generation of ROS, apopto-
sis of endothelial cells and suppression of tumor growth 
take place [28]. The mechanisms involved relate to modu-
lation of the vascular endothelial cadherin/-catenin signal-
ing pathway [50]. Moreover, previous studies reported that 
MSCs present in high numbers are potentially cytotoxic, 
and injection of MSCs into tumor sites may be an effective 
antiangiogenic treatment [49]. However, the inhibitory ef-
fect of MSCs on tumor growth has not been clearly indicated 
in hematologic cancers, but it may be important as these 
cancers are dependent on vascular support.

Cell cycle arrest
Cell cycle arrest is the most common fundamental process 

of tumor growth inhibition. Although cell cycle checkpoints 
and DNA repair processes seem to be linked to various can-
cers, mechanisms inducing cancer cell-cycle arrest by anti-
tumor agents are yet to be identified. In other words, the 
effects of MSCs on leukemia, lymphoma and another blood 
malignancies are not well understood [51]. Some studies 
have shown high levels of cells arrested at G0/G1. In detail, 
Fonseka et al. (2012) indicated that UC-MSCs could inhibit 
the proliferation of K562 cells due to arrest in G0/G1 phase 
through IL-6 and IL-8 cytokine secretion [52]. In another 
study, Fathi et al. (2019) reported that BM-derived MSCs 
were attributed to a robust increase in the number of cells 
in G0/G1 phase, which implies cell arrest at G0/G1. This result 
agrees with earlier reports by other authors [52, 53]. 
Therefore, further research is needed to understand the 
mechanisms of tumor cell cycle arrest that consequently 
lead to the antitumor effects of MSCs in hematologic 
malignancies.
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Fig. 4. MSC and tumor cell interactions as MSC-based cancer therapy. The chemotactic movement of MSCs toward a tumor niche is driven by 
soluble factors such as EGF, IL-6, IL-8, TGF-, and PDGF. Genetic modification of MSCs can be used to deliver a range of tumor-suppressing cargos 
directly into the tumor site. These cargos include growth factors and cytokines, immune-modulating agents (IFN-, IFN-, IL-2, IL-12, CX3CL1 etc.), 
and regulators of gene expression (miRNAs and other non-coding RNAs). MSCs are also capable of delivering therapeutic drugs within the tumor 
site. Also, micro vesicles derived from MSCs represent an alternative approach to delivering these agents.

MSC behavior in myeloid malignancies
As mentioned above, MSCs exhibit immunoregulatory 

properties that influence both innate and adaptive immune 
responses [54, 55]. Moreover, it seems that MSCs inhibit 
erythropoiesis to favor myeloid differentiation via pro-
duction of cytokines and growth factors, such as interleukin 
(IL)-6, which was shown to expand myeloid progenitors 
and block erythroid development [56]. In this context, ele-
vated IL-6 levels have been correlated with adverse survival 
in patients with AML [57]. Another player engaged in the 
BM microenvironment (niche) regulation is the autonomic 
nervous system that accompanies marrow blood vessels 
through adrenergic fibers [58]. Deregulation of the inter-
action between adrenergic fibers and the MSC niche has 
been implicated in impaired hematopoiesis, which is a hall-
mark of several hematologic diseases [58]. As previously 
reported, as an evolving model of myeloid malignancies, 
AML-derived MSCs display enhanced supportive capacity 
for hematopoiesis by changing expression of cell surface 
molecules or CD markers, including CD44, CD49e, CD271 
and CXCL12 [59, 60]. As confirmed for myelodysplastic syn-
drome, in AML, MSC-derived endothelial cell numbers are 
predominantly increased, especially in cases with rapidly 

proliferating disease, further suggesting MSC-derived cell 
implication in leukemic niche building. Moreover, it has 
been indicated that AML blasts can modulate endothelial 
cell expansion via the upregulation of E-selectin adhesion 
molecules and may then adhere to the stroma and be con-
cealed in a silent status, eventually becoming chemo-resistant 
[61]. Recent evidence, reviewed by Huang et al. (2015), 
report that AML-derived MSCs from AML patients show 
similar CD90, CD73, CD44, and E-cadherin expression, but 
decreased monocyte chemoattractant protein-1 levels com-
pared to MSCs from healthy donors [62]. Also, AML blast 
interactions with MSCs show that both cells release several 
cytokines and chemokines and, when co-cultured, normal 
MSCs had an anti-apoptotic and growth-enhancing effect 
on primary human AML cells, this was associated with upre-
gulation of the mTOR signaling pathway [63]. Recently, 
it has been shown that different clinical/cytogenetic AML 
subgroups may show differences in MSC niches. In one study, 
Lopes et al. (2017) characterized and arrayed MSC cytokine 
expression in patients with de novo AML and secondary 
AML [AML with myelodysplasia related changes (MRC)]. 
They found that de novo AML-derived MSCs presented 
VEGFA, CXCL12, RPGE2, IDO, IL-1, IL-6, and IL-32 at 
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high levels and IL-10 in lower levels. However, 
AML-MRC-derived MSCs presented IL-6 at high levels [64].

MESENCHYMAL STEM CELLS: THERAPEUTIC 
CONCEPTS VIA TARGETING IMMUNE ESCAPE

Immune dysregulation of leukemic niches is an attractive 
approach for cellular therapies. Recently, an increasing num-
ber of reports have supported the use of immune checkpoint 
blockers as well as monoclonal antibody therapies engaging 
specific T cells in hematologic malignancies. Immune check-
points are one of the protective mechanisms that are induced 
in activated T cells and which regulate T cell antigen 
responses. In other words, cancers can evade immune-medi-
ated destruction by upregulation of certain molecules on 
the surface of T cells. Indeed, immune checkpoint blockers 
could enhance cytotoxicity of cytokine-induced killer cells 
against myeloid leukemic blasts [65]. Recently it was shown 
that vaccination with MSCs promotes apoptosis of tumor 
cells and inhibits proliferation by increasing MHC1 and heat 
shock protein (HSP) expression levels. In detail, the enhanced 
antitumor response of MSCs was strongly associated with 
higher expression levels of MHC class I molecules on den-
dritic cells (DCs) that made tumor cells more cross-present-
able to host DCs to generate antitumor activity [66]. Another 
attractive perspective includes the optional transfer of 
gene-modified MSCs which secrete tumor-directed anti-
bodies continuously into the body of the patient. As MSCs 
have less immunogenicity and tend to condense in the close 
neighborhood of the tumor, they can be used as a means 
for the targeted delivery of anticancer agents. Aliperta et 
al. (2015) reported that gene-modified MSCs are able to 
express a CD33-CD3 bispecific antibody and to interfere 
with efficient lysis of AML blasts by human T cells in AML 
patients [66]. With regard to antibody-derived agents, such 
as bispecific agents and antibody-drug conjugates, CD33 is 
a clinically validated target and was shown to be effective 
in AML treatment [66]. In addition, antibodies specific for 
CD123 are under evaluation [67]. Li et al. (2018) indicated 
that the anti-CD44 antibody A3D8 inhibits proliferation of 
HL-60 cells, a representative acute leukemia cell line [35]. 
The A3D8 treatment increased the percentage of cells in 
G0/G1 cell cycle phase [68]. However, other in vitro inves-
tigations reported that MSCs may escape this targeted therapy 
and that leukemic stem cells become less microenviron-
ment-dependent in advanced-stage AML, so that targeting 
of CD44 may be less successful than expected. Other attrac-
tive therapeutic approach for myeloid disorders involve the 
use of allogeneic BM transplantation, chimeric antigen re-
ceptor T (CART) cells, and donor lymphocyte infusion (DLI) 
[69]. These approaches are presently aimed at targeting leuke-
mic blasts, but the use of MSCs might be novel targets in 
the near future. 

CONCLUSIONS

MSC-based therapeutic approaches have shown a wide 
range of outcomes, probably due to non-standardized ex-
perimental methods, heterogeneous characteristics of MSCs, 
and a lack of specific cell surface markers that are easily 
affected by the surrounding environment. The tumor-related 
effects of MSCs are still not well understood. Therefore, 
much more researches are necessary to develop MSCs as 
a cell-based therapy for cancer. Various studies have been 
carried out to investigate the effects of MSCs in tumori-
genesis, but a single principle cannot explain the dual anti-tu-
morigenic and pro-tumorigenic roles of MSCs. It has been 
indicated that the antitumor effects of MSCs are principally 
a result of the suppressed proliferation of malignant cells 
via an arrest in the G0/G1 phase of the cell cycle [23]. In 
order to exploit this anti-tumorigenic feature of MSCs for 
clinical use in the future, more investigation is recommended.
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